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Abstract

Successful active speaker detection requires a three-
stage pipeline: (i) audio-visual encoding for all speakers
in the clip, (ii) inter-speaker relation modeling between
a reference speaker and the background speakers within
each frame, and (iii) temporal modeling for the reference
speaker. Each stage of this pipeline plays an important role
for the final performance of the created architecture. Based
on a series of controlled experiments, this work presents
several practical guidelines for audio-visual active speaker
detection. Correspondingly, we present a new architecture
called ASDNet, which achieves a new state-of-the-art on the
AVA-ActiveSpeaker dataset with a mAP of 93.5% outper-
forming the second best with a large margin of 4.7%. Our
code and pretrained models are publicly available 1.

1. Introduction
Fusion of audio and video modalities has been shown

to provide promising solutions to long-standing challenging
problems. These include among others, speaker diarization
[16], biometrics [7], and action recognition [15, 38]. Sim-
ilar to other tasks, Audiovisual Active Speaker Detection
(AV-ASD) has also long been studied in literature [9,10]. A
particularly challenging flavor of this problem is AV-ASD in
the wild, where speech is to be detected and assigned to one
of possibly multiple active speakers at each instant in time.
Clearly, fusing the complementary discriminative informa-
tion from audio and video modalities is crucial: visual-only
approaches can easily be mistaken by other face/mouth mo-
tions such as eating, yawning or emotional expressions.
Audio-only approaches, although able to perform source
clustering and separation [18, 46], aren’t sufficiently robust
to count the number of speakers and assign speech to the
correct source. This is especially challenging with a single
microphone input in acoustically adverse conditions, typi-
cally encountered in practice.

1https://github.com/okankop/ASDNet

Figure 1. Audio-visual active speaker detection pipeline. The task
is to determine if the reference speaker at frame t is speaking or
not-speaking. The pipeline starts with audio-visual encoding of
each speaker in the clip. Secondly, inter-speaker relation model-
ing is applied within each frame. Finally, temporal modeling is
used to capture long-term relationships in natural conversations.
Examples are from AVA-ActiveSpeaker dataset [42].

Recently, the AVA-ActiveSpeaker dataset [42] provided
the first large-scale standard benchmark for audio-visual ac-
tive speaker detection in the wild. Recent research [1, 32]
indicates that active speaker detection in the wild requires
(i) integration of audio-visual information for each speaker,
(ii) contextual information that captures inter-speaker rela-
tionships, and (iii) temporal modeling to exploit long term
relationships in natural conversation. In this paper, we con-
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solidate this three-stage pipeline for audio visual speaker
detection, illustrated in Fig. 1, and study the importance of
each stage in detail.

Contributions. We propose a novel three-stage pipeline for
audio-visual active speaker detection in the wild. Our archi-
tecture, named ASDNet, sets a new state-of-the-art result on
AVA-ActiveSpeaker dataset with a 93.5% mAP, and outper-
forms the second best method [32] with a large margin of
4.7% mAP (Section 4.5). As part of ASDNet, we propose

(1) architectures for the audio and video backbones of the
audio-visual encoder (Section 3.2), that haven’t been previ-
ously explored for active speaker detection;

(2) a simple, yet effective inter-speaker relation modeling
mechanism (Section 3.3);

(3) In addition, we provide detailed ablation study and
guidelines for tuning all components of ASDNet. The study
includes comparison to the state of the art for the two novel
components mentioned above, as well as evaluation of var-
ious Recurrent Neural Network (RNN) architectures for
temporal modeling (Section 4.2.).

2. Related Work
We present the related work in two parts: (i) audio-visual

feature extraction in various applications, and (ii) contribu-
tions that address active speaker detection in the wild and
its challenges.

2.1. Audio-visual feature extraction

Audio. A common approach to extract features in speech
and audio research in different applications, is to use
Convolutional Neural Networks (CNNs) and RNNs with
log-Mel or Short-Time Fourier Transform (STFT) spectro-
grams as inputs [13]. The popularity of these fixed trans-
forms is due to their success in traditional speech and au-
dio processing and the fact that they extract relevant infor-
mation from first principles. Furthermore, the image-like
configuration of the spectrograms allows employing net-
work architectures well-known from computer vision appli-
cations. Particularly, in AV-ASD, this allows to use similar
audio and video backbone architectures [1, 32].

Based on the interpretation of CNNs as a data-driven fil-
terbank, researchers have applied CNNs directly on the au-
dio waveforms to capture discriminative information for the
task at hand [12, 30]. Such an approach in the context of
AV-ASD has been used for an audio backbone in [2]. How-
ever, these approaches need much more data and computa-
tional resources that the ones exploiting spectrograms. With
the goal to exploit the best from both worlds, researchers
have come up with learnable, but yet constrained transfor-
mations of raw audio data. Examples include Harmonic
CNNs used for music tagging, and the SincNet architecture

proposed in [41]. The latter was successfully used in sev-
eral audio applications [27,33,36]. To our best knowledge,
this promising architecture hasn’t been used in the context
of AV-ASD.

Video. Active speaker detection using only video modality
can be viewed as action recognition task. Prior to CNNs,
action recognition research was dominated by hand-crafted
features [28,29,49], combined with Fisher Vector represen-
tations [39] or Bag-of-Features histograms [8]. Ever since
AlexNet [26] won the ImageNet Challenge [43], hand-
crafted features were mostly abandoned in favor of features
extracted by CNNs. This trend extended to video analy-
sis tasks as well, including action recognition. Initially,
due to the absence of a large-scale video dataset, architec-
tures for action recognition could benefit from pretraining
on the very-large ImageNet dataset [11]. The first intuitive
approach was to treat video frames as multi channel input
to 2D-CNNs [21, 45]. Other approaches include extraction
of frame-level features with a 2D-CNN, followed by a spa-
tiotemporal modeling mechanism [23].

With the availability of large-scale video datasets such
as Kinetics [3], Moments-in-Time [37], and Jester [34], 2D-
CNNs were replaced by 3D-CNNs, to better capture tempo-
ral information and motion patterns within video frames. A
3D-CNN architecture was first proposed in [20] by Ji et al.
Since then, many 3D-CNN architectures for video recogni-
tion tasks followed, such as C3D [47], I3D [3], P3D [40],
R(2+1)D [48], SlowFast [14], etc. In [17], the effect of
dataset size on performance is investigated for several 3D-
CNN architectures. Inflated versions of popular resource-
efficient 2D-CNN architectures are analyzed for video clas-
sification tasks in [24]. In this work, we explore variants of
3D-CNNs for the AV-ASD task.

Fusion. The extracted modality-specific features can be
combined at data level [25], feature level [35] or decision
level [45]. The fusion that we apply in this work can be
considered as feature level fusion, since we keep processing
fused features at inter-speaker relation modeling and tempo-
ral modeling mechanisms afterwards.

2.2. Active speaker detection in the wild

Audio-visual active speaker detection is a specific case
of source separation [4, 50], where audio and visual sig-
nals are leveraged jointly to assign a speech segment to its
speaker. For this task, initial approaches [9,10] use datasets
collected in controlled environments. With the availability
of AVA-ActiveSpeaker dataset [42], the research commu-
nity was able to shift towards active speaker detection in the
wild.

Audio-visual feature extraction is the first step in top-
performing frameworks for active speaker detection [1, 6,
32, 42, 54]. A two-backbone approach has established it-
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Figure 2. Overview of the three-stage pipeline in ASDNet.

self as a standard architecture due to its versatility [45].
With a good audio-visual feature extraction and RNN-based
temporal modeling, the authors in [6] achieved competitive
performance on the AVA-ActiveSpeaker dataset. Tempo-
ral modeling constitutes an integral part of recent active
speaker detection pipelines [1, 6, 42, 54]. Often neglected
is the context information that can be obtained by modeling
inter-speaker relationships. Researchers have only recently
proposed methods to exploit the context information [1,32].

3. Methodology

Drawing inspiration from the insights in recent research,
we seek to establish a general pipeline that incorporates
audio-visual encoding, inter-speaker (context) modeling,
and temporal modeling. By designing an appropriate archi-
tecture for each component, we are able to exceed the state-
of-the art performance on the AVA-ActiveSpeaker dataset.

3.1. Notation and Overview

Let K denote the total number of speakers in a given clip.
The data available to the active speaker detection system
at time t is a set Xt = {Xt,1,Xt,2, . . .Xt,K ,xt}, where
Xt,k ∈ Rn×3×dh×dw is a tensor of face crops correspond-
ing to the k-th speaker. The height and width of the face
crops are denoted by dh and dw, 3 is the RGB channels and
n is the number of consecutive face crops centering time
instant t. The vector xt contains the samples of the au-
dio track corresponding to the duration of the video input.
Given the input data, the objective is to produce a binary
vector zt, where zt[k] = 1 if the k-th speaker is detected as
speaking at time frame t, and zt[k] = 0 otherwise.

A high-level overview of our pipeline that maps the raw
data Xt to the predictions zt is illustrated in Fig. 2. Next, in
Sec. 3.2-3.4, we zoom in on the design of the three pipeline
components. In Sec. 3.5, we discuss the training strategy
that enables an end-to-end inference: from face crops and
an audio waveform, to a prediction speaking or not speaking
for each speaker in the video clip.

Figure 3. Audio-visual encoder architecture. Visual input Xt,k

and audio input xt are fed to the respective backbones to produce
features vt,k and at. A concatenated feature vector vt,k

⊕
at

is fed to a fully connected layer which produces a prediction if
speaker k is speaking at time t. Prediction heads are removed after
training and are not part of the global picture in Fig. 2.

3.2. Audio-Visual Encoder Architecture

Our audio-visual encoder is illustrated in Fig. 3. The
stack of face thumbnails Xt,k consists of n frames,
Xt−n

2 ,k, . . . , Xt,k, . . . , Xt+n
2 −1,k, and the size of the au-

dio input vector xt is determined by the number of video
frames, the video frame rate, and the audio signal sampling
rate. The encoder produces an embedding vector by con-
catenating the modality-specific embeddings

vt,k = fv(Xt,k;wv), at = fa(xt;wa), (1)

where fv and fa are neural networks with trainable param-
eters wv and wa, respectively.

The concatenated features vt,k

⊕
at are fed into a fully

connected layer to get final predictions. To train the audio-
visual encoder, we apply cross-entropy loss between the
predictions and ground-truth labels. To ensure that consis-
tent discriminative features are extracted from both modal-
ities, we apply auxiliary classification networks after each
backbone, following previous works [1, 32, 42]. The auxil-
iary networks are also trained with cross-entropy loss. The
final loss becomes Lfinal = Lav +La +Lv . After training
is completed, supervision heads are discarded and only the
audio-visual backbone is used to extract features vt,k and
at for all speakers and time instants.

While the described high-level architecture is similar to
that of existing audio-visual encoders [1,32,42], our contri-
bution lies in the choice and design of the video and audio
backbones, discussed next.

Video backbone. Movements of mouth and facial mus-
cles are indicative of active speaking. Hence, to fully
exploit the available video data, it is important to accu-
rately model motion patterns. To this end, we propose us-
ing a 3D-CNN as the visual encoder function fv , in con-
trast to the state-of-the-art approacches that apply 2D-CNNs
[1,6,32,42,54]. As part of our study, we experimented with
various resource-efficient and high-performance 3D-CNN
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Figure 4. Audio encoder utilizing Sinc Convolutions (SincConv)
and Depthwise Separable Convolutions (DSConv). The convolu-
tion parameters, c, k, s corrspond to the number of output channels,
kernel size, and stride, respectively.

architectures [24] and found 3D-ResNeXt-101 to be the best
performing candidate for our video backbone. Further in-
sights from our investigation are discussed in Section 4.1.

Audio backbone. For the audio encoding backbone, the
majority of existing AV-ASD approaches [1, 6, 32, 42, 54]
extract Mel Frequency Cepstral Coefficients (MFCC) from
the raw signal, and use the MFCCs as input to 2D-CNNs. In
contrast, we propose using an audio backbone architecture
that directly operates on raw audio signal via sinc convo-
lutions [41]. In this manner, the system doesn’t require a
dedicated filterbank and directly exploits all available au-
dio information. This is not the case in existing approaches,
where phase information is often discarded after the filter-
banks. After sinc convolutions, we apply log-compression,
i.e., y = log(abs(x) + 1). This non-linearity has been ef-
fective in other raw audio processing tasks as well [27, 53].
The features extracted by the sinc-convolutions are used
as input to Depthwise Separable Convolutional (DSConv)
blocks with Leaky-ReLU nonlinearity [52]. Our full audio
encoder architecture, referred to as SincDSNet, is shown
in Fig. 4. Features after the global average pooling are
extracted as the audio features at. The advantage of the
proposed raw-audio backbone over existing feature-based
backbones is experimentally demonstrated in Section 4.1.

3.3. Inter-Speaker Relation Modeling (ISRM)

The audio-visual encoder extracts features for each in-
dividual speaker separately - the features for speaker k do
not contain visual information from the remaining speakers
in the frame. However, features belonging to background
speakers contain complementary information that improves
the system performance, as shown in [1]. In this paper, we
propose a method to aggregate information from the back-

Figure 5. Inter-speaker relation modeling architecture. For refer-
ence speaker k at time instant t, we extract background features
bt,k by passing the concatenated features of background speakers
through one layer MLP. Extracted features are then concatenated
to reference speakers video features and audio features.

ground speakers efficiently.
Consider a reference speaker k and m background

speakers in the scene at time t. The output of the audio-
visual encoder for the reference speaker is [vt,k,at]. To in-
corporate information from background speakers, we pro-
pose to extract an additional feature vector bt,k using a
single-layer perceptron, as illustrated in Fig. 5. The input
to the MLP are the concatenated audio-visual embeddings
from all background speakers at time t. Note that the num-
ber m is fixed from the system’s perspective: if there are
less than m background speakers at time t, the encoder fea-
tures are populated with zero vectors. If there are more than
m speakers, only m are randomly selected. In this manner,
the input dimension of the MLP is fixed. The final feature
vector [vt,k,at,bt,k] is fed to the temporal model. An ex-
perimental study of the proposed ISRM, and comparison to
the approach in [1] is provided in Section 4.2.

3.4. Temporal Modeling

Speaking is a coherent action in time: if a person is
speaking at previous or future time instants, it is likely that
the person is speaking at the current time instant. This is
also valid for remaining silent action. Therefore, temporal
modeling is crucial for accurate active speaker detection.

We experimented with several RNN-based temporal
modeling architectures: Long Short-Term Memory (LSTM)
[19], Gated Recurrent Unit (GRU) [5], Simple Recurrent
Unit (SRU) [31] and their bidirectional versions. For the
uni-directional methods, the reference frame is at the end
of the input, while for the bidirectional methods it is at
center of the input. The hidden state vector of the recur-
rent block at the reference frame is fed to a fully connected
layer to produce a binary output zt[k] ∈ {0, 1} (i.e. active
speaker or not). In case speakers’ features are not available
for the selected time window, similar to [1] we apply same
padding to the beginning or to the end. Out of all meth-
ods, Bidirectional-GRU performs best and becomes our fi-
nal choice in temporal modeling stage.

3.5. Training Details

Training Audio-Visual Encoding Backbones. We train
our audio-visual encoder using ADAM optimizer [22] for
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Audio Backbone Video Backbone mAP

2D-ResNet-18 2D-ResNet-18 79.0
2D-ResNet-18 3D-ResNet-18 83.9
SincDSNet 2D-ResNet-18 80.8
SincDSNet 3D-ResNet-18 86.1

Table 1. Performance comparison of different audio and video
backbones. Input length of 8-frames is used for all evaluations.

Audio Backbone Params MFLOP

SincDSNet 0.15M 13.8
2D-ResNet-18 11.2M 19.2

Table 2. Complexity comparison of different audio backbones.

70 epochs. Batch size is selected as highest possible num-
ber that fits to a single NVIDIA Titan XP GPU for different
backbones. However, gradients are accumulated reaching
to effective batch size of 192 before doing backward prop-
agation. The learning rate is initialized with 3 × 10−4 and
dropped by a factor of 10 at every 30 epochs. For video
input, we apply random cropping, random horizontal flip-
ping and color transformations as data augmentation at the
training time. Finally, video input is reshaped to the resolu-
tion of 160×160. The audio signals are sampled at 16 kHz.
3D-CNNs are pretrained on Kinetics [3], 2D-CNNs are pre-
trained with ImageNet [11], and SincDSNet is trained from
scratch. Once the training is finished, prediction heads are
discarded and the features vt,k ∈ R512 and at ∈ R160 are
used to train the ISRM and the temporal model.

Training ISRM and Temporal Modeling. We used
ADAM optimizer with cross-entropy loss to train the ISRM
and the temporal model. We train for 10 epochs, with batch
size of 256. The learning rate is initialized with 3 × 10−6

and dropped by 10 at 5th epoch. The MLP in the ISRM ex-
tracts the feature bt,k ∈ R128 independent from the number
of background speakers. For the temporal model, we used
two recurrent layers with hidden state dimension of 128,
which experimentally proved to be optimal for our system.

Our final architecture ASDNet is implemented in Py-
Torch and all experiments are performed using a single
NVIDIA Titan Xp GPU.

4. Experiments
Dataset. The AVA-ActiveSpeaker dataset [42] is the first
audio-visual active speaker dataset collected in the wild. It
contains 262 15-minute videos from Hollywood movies,
recorded at 25-30 fps, 120 of which are used for training,
33 for validation, and 109 for testing. The videos consist
of 3.65 million human-labeled frames, where face crops be-
longing to the same speaker are aggregated to create face

Video Backbone Params GFLOP mAP

32
-f 3D-ResNeXt-101 48.6M 13.2 88.9

3D-ResNet-18 33.2M 10.3 87.4

16
-f 3D-ResNeXt-101 48.6M 14.1 88.9

3D-ResNet-18 33.2M 11.2 87.5

8-
f

3D-ResNeXt-101 48.6M 13.2 86.7
3D-ResNet-18 33.2M 10.3 86.1
2D-ResNet-18 11.2M 0.9 80.8
3D-MobileNetV1 2.0x 13.9M 0.6 81.6
3D-MobileNetV2 1.0x 2.1M 0.7 85.1
3D-ShuffleNetV1 2.0x 4.6M 0.7 85.0
3D-ShuffleNetV2 2.0x 3.9M 0.6 84.2

Table 3. Comparison of video backbones for different clip lengths.
SincDSNet is used at the audio backbone, and face crop resolution
is 160× 160.

tracks, and each face crop is annotated with speaking or not-
speaking label. This results in 38.5 hours of face tracks with
the corresponding audio signal. The number of speakers in
the videos is time-varying, and a significant portion of face
crops has resolution less than 100 pixels, making the dataset
considerably challenging.

Evaluation Metric. We use the official ActivityNet eval-
uation tool that computes mean average precision (mAP).
Unless stated otherwise, we use AVA-ActiveSpeaker vali-
dation set for our evaluations.

4.1. Audio-Visual Encoder Evaluation

In this section, we investigate the advantage of the pro-
posed audio and video backbones, compared to backbones
used in state-of-the-art active speaker detection systems.
The encoder architecture is of utmost importance: the over-
all performance of the AV-ASD pipeline can only be as
good as the extracted features. For these experiments,
ISRM and temporal modeling are not used.

Which encoder architectures should be used? Following
recent works [1,6,32,42,54], we take 2D-ResNet-18 archi-
tecture as the audio and video backbones of a baseline en-
coder. Inputs to the video backbone are stacked face crops,
and inputs to the audio backbone are MFCCs, correspond-
ing to a length of eight frames. This baseline achieves 79.0
mAP as shown in Table 1.

To demonstrate the benefit of applying 3D convolution
kernels, we keep the baseline audio backbone and replace
2D-ResNet-18 by 3D-ResNet-18. This change alone brings
improvement of 4.9 mAP over the baseline. The improve-
ment is achieved solely due to the ability of the 3D convo-
lution kernels to capture motion patterns in the video data.

Similarly, to evaluate the benefit of SincDSNet as the
proposed audio backbone, we keep the baseline video back-
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# Speakers 0 1 2 3 4 5

mAP 92.6 93.1 93.4 93.4 93.4 93.3

Table 4. Performance of inter-speaker relation modelling for dif-
ferent number of background speakers.

Method Temporal Model mAP

NonLocal [1] 87.2
NonLocal [1] ✓ 92.8
ISRM (ours) 89.0
ISRM (ours) ✓ 93.4

Table 5. Comparison of inter-speakers relation modeling methods.

bone and replace the ‘MFCC + 2D-ResNet-18’ audio back-
bone by SincDSNet. This change brings improvement of 1.8
mAP over the baseline, thanks to the partially learnable fea-
ture extraction by SincDSNet, operating on the raw audio
data. Importantly, SincDSNet has 75 times less parameters
than 2D-ResNet-18 and requires less floating point opera-
tions (FLOPs), as shown in Table 2.

Finally, our audio-visual encoder that uses both 3D-
ResNet-18 and SincDSNet as backbones, achieves 7.1 mAP
improvement over the baseline.

Can we use resource-efficient video encoders? One can
attribute the performance boost achieved by 3D-ResNet-
18 backbone to its increased number of parameters and
FLOPs. Therefore, we have used several resource efficient
3D CNNs [24] as video backbone. We report their per-
formance at the bottom of Table 3. Notably, all 3D CNN
architectures achieve better performance than 2D-ResNet-
18. For isntance, although 3D-MobileNetV2 1.0x contains
much smaller number of parameters (approx. 7x less) and
less FLOPs compared to 2D-ResNet-18, it achieves around
4 mAP better performance.

We have also experimented with deeper and computa-
tionally more expensive 3D-ResNeXt-101 architecture to
check how much performance can be increased. 3D-
ResNeXt-101 shows 0.6 mAP improvement over 3D-
ResNet-18 when 8-frames input is used.

How does clip length affect performance? Although we
used 8-frames clips to train our audio-visual backbones,
longer clips would provide larger temporal context. In Ta-
ble 3, we compare clip lengths of 8-frames, 16-frames and
32-frames for the best performing 3D-ResNeXt-101 and
3D-ResNet-18 video backbones. To maintain similar com-
plexity, we removed the initial temporal downsampling for
8-frames input, and inserted an additional temporal down-
sampling to the initial convolution layer for 32-frames in-
put. Applying 16-frames clip length brings a performance
improvement of 1.4 mAP and 2.2 mAP over 8-frames clip

Background features mAP

only reference frame 93.4
neighbouring window of 9 frames 93.5

Table 6. Performance comparison when background speakers’ fea-
tures at different number of frames are leveraged.

length for 3D-ResNet-18 and 3D-ResNeXt-101, respec-
tively. Using 32-frames clip length does not show same
performance improvement over using 16-frames. We sus-
pect that inserting additional temporal downsampling hin-
ders backbones ability to capture motion patterns.

4.2. Inter-Speaker Relation Modeling Evaluation

In this section, we investigate the performance of the
proposed ISRM and compare it to an existing approach [1]
for context modelling. These experiments include the full
ASDNet pipeline (encoder, ISRM, and a temporal model),
where the temporal model, if present, is a Bidirectional-
GRU with sequence length of 64.

How many background speakers to use for ISRM? We
experimented with different number of background speak-
ers for ISRM, and the results are reported in Table 4. In
general, increasing the number of background speakers fea-
tures increases the performance. ISRM increases the per-
formance by 0.8 mAP compared to the case where only ref-
erence speaker’s features are used with temporal modeling
(0 background speaker case). In the rest of our experiments,
we use three background speakers in the ISRM module.

How does our ISRM compare to existing approaches? In
Table 5, we provide a comparison of our ISRM approach
to the NonLocal [51] approach proposed in [1]. NonLo-
cal captures relationships between all the speakers within
clip, whereas our ISRM approach captures relationships be-
tween speakers only within reference frame. When used
alone, after the audio-visual backbones, neither NonLo-
cal nor our ISRM approach bring significant performance
improvement (NonLocal even degrades the performance).
However, ISRM contributes additional 0.8 mAP compared
to a system that uses only temporal modeling.

Can ISRM benefit from neighbouring frames? At
ISRM, we do not have to use background speakers’ fea-
tures at only reference frame. Neighbouring frames relative
to the reference frame can also provide useful information
for ISRM. Therefore we have used background speakers’
features at neighbouring window of 9 frames, which shows
a modest 0.1 mAP improvement as reported in Table 6.
For the rest of the paper, we use 9 neighbouring frames at
ISRM.
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Method Sequence Length mAP

Bidirectional-GRU 64 93.5
Bidirectional-LSTM 64 93.4
Bidirectional-SRU 64 93.2
GRU 32 92.8
LSTM 32 92.7
SRU 32 92.7

Table 7. Performance comparison of temporal modeling methods.

Seq. Length 8 16 32 64 128

mAP 92.0 92.8 93.3 93.5 93.5
Table 8. Performance comparison of using different sequence
lengths at the training of Bidirectional-GRU.

4.3. Temporal Modeling Evaluation

Which RNN architectures are most suitable? Table 7
shows the performance comparison of different RNN
blocks used for temporal modeling. All one-directional
methods takes 32-frames features as input and last output
is used as input to final fc layer (reference frame is placed
to the last of input sequence). For bidirectional methods,
we have used 64-frames features as input and center output
is used as input to final fc layer (reference frame is placed
at the center of input sequence). Compared to their bidi-
rectional versions, one-directional methods perform around
0.7 mAP worse. Out of all methods, bidirectional-GRU
achieves the best performance.

What should be the length of the input sequence? We
have experimented with different sequence lengths and re-
ported results in Table 8. In general, using larger sequence
length does not hurt the final performance. However, af-
ter sequence length 64, the performance converges to 93.5
mAP.

(a) (b)

Figure 6. The network predictions for speaking probabilities of
each speaker (a) after only audio-visual encoding (b) after tempo-
ral modeling and ISRM are also applied. Ground truths of speak-
ing and not-speaking classes are denoted with green and red rect-
angles, respectively.

# Speaker
Video Feat.

Audio
Feat.

ISRM
Feat.

Temporal
Modeling mAP

1 ✓ 78.8
2 ✓ 49.3
3 ✓ ✓ 88.9
4 ✓ ✓ ✓ 92.6
5 ✓ ✓ ✓ 89.6
6 ✓ ✓ 64.5
7 ✓ ✓ ✓ 67.8
8 ✓ ✓ ✓ ✓ 93.5

Table 9. Contribution of each component to the final performance.

Encoder
Clip Length

ISRM and
Temporal Modeling mAP

8-frames ✗ 86.7
16-frames ✗ 88.9
8-frames ✓ 93.4
16-frames ✓ 93.5

Table 10. Effect of encoder clip length on the final performance.
SincDSNet and 3D-ResNeXt-101 are used for audio and video
backbones, respectively.

4.4. Component-wise Analysis

How does each component contribute to the performance?
We investigated the contribution of each component to the
final performance in Table 9. We highlight several find-
ings: (i) Without ISRM and temporal modeling, suitable
backbones alone achieve 88.9 mAP, which is better than
any other state-of-the-art approach; (ii) ISRM and tempo-
ral modeling improve the performance by 0.7 mAP and 3.7
mAP when they are applied alone, respectively, showing
the importance of both stages in the pipeline; (iii) In rows 6
and 7 in Table 9, we investigated the importance of ISRM
stage by evaluating the performance without using refer-
ence speakers video features. Accordingly, even without
looking reference speaker’s face, information acquired from
background speakers and audio enables our architecture to
achieve around 68 mAP. This shows that ISRM is an indis-
pensable part of our pipeline; (iv) When ISRM and tempo-
ral modeling are applied together, our architecture achieves
the best performance with 93.5 mAP.

The contribution of temporal modeling and ISRM stages
is visually illustrated in Fig. 6. With only audio-visual en-
coding, each speaker is analyzed independently and pre-
dictions for speaking probabilities are made without con-
textual and long-term temporal information in Fig. 6 (a).
After applying temporal modeling and ISRM stages, the
ASDNet predictions of speaking probabilities for not-
speaking speakers drop and speaking speaker increases con-
siderable as shown in Fig. 6 (b).
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Method mAP
va

lid
at

io
n

se
t

ASDNet (ours) 93.5
Causal ASDNet (ours) 90.6
MAAS-TAN [32] 88.8
Chung et al. [6] 87.8
ASC [1] 87.1
Zhang et al. [54] 84.0
Sharma et al. [44] 82.0
Roth et al. [42] 79.2

te
st

se
t

ASDNet (ours) 91.7
Chung et al. [6] 87.8
ASC [1] 86.7
Zhang et al. [54] 83.5
Roth et al. [42] 82.1

Table 11. Comparison with state-of-the-art methods on the AVA-
ActiveSpeaker dataset. mAP results are calculated with the official
evaluation tool as explained in [42].

How does the clip length affect performance? Increased
encoder clip length (16-frames instead of 8-frames using
3D-ResNeXt-101 video backbone) improves the perfor-
mance by 2.2 mAP if ISRM and temporal modeling are not
applied. However, in the complete pipeline this improve-
ment reflects to a marginal 0.1 mAP improvement in the
final performance, which is shown in Table 10. This shows
that increased encoder clip length shifts the improvement
that could have been provided by temporal modeling to the
encoder. This might not be desirable if complexity is impor-
tant at the design of the architecture since doubling encoder
clip length means doubling the complexity.

Can ISRM be placed after temporal modeling? If nec-
essary, the order of ISRM and temporal modeling can be
changed, which results in only a 0.1 mAP performance
degradation.

Can we make the full pipeline causal? The complete
pipeline can be made causal by placing the reference frame
to the last place of the input for encoder and temporal mod-
eling stages; and by not using neighbouring frames back-
ground speakers’ features at ISRM. So that, no future infor-
mation is used for the active speaker detection of the current
frame. Causal pipeline achieves 90.6 mAP, which is still
better than any state-of-the-art approach.

4.5. Comparison with the State-of-the-art

How does ASDNet compare to state-of-the-art methods?
We compare the performance of ASDNet with several state-
of-the-art methods in Table 11. For the final ASDNet, we
used 16-frames clips at the audio-visual encoding stage, 3
background speakers with 9 neighbouring window at the
ISRM stage, and bidirectional-GRU with 64-frames se-

Method Number of Faces

1 2 3

ASDNet (Ours) 95.7 92.4 83.7
MAAS [32] 93.3 85.8 68.2
ASC [1] 91.8 83.8 67.6
Baseline [42] 87.9 71.6 54.4

Table 12. Performance comparison by number of visible faces on
each frame.

Method Face Size

S M L

ASDNet (Ours) 74.3 89.8 96.3
MAAS [32] 55.2 79.4 93.0
ASC [1] 56.2 79.0 92.2
Baseline [42] 44.9 68.3 86.4

Table 13. Performance comparison by face size.

quence length at the temporal modeling stage. ASDNet
outperforms the second best approach by 4.7 mAP on the
validation set, and by 3.9 mAP on the test set of AVA-
ActiveSpeaker dataset.

How does number of faces affect the performance? In-
creased number of faces makes the active speaker detection
task more challenging and the performance of ISRM be-
comes more critical. ASDNet outperforms all other state-
of-the-art methods for all different face numbers as shown
in Table 12. Superiority of ASDNet becomes more signifi-
cant as number of faces increases.

How does face size affect the performance? Performance
comparison for face size, which is set as small for [0, 64),
medium for [64, 128), and large for [128, ∞) pixels, is
shown in Table 13. ASDNet outperforms all other state-
of-the-art methods for all different face sizes. Superiority
of ASDNet becomes more significant for smaller faces.

5. Conclusion
In this paper, we scrutinized the task of Audio-Visual

Active Speaker Detection and proposed a three-stage archi-
tecture, called ASDNet. With the proposed audio-visual en-
coder and the inter-speaker relation modelling mechanism,
ASDNet outperforms the previous state-of-the-art with sig-
nificant 4.7 mAP and 3.9 mAP on the validation and test
set of AVA-ActiveSpeaker dataset, respectively. To make
the final design and hyperparameter choices for ASDNet,
we followed insights from carefully designed experiments
each targeted a specific aspect of the system. Each of these
experiments was discussed in the paper. We believe that
these insights can be useful for other complex audio-visual
tasks as well that require context and temporal modeling.
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