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Abstract

In the past few years, we have witnessed remarkable

breakthroughs in self-supervised representation learning.

Despite the success and adoption of representations learned

through this paradigm, much is yet to be understood about

how different training methods and datasets influence per-

formance on downstream tasks. In this paper, we analyze

contrastive approaches as one of the most successful and

popular variants of self-supervised representation learning.

We perform this analysis from the perspective of the train-

ing algorithms, pre-training datasets and end tasks. We

examine over 700 training experiments including 30 en-

coders, 4 pre-training datasets and 20 diverse downstream

tasks. Our experiments address various questions regard-

ing the performance of self-supervised models compared

to their supervised counterparts, current benchmarks used

for evaluation, and the effect of the pre-training data on

end task performance. Our Visual Representation Bench-

mark (ViRB) is available at: https://github.com/
allenai/virb.

1. Introduction
Learning compact and general representations that can

be used in a wide range of downstream tasks is one of the
holy grails of computer vision. In the past decade, we have
witnessed remarkable progress in learning representations
from massive amounts of labeled data [34, 55, 25]. More
recently, self-supervised representation learning methods
that do not rely on any explicit external annotation have
also achieved impressive performance [24, 38, 7, 23, 5].
Among the most successful approaches are contrastive self-
supervised learning methods that achieve results close to
their supervised counterparts. These methods typically
learn by contrasting latent representations of different aug-
mentations, transformations or cluster assignments of im-
ages. With a sufficient amount of transformations and im-
ages to contrast, the model is driven to learn powerful rep-
resentations.

The most common protocol for comparing representa-
tions learned by self-supervised methods is to pre-train

Figure 1. Our goal is to study recently proposed contrastive self-
supervised representation learning methods. We examine three
main variables in these pipelines: training algorithms, pre-training
datasets and end tasks. We consider 4 training algorithms, 4 pre-
training datasets and 20 diverse end tasks for this study.

models on a large dataset such as ImageNet [15] with-
out using class labels and then use the learned represen-
tations for training end tasks such as image classification,
object detection or segmentation. Although this protocol
has been widely adopted, it provides an incomplete picture
of progress, since the noticeable similarities between com-
mon pre-training and end tasks might lead to biased and
optimistic estimates of performance.

In this work, we provide a comprehensive study of rep-
resentations learned by contrastive self-supervised methods.
We explore various alternatives for algorithms, pre-training
datasets and end tasks (Figure 1), covering a total of 735
experiments, using 4 algorithms, 4 pre-training datasets and
20 diverse end tasks. Our goal is to provide answers to the
following open questions: (1) Is supervised learning on Im-
ageNet a good default encoder choice for end tasks? (2) Is
ImageNet accuracy a good metric for measuring progress
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in self-supervised representation learning? (3) How do dif-
ferent training algorithms compare for different end tasks?
(4) Does self-supervision provide better encoders for certain
types of end tasks? (5) Does the distribution of pre-training
data affect the end-task performance? (6) Do we learn poor
representations when using highly unbalanced datasets?

We perform an extensive set of experiments to systemat-
ically analyze contrastive self-supervision and provide an-
swers to the above questions. We observe a mixture of un-
intuitive and intuitive results, which better demonstrate the
characteristics of contrastive self-supervised models.

2. Related Work
Self-supervised representation learning. To circumvent
the need for explicit supervision, various self-supervised
approaches have been proposed in previous works. A num-
ber of different “pretext” tasks have been proposed with the
goal of training visual encoders, for instance: predicting the
spatial configuration of images [17], colorizing grayscale
images [64], finding the correct ordering of jigsaw puz-
zles [42], backprojecting to the latent space of GANs [18],
counting primitives [43], cross-channel image prediction
[65], generating image regions conditioned on their sur-
roundings [47] and predicting the orientation of an image
[21]. Previous work also explored learning from videos
by using ego-motion as supervisory signal [1, 27], track-
ing similar patches [60], predicting future frames [59] and
segmentation based on motion cues [46]. The recent con-
trastive methods, which are the focus of this study, outper-
form these approaches and are described next.
Contrastive representation learning. Here, we discuss
a selection of related contrastive learning methods. Con-
trastive Predictive Coding (CPC) [58] learns a representa-
tion by predicting future latent representations using an au-
toregressive model and a contrastive loss, DIM [16] max-
imizes the mutual information between a region of the in-
put to the encoder and its output, MoCo [24, 9] maintains
a large memory bank of samples for computing the con-
trastive loss, SimCLR [7, 8] does not use a memory bank
and introduces a non-linear transformation between the rep-
resentation and the loss function, PIRL [38] learns similar
representations for different transformations of an image,
and SwAV [5] avoids explicit pairwise feature comparisons,
contrasting between multiple image views by comparing
their cluster assignments. In this paper, we use a subset of
the most recent methods that provide state-of-the-art results
and have public implementations available.
Representation learning analysis. There have been vari-
ous studies analyzing representations learned via supervised
or self-supervised learning. [14] analyze the mismatch be-
tween training and deployment domains, [56] analyze the
robustness to natural data distribution shifts compared to
synthetic distribution shifts, [50] analyze the generalization

capabilities of models trained on ImageNet. [62] explore
the relationships between visual tasks. In contrast to these
approaches, we study self-supervised approaches. [63] pro-
vide a standard benchmark for analyzing the learned rep-
resentations. [2] study representations learned at differ-
ent layers of networks by self-supervised techniques. [49]
study the effect of invariances such as occlusion, viewpoint
and category instance invariances on the learned represen-
tation. [57] study the effect of training signals (referred
to as “views”) on the downstream task in self-supervised
contrastive settings. [22] analyze training self-supervised
models on uncurated datasets. [41] provide insights about
the utility of self-supervised methods when the number of
available labels grows and how the utility changes based on
the properties of training data. [19] show that on various
tasks self-supervised representations outperform their su-
pervised counterpart and ImageNet classification accuracy
is not highly correlated with the performance on few-shot
recognition, object detection and dense prediction. [53]
propose a benchmark to evaluate the representation learn-
ing models for generalization to unseen concepts. They
evaluate contrastive self-supervised methods as well and
show supervised models are consistently better. There are
a few concurrent works that analyze representation learning
as well. [12] study the effects of data quantity, data qual-
ity, and data domain on the learned representations. [51]
sequentially pre-train on datasets similar to the end task
dataset and show faster convergence and improved accu-
racy. [26] propose two large-scale datasets and show self-
supervised approaches are inferior to supervised ones in
these domains. In contrast, we analyze self-supervised con-
trastive approaches from the perspective of training algo-

rithms, pre-training datasets and end tasks.

3. Self-supervision Variables
Given a set of images X = {x1, . . . , xN}, the goal of

a self-supervised learning algorithm  is to learn parame-
ters ✓ of a function f✓ that maps images x to representa-
tions in a continuous latent space. In other words, given
an architecture f , we learn ✓ =  f (X ). The learned rep-
resentations can then be evaluated on various (supervised)
end tasks D = {(x̄1, y1), . . . , (x̄M , yM )} with pairs of in-
puts and labels. There are various variables involved in this
pipeline. We primarily focus on three variables and their re-
lationship: training algorithms  , pre-training datasets X
and end tasks D. Below, we describe each of these variables
and the choices for our experiments.

3.1. Training Algorithms
The representation learning algorithms we consider are

contrastive self-supervised learning approaches that have
recently shown substantial improvements over the previous
methods. In this study, we investigate the influence of the
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training algorithms on the learned representations. We use
different algorithms: PIRL [38], MoCov1 [24], MoCov2 [9]
and SwAV [5]. The reason for choosing these specific algo-
rithms is that they achieve state-of-the-art results on stan-
dard end tasks, have a public implementation available, and
do not require heavy GPU memory resources, enabling a
large-scale analysis. The list of all 30 encoders is in Ap-
pendix H.

3.2. Pre-training Datasets
The de facto standard used for pre-training with con-

trastive methods is the ImageNet [15] dataset [38, 24, 7, 5].
ImageNet is an object-centric dataset with a balanced num-
ber of images for each category. Some works [24, 5]
have also used less-curated datasets such as Instagram-1B
[37]. In this paper, we perform a systematic analysis of
the datasets in two dimensions. First, we use datasets with
different appearance statistics. We use Places365 [67], Ki-
netics400 [29] and Taskonomy [62] in addition to ImageNet
for pre-training. Places is a dataset that is scene-centric and
includes images of various scene categories (e.g., stadium
and cafeteria). Kinetics is an action-centric dataset and in-
volves videos of activities (e.g., brushing hair and dancing).
Taskonomy is a dataset of indoor scene images. Examples
from each dataset are provided in Figure 1.

These datasets are larger than ImageNet. To eliminate
the effects of training data size, we subsample these datasets
to make them the same size as ImageNet (1.3M images).
We uniformly sample from each category of the Places
dataset. For Kinetics, we sample at a constant frame rate
across all videos. For Taskonomy, we uniformly sample
across the different building scenes. Moreover, to explore
the effect of using a pre-training dataset with a mixed distri-
bution of appearance, we randomly select a quarter of each
of the aforementioned datasets and combine them to form a
dataset with non-uniform appearance statistics. We refer to
this dataset as ‘Combination’.

The self-supervised models are typically pre-trained on
ImageNet, which is a category-balanced dataset. We also
investigate the representations learned on a set of unbal-
anced datasets. We create two unbalanced variations of Im-
ageNet. First, we sample images from each category by
linearly increasing the number of samples i.e., we sample
one image from category 1, two images from category 2,
etc. We refer to this dataset as ‘ImageNet-1⁄2-Lin’ and it con-
sists of 500.5K images. In the second variation, the number
of samples increases according to an exponential distribu-
tion.1 We refer to this unbalanced variation as ‘ImageNet-
1⁄4-Log’ and it consists of 250K images. To have compara-
ble size datasets, we create smaller balanced variations of

1More specifically, we sample �ean+b data points for the n-th class,
a,b and � are chosen so that a single image is sampled from the first class
and 1000 images are sampled from the last.

the ImageNet dataset by uniformly sampling a quarter and
half of the images in each category. We refer to these as
‘ImageNet-1⁄4’ and ‘ImageNet-1⁄2’.

3.3. End Tasks
Representations learned from self-supervised methods

can be used for various end tasks, such as image classifi-
cation, object detection and semantic segmentation. Image
classification has been considered as the primary end task
for benchmarking contrastive self-supervised techniques
[22]. Although this task is a reasonable choice for mea-
suring progress, it might not be an ideal representative for
various computer vision tasks that are different in nature. In
this study, we consider a wide range of end tasks. To ensure
diversity, we study 20 tasks grouped into four categories
based both on the structure of the output and the nature of
the task (Figure 2). The output type of each end task can be
classified into two broad categories: image-level and pixel-

wise. The former involves reasoning about a region in the
image or the entire image, while the latter reasons about
each pixel.2 Within each category, we consider two cate-
gories of tasks based on their nature: semantic and struc-

tural. Semantic tasks are the ones that associate semantic
information such as category labels to image regions (e.g.,
semantic segmentation or image classification). Structural
tasks, on the other hand, provide information about some
structure in the image (e.g., depth estimation). We note that
the boundary between these two types of tasks can become
blurry and some tasks can be considered both structural and
semantic (e.g., walkable surface estimation). We put these
tasks in the closest category. Hence, we have four types of
tasks in total:

• Semantic Image-level. In these tasks, we provide se-
mantic labels for a region or the entire image. Exam-
ples include image classification (e.g., ImageNet clas-
sification) and scene classification (SUN397 [61] clas-
sification). This is the most populated category since
most common vision tasks fall into this category.

• Structural Image-level. These tasks reason about
some structural, global information in images. Exam-
ple tasks in this category are counting (CLEVR-Count
[63]) and egomotion estimation (estimating car move-
ments in nuScenes [4]).

• Semantic Pixelwise. In contrast to the two previous
categories, the output is pixelwise. The goal is typi-
cally to assign a semantic label to each pixel in an im-
age. Semantic segmentation of images in Cityscapes
dataset [13] and hand segmentation in EgoHands [3]
dataset are example tasks in this category.

2While not the focus of our work, some tasks do not fit into these two
categories, e.g. generating future human poses.

9951



Cityscapes Segmentation

Oxford-IIT Pet Segmentation EgoHands Segmentation NYU Walkable Surface
Estimation KITTI Optical Flow

Pi
xe

lw
is

e
Im

ag
e-

le
ve

l
Semantic

DTD Texture
Classi�cation

Kinectics Action
Recognition

Structural

CIFAR-101
Classi�cation

EuroSAT LandCover
Classi�cation

truck

SUN397 Scene 
Classi�cation

Pets Image
Classi�cation

siamese

cathedral

Caltech 101 Image
Classi�cation

bubbly

soccer ball

ImageNet
Classi�cation

abseilng

husky

NYU Depth Estimation AI2-THOR Depth Estimation
Taskonomy Depth

Estimation

nuScenes Egomotion Estimation

Move 
Ahead

10

Rotate 
Left

AI2-THOR Egomotion Estimation

5 steps

AI2-THOR # of Steps
Prediction

CLEVR Object
Counting

Figure 2. End tasks. We study a diverse set of end tasks. We categorize these tasks according to two characteristics: semantic vs. structural

and pixelwise vs. image-level. We illustrate an image from each task to show the diversity of visual appearances we consider.

• Structural Pixelwise. The fourth category involves
providing pixelwise predictions for structural proper-
ties in a scene. Examples include estimating pixelwise
depth in the AI2-THOR [30] framework and walkable
surface estimation in the NYU Depth V2 [40] dataset.

Figure 2 illustrates all tasks and their corresponding cat-
egories. More details on the task formulations and their
datasets are in Appendix A.

4. Architecture Details
With the goal of conducting a controlled study, we fix as

many variables as possible, and use the standard PyTorch
[45] ResNet50 architecture for every encoder studied. Due
to the diverse nature of our tasks and their outputs we have
to use several different end task network architectures, but
we keep them as small and standard as possible. As a result,
we might not achieve state-of-the-art results on every end
task. However we ensure that our results are good enough
to adequately compare the performance of different learned
features. In this section, we describe the architectures used
for the backbone encoder and each end task in this study.

4.1. Encoders

We remove the final (classification) layer from each
trained backbone model and use it as the encoder for all
of our end task experiments. Our goal is to investigate the
learned representation as opposed to evaluating whether it is

an effective initialization. Therefore, we keep the backbone
frozen and do not fine-tune the encoders for any task.

4.2. End Task Networks

The end task network is the section of the model that
converts the embedding produced by the encoder into the
desired task output. For each end task we have a train and
test set. We train the end task network on the train set using
a random initialization and then evaluate it on the test set.
We use the same set of hyperparameters for each task in all
settings. For further details please see Appendix B. We have
5 different architectures to suit the wide variety of our end
task types.
Single Layer Classifier. This network contains a single
fully connected layer. It takes as input the final ResNet em-
bedding and outputs a vector of size n, where n is the num-
ber of classes for the task. This network is used for all the
image-level classification tasks (e.g., scene classification).
Multi Input Fusion Classifier. This network contains sev-
eral “single linear layer modules”, each of which processes
one image in a sequence. The outputs of these modules get
concatenated and passed through a fusion layer. The net-
work takes as input a series of final ResNet embeddings and
outputs a vector of size n, where n is the number of classes
for the task. This network is used for all the image-level
classification tasks that take a sequence of images (e.g., ego-
motion estimation).
U-Net. This network is a decoder based on the U-Net [52]
architecture—a series of consecutive convolutions followed
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by upsampling and pixel shuffle [54] layers. After every
upsample, the output of an intermediary representation from
the ResNet encoder of matching height and width is added
via a residual connection. The final output is a tensor of size
h⇥w, where h and w are the height and width of the input
image. This network is used for depth prediction.
Siamese U-Net. This network is a modification of the U-
Net network which can support two images as input. It takes
the final embeddings and intermediary ResNet representa-
tions from the two images as input, then fuses them together
layer by layer with a point convolution and adds them to the
decoder after every convolution via a residual connection.
This network is used for flow prediction.
DeepLabv3+. This network is based on the DeepLabv3+
[6] architecture. It takes as input the output of the 5th block
of the ResNet and uses dilated convolutions and a pyrami-
dal pooling design to extract information from the repre-
sentations at different scales. The output is then upsampled
and is added to the representation from the 2nd block of
the ResNet to recover image structure information. The fi-
nal output is of size n ⇥ h ⇥ w, where n is the number of
output channels, h and w are the height and width of the
input image. This network is used for pixelwise semantic
classification tasks (e.g., semantic segmentation).

5. Analysis
In this section, we pose several questions on the relation-

ships across pre-training algorithms, pre-training datasets
and the end tasks. We discuss our experiments’ design and
analyze the results to provide answers to each of these ques-
tions. We perform an extensive analysis of the contrastive
self-supervised models and discuss the performance trends
in different settings. We also investigate which common
intuition used in supervised training transfers over to the
self-supervised domain. Unless noted otherwise all training
algorithms have been used for the experiments. The imple-
mentation and training details are provided in Appendix C.

(1) Is supervised learning on ImageNet a good default
encoder choice? A ResNet encoder trained with super-
vised learning on the ImageNet dataset has become the de-
fault backbone for many computer vision models. With
the recent rise of self-supervised training algorithms we re-
evaluate this assumption. For each of the 20 end tasks, we
compare the best performing self-supervised encoder with
the encoder trained on ImageNet in a supervised fashion.
The performance improvements of self-supervised methods
are shown in Figure 3, along with the dataset used for pre-
training. For the ImageNet v1 and v2 classification as well
as Pets classification (which is very close to the ImageNet
task), the supervised model performs the best, but for all
other tasks some self-supervised encoder achieves a higher

Figure 3. Comparison of self-supervised and supervised en-
coders. The percentage performance improvement of the self-
supervised encoders for each end task is shown. The colors of the
bars represent the dataset used for pre-training the best performing
self-supervised encoder. The plot shows that the self-supervised
encoders are better than an encoder trained on ImageNet in a su-
pervised way except for the three end tasks shown on top, which
are ImageNet classification and Pets classification (which is quite
similar to ImageNet classification).

performance. This indicates that a self-supervised model
might be a better default option in many scenarios.

Figure 3 also shows that most of the best performing
models are pre-trained on ImageNet or Places. Both of
these datasets are curated and structured datasets (as op-
posed to Kinetics and Taskonomy which are unstructured).
This might suggest that self-supervised encoders might also
benefit more from well-organized training data.

(2) Is ImageNet accuracy a good metric for measur-
ing progress on self-supervised representation learning?
Most recent works in self-supervised representation learn-
ing report the performance of their encoders on different
tasks, but the common denominator between them is mostly
the ImageNet classification task. We test a variety of en-
coders on our diverse set of 20 end tasks to observe how
well the performance on those tasks correlates with Ima-
geNet classification performance.

Figure 4 contrasts the performance of an encoder on
ImageNet versus all other end tasks. The x axis denotes
the performance of the learned representation on ImageNet
classification and the y axis denotes the performance of the
end tasks using the self-supervised encoder. Each point in
the plot represents a different encoder obtained by different
training algorithms, datasets, etc.
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Figure 4. Correlation of end task performances with ImageNet classification accuracy. The plots show the end task performance against
the ImageNet top-1 accuracy for all end tasks and encoders. Each point represents a different encoder trained with different algorithms and
datasets. This reveals the lack of a strong correlation between the performance on ImageNet classification and tasks from other categories.

While we generally observe a strong correlation be-
tween the performance on ImageNet classification and other
tasks in the same category (semantic image-level), there is
a weaker (and sometimes even negative) correlation with
tasks in other categories – refer to Appendix D for Spear-
man and Pearson correlation analysis. This indicates that
the representations that are suitable for ImageNet classifi-
cation do not always transfer well to other computer vision
tasks. The results for semantic image-level tasks are in line
with the findings of [32]. However, we observe a different
trend for the other task types. Note that for some end tasks
the performance ceiling might have been reached. Hence,
we might not observe a significant difference between dif-
ferent encoders for them.

The fact that we find several tasks that appear to be neg-
atively correlated with ImageNet performance suggests that
the encoders that perform quite well on ImageNet might
be overfitting to a particular task type and output modal-
ity. Interestingly, the category that is most negatively corre-
lated with ImageNet performance is image-level structural
tasks, which shares relatively similar network architecture
and loss function with ImageNet classification. This pro-
vides more evidence that the architecture and the loss func-
tion are not the variables that determine the correlations.

Considering these analyses, ImageNet classification
does not appear to be a strong indicator of self-supervised
encoder performance for various computer vision tasks.

(3) How do different pre-training algorithms com-
pare for different end tasks? Two recent strong self-
supervised algorithms are MoCov2 [9] and SwAV [5]. We
train several encoders using both algorithms to determine if
the trends we observe extend beyond a single algorithm. In
addition, this allows us to contrast the MoCov2 and SwAV
algorithms to determine if either one is a better fit for certain
end tasks.

For answering this question, we consider encoders

trained for 200 epochs on our pre-training datasets. There-
fore, we train 10 encoders in total, using our five datasets
(ImageNet, Places, Kinetics, Taskonomy, and Combina-
tion) by SwAV and MoCov2 methods. In Figure 5, for each
end task, we plot the percentage difference between the av-
erage performances of MoCov2 and SwAV encoders. Mo-
Cov2 encoders tend to do better at tasks where the output is
pixelwise (a notable exception is Cityscapes Segmentation).
SwAV models are better at classification tasks, especially
semantic classification tasks (here the notable exception is
THOR egomotion estimation which is also inversely corre-
lated with ImageNet classification).

Under typical evaluation procedures, SwAV might be
considered an absolute improvement over MoCov2, since
SwAV outperforms MoCov2 on ImageNet classification.
However, our results suggest that this is not a universal fact.
This underscores the importance of reporting performance
on a diverse and standardized battery of end tasks to show a
more comprehensive overview of a model’s performance.

To investigate if there is some fundamental difference in
the representations produced by different encoders, which
explains this trend, we compute the linear Centered Kernel

Alignment (CKA) [31] between the outputs of each ResNet
block of the MoCov2 and SwAV models. We use a 10,000
image, balanced subset of ImageNet at half resolution for
this evaluation. See Appendix E for details. We observe a
stronger agreement between the representations in the ear-
lier blocks and later blocks with MoCov2 models, than we
do with SwAV models. These trends may suggest that Mo-
Cov2 representations are better at capturing low-level in-
formation from an image, while SwAV representations are
better at capturing higher-level semantic information.

(4) Does self-supervision work better on certain end
tasks? Pre-trained encoders are used for a variety of ap-
plications in computer vision, yet most reported results fo-
cus on improvements obtained on semantic tasks such as
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Figure 5. Training algorithms and tasks. For each end task,
the difference between the average score of all encoders trained
with MoCov2 and the average score of all encoders trained with
SwAV is shown. Therefore a negative score indicates that SwAV
outperforms MoCov2 on average for a given task and a positive
score means the opposite. The scores are unscaled evaluation met-
rics (accuracy, mIOU or negative L1 error depending on the task).
With some exceptions, the plot shows SwAV is generally better at
image-level tasks, while MoCov2 is better at pixelwise tasks.

image classification, object detection and instance segmen-
tation [5, 22]. We would like to obtain a general picture
of how well self-supervised encoders perform across each
individual task category. Since end tasks use different suc-
cess metrics, we use a normalization scheme to effectively
compare them. In Figure 6 we take every performance met-
ric obtained by a self-supervised encoder on an end task
and subtract the score obtained by the supervised represen-
tation trained on ImageNet. Note that this indicates that the
points with positive values outperform the supervised base-
line. We then further normalize these values by dividing
them by their standard deviation.

Figure 6 indicates that structural tasks receive a greater
benefit from using a self-supervised encoder. Note that the
relatively large standard deviation in this plot is due to in-
cluding self-supervised encoders trained on datasets and al-
gorithms that might not be the best match for the given task
type. Note that this plot does not conflict with our observa-
tion in Figure 3 on the good performance of self-supervised
encoders on semantic tasks. As shown in Figure 3, a self-
supervised model outperforms the supervised baseline on
all but three semantic image-level tasks.

(5) Does training with images from a similar domain
improve performance? We hypothesize that using a pre-
training dataset similar to the end task’s will produce a bet-
ter encoder. We choose 4 datasets to test this hypothesis:
two structured (ImageNet and Places365) and two unstruc-
tured (Taskonomy and Kinetics400). We train two encoders

Figure 6. Distribution of normalized performances for each
category of end tasks. The performances are normalized by first
subtracting the performance of the supervised ImageNet encoder
and then dividing by the std. deviation of all the performances for
the task. Positive values show superior performance to the super-
vised ImageNet, and the negative values show otherwise. A larger
width means more performance values fall in that range. The plot
shows structural tasks benefit more from self-supervision.

on each of them (MoCov2 and SwAV, the best perform-
ing algorithms) and pair each pre-training dataset with an
end task using either a dataset in the similar domain as the
pre-training data (SUN397 [61] classification for Places265
[67] and Caltech101 [35] classification for ImageNet [15])
or using a subset of the same dataset (action prediction for
Kinetics400 and depth estimation for Taskonomy).

In Figure 7 we plot the end task performance of Mo-
Cov2 and SwAV models trained for 200 epochs on the pre-
training datasets mentioned above. The green bars indicate
the encoders trained on a dataset that is similar to the end
task data, while the gray bars indicate encoders trained on
other datasets. The purple bars indicate the encoders trained
on the ‘Combination’ dataset (referred to in Section 3.2).

We find that for every task, the best performing encoder
is the one trained on a dataset that includes similar data.
However, as Figure 7 shows, the training dataset alone is
not enough to determine which encoder will perform the
best, as the algorithms also impact the performance.

We observe that training on ‘Combination’ does not pro-
duce a model that excels at every task, therefore, simply
combining different datasets with different appearance dis-
tributions might not be a good strategy for self-supervised
training. Note that the combination dataset still benefits
from including images similar to the end task images.
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Figure 7. Similarity of the pre-training datasets and end tasks.
Performance of all encoders on selected end tasks is shown. Each
bar represents a different encoder. The green bars represent en-
coders pre-trained on a dataset similar to/same as the end task
dataset. The purple bars represent the encoders pre-trained on
‘Combination’. Encoders pre-trained on similar/same datasets
have the highest score. Moreover, those encoders are superior to
the encoders trained on Combination, which includes not only a
subset of that dataset, but also images from other datasets.

(6) Do we learn poor representations if we use unbal-
anced ImageNet? Here, we evaluate the learned repre-
sentations in scenarios where we use unbalanced data for
pre-training the encoders. Using unbalanced data better
mimics real-world data distributions which are typically
long-tailed [36].

We consider two unbalanced subsets of ImageNet
(ImageNet-1⁄2-Lin and ImageNet-1⁄4-Log) described in Sec-
tion 3.2, and two correspondingly sized balanced subsets
(ImageNet-1⁄2 and ImageNet-1⁄4). Encoders are trained on
each of the four ImageNet subsets using SwAV and Mo-
Cov2 for 200 epochs each, to produce 8 encoders, which
are tested on the 20 end tasks. We fit a factorial ANOVA
model to the end task results and find no evidence that pre-
training on a balanced datasets produces a better encoder.
We find that a model being pre-trained on ImageNet-1⁄2-Lin
is not a statistically significant predictor of model perfor-
mance (p-value = 0.0777), while a model being trained on
ImageNet-1⁄4-Log is (p-value = 0.0101) with an average end
task score improvement of 1.53%. This presents weak evi-
dence that pre-training on a heavily unbalanced dataset with
contrastive learning might even produce an encoder better
suited for the end tasks studied in this work. For further
details see Appendix F.

6. Discussion
Here we provide a summary of the analysis. First, we

showed that a backbone trained in a supervised fashion on

ImageNet is not the best encoder for end tasks other than
ImageNet classification and Pets classification (which is a
similar end task). Second, we showed that in many cases
there is little to no correlation between ImageNet accu-
racy and the performance of end tasks that are not seman-

tic image-level. Third, we showed different training algo-
rithms provide better encoders for certain classes of end
tasks. More specifically, MoCov2 proved better for pixel-

wise tasks and SwAV showed better performance on image-

level tasks. Fourth, we showed that structural end tasks ben-
efit more from self-supervision compared to semantic tasks.
Fifth, we showed pre-training the encoder on the same or
similar dataset to that of the end task provides higher per-
formance. This is a well-known fact for supervised repre-
sentation learning, but it was not evident for self-supervised
methods that do not use any labels. Sixth, we showed that
representations learned on unbalanced ImageNet is as good
or even slightly better than representations learned from bal-
anced data. The current study has some shortcomings that
are noted below:
Empirical study. Our conclusions are based on empirical
results. This has two major implications. First, there is no
theoretical justification for the results. Second, due to com-
putation limits and the wide range of parameters and vari-
ables involved in these types of approaches, our study does
not cover all aspects related to contrastive self-supervised
representation learning.
Task dichotomy. The task categorization that we studied is
based on the type of output and information they capture.
There are several other ways of grouping these tasks that
are not studied here and are left for future work.
Variables. We focused only on three variables in the rep-
resentation learning pipeline, namely, training algorithms,
pre-training datasets and end tasks. There are various other
factors involved in the representation learning pipeline such
as network architectures and computational efficiency that
are not addressed in this study.
Frozen backbone. We did not fine-tune the encoders dur-
ing training for end tasks. A future direction can be explor-
ing the trends when the encoder is fine-tuned as well.

7. Conclusion
We studied contrative representation learning as one

of the most successful approaches proposed for self-
supervision. Our focus was mainly on three variables in rep-
resentation learning pipelines, namely, training algorithm,
pre-training dataset and end task. Our rigorous analysis re-
sulted in interesting findings about the interplay of these
variables. We hope our study provides better insights for
future research in this vibrant and impactful domain.
Acknowledgments: We would like to thank Luca Weihs for dis-
cussions about the statistical analyses.
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