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Abstract

Unsupervised domain adaptation (DA) has gained sub-
stantial interest in semantic segmentation. However, almost
all prior arts assume concurrent access to both labeled
source and unlabeled target, making them unsuitable for
scenarios demanding source-free adaptation. In this work1,
we enable source-free DA by partitioning the task into two:
a) source-only domain generalization and b) source-free
target adaptation. Towards the former, we provide theoreti-
cal insights to develop a multi-head framework trained with
a virtually extended multi-source dataset, aiming to balance
generalization and specificity. Towards the latter, we utilize
the multi-head framework to extract reliable target pseudo-
labels for self-training. Additionally, we introduce a novel
conditional prior-enforcing auto-encoder that discourages
spatial irregularities, thereby enhancing the pseudo-label
quality. Experiments on the standard GTA5→Cityscapes
and SYNTHIA→Cityscapes benchmarks show our superi-
ority even against the non-source-free prior-arts. Further,
we show our compatibility with online adaptation enabling
deployment in a sequentially changing environment.

1. Introduction
Almost all supervised learning systems assume that the

training and testing data follow the same input distribution.
However, this assumption is impractical as target scenarios
often exhibit a distribution shift. For example, self-driving
cars often fail to generalize when deployed in conditions
different from training, such as cross-city [10] or cross-
weather [59] deployment. This is because the model fails
to apprehend the generic, causal factors of variations and
instead, holds on to domain-specific spurious correlations
[24]. Over-reliance on training data from a particular dis-
tribution can cause the model to fail even for mild domain-
shifts like changes in illumination, texture, background, etc.

Unsupervised domain adaptation (DA) is one of the pri-
mary ways to address such problems. Here, the goal is to
transfer the knowledge from a labeled source domain to an

*Equal contribution.
1Project page: https://sites.google.com/view/sfdaseg
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Figure 1. In source-free DA, the vendor accesses source-data to
prepare a foresighted source-model. Following this, the client re-
ceives only the source-model to perform unsupervised target adap-
tation while prevented access to the proprietary source-data.

unlabeled target domain. The major limitation of typical
DA approaches [58] is the requirement of concurrent access
to both source and target domain samples. While concurrent
access better characterizes the distribution shift, it is a major
bottleneck for real-world deployment scenarios. Consider
a modern corporate dealing where the vendor organization
has access to a large-scale labeled dataset (i.e. source-data)
which is used to train a source-model. The vendor finds
multiple clients interested in deploying the source-model in
their specific target environments. However, both parties
are restrained from data sharing due to proprietary, privacy,
or profit related concerns. This motivates us to seek learn-
ing frameworks where the vendor can trade only the source-
model and the client can perform target adaptation without
the source-data. This special case of domain adaptation
[40, 34, 43] is Source-Free Domain Adaptation (SFDA).

In this work, we aim to develop an SFDA framework
for semantic segmentation of urban road scenes. In a co-
operative setup, both vendor and the client must adopt spe-
cialized learning strategies to benefit the end goal.
a) Vendor-side strategies. These strategies can be dis-
cussed under two broad aspects viz. source dataset and
training strategy. The vendor must acquire a substantially
diverse large-scale dataset aiming to subsume unknown tar-
get scenarios. In literature, Multi-Source DA (MSDA)
[89, 71, 1] and domain generalization (DG) [38] works use
multiple labeled source domains to improve target gener-
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alization. However, gathering annotation for more than
one domain is costly and time-consuming [12]. Thus,
we focus on developing a strategy to simulate multiple
novel domains from samples from a single labeled domain.
Carefully crafted augmentations randomly perturb the task-
irrelevant factors (such as stylization, texture modulation,
etc.), facilitating the learning of domain-invariant represen-
tations. Hence, we devise multiple augmentation-groups
(AGs), where each group modulates the image by vary-
ing certain statistics thereby constructing virtual, labeled
source-domains, to be treated as a multi-source dataset.

Next, we focus on developing an effective training strat-
egy. The naive solution would be to train a single model
on the entire multi-source dataset to learn domain-generic
features. However, this can lead to sub-optimal perfor-
mance if a certain AG alters the task-relevant causal factors
[24]. Further, the target domain may be similar to one or
a combination of AGs. In such cases, domain-specific (AG-
specific) learning is more helpful. This motivates us to seek
a domain-specific framework to complement the domain-
generic model. Thus, we give theoretical insights to ana-
lyze domain-specific hypotheses and propose Source-only
Multi-Augmentation Network (SoMAN) as shown in Fig. 1.

Going forward, we recognize that SoMAN may lack the
ability to capture inductive bias, which would prevent the
model from manifesting structurally consistent predictions.
This is particularly important for dense prediction tasks
[32, 31]. Modeling general context dependent priors en-
courages the prediction of plausible scene segments while
discouraging common irregularities (e.g. merged-region or
split-region issues [33]). To this end, we introduce a
separate model namely, conditional Prior-enforcing Auto-
Encoder (cPAE). cPAE is trained on segmentation maps
available with the vendor, and used at the client-side to im-
prove the source-free adaptation performance.
b) Client-side strategies. We draw motivation from
pseudo-label based self-training approaches [17, 95]. The
target samples are passed through the source-model to se-
lect a set of pseudo-labels which are later used to finetune
the network. In the absence of source-data, effectiveness
of such self-training depends on the following two aspects.
First, the training must be regularized to retain the vendor-
side, task-specific knowledge. We address this by allow-
ing only a handful of weights to be updated while others
are kept frozen from the vendor-side training. Second, the
pseudo-label selection criteria must overcome issues related
to label-noise and information redundancy. We address this
by selecting the optimal prediction from the SoMAN-heads
and using the pruned output after forwarding through cPAE.

In summary, we make the following main contributions:

• We propose to address source-free DA by casting the
vendor-side training as multi-source learning. To this
end, we provide theoretical insights to analyze differ-

ent ways to aggregate the domain-specific hypotheses.
It turns out that a combination of domain-generic and
leave-one-out configuration performs the best.

• While accessing a single source domain, we propose
a systematic way to select a minimal set of effective
augmentations to resemble a multi-source scenario.
The vendor uses this to develop a multi-head network,
SoMAN subscribing to the leave-one-out configuration.

• Aiming to have a strong support for the spatially-
structured segmentation task, we develop a conditional
prior-enforcing auto-encoder. This encourages plausi-
ble dense predictions thereby enhancing the quality of
pseudo-labels to aid the client-side self-training.

• Our source-free framework achieves state-of-the-art
results for both GTA5 → Cityscapes and SYNTHIA →
Cityscapes adaptation benchmarks, even when com-
pared against the non-source-free prior arts.

2. Related Work

Here, we briefly review the segmentation DA literature [65].
Feature-space DA. The early works in DA for semantic
segmentation are inspired from the GAN framework [16],
involving training a segmentation network to confuse a
domain discriminator enforcing domain invariance on the
latent features [20]. Several works [8, 41, 21, 19] uti-
lized this discriminative alignment [93, 9, 46, 14] while
adding complementary modules [74, 13, 76] to improve
adaptation. Another line of works [60, 7, 48, 66, 79, 81]
use the same framework on low-dimensional output space
[84, 30, 80, 69, 72, 73] instead of high-dimensional feature
space. However, these works require cumbersome adver-
sarial training and rely on source-target co-existence.
Image-space DA. The success of CycleGAN [92] for
image-to-image translation led to several DA approaches
[41, 19, 9, 15, 52] utilizing it for input-level adaptation
while also addressing semantic consistency in the trans-
formed images. Another category of works [3, 57, 87, 11,
78] explore style-transfer techniques for input-level percep-
tual invariance [77, 83, 47, 37, 75] between source and tar-
get domains. However, these works also assume the co-
existence of source and target domains.
Source-free DA. Bateson et al. [2] perform source-free
DA for medical segmentation using entropy minimization
and class-ratio alignment. Concurrent source-free works
use data-free distillation, self-training, patch-level self-
supervision [44] and feature corruption with entropy regu-
larization [63] focused on target adaptation. In contrast, we
develop a novel approach for vendor-side source training.
DA via self-training. Early works [95, 41, 94] use highly
confident target predictions as pseudo-labels, selected using
a confidence threshold. To improve the pseudo-labels, prior
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works used prediction ensembling [5, 83, 91, 90], extra net-
works [11], applied constraints [64], modified the confi-
dence thresholding technique [50, 39, 61], utilized image-
level pseudo-labels [55] and intra-domain (easy-hard) ad-
versarial training [53]. Most prior arts use labeled source
with self-training to retain task-specific source knowledge.
DG and MSDA. [89] use multiple synthetic datasets for
Multi-Source DA (MSDA) in segmentation. Restricted to a
single source setting, we use data augmentation techniques
to generate new domains. In the presence of multi-source
data, the vendor-side training is equivalent to domain gener-
alization [85, 6, 54] as it does not involve training on target.

3. Approach
Consider a set of source image and segmentation pairs

(xs, ys) ∈ Ds where the source images xs are drawn from a
marginal distribution ps. The unlabeled target images xt ∈
Dt are drawn from pt. However, the output segmentation
maps follow a single marginal distribution py . The goal is
to learn a mapping ŷs = h(xs) that can generalize well for
xt. The proposed source-free domain adaptation is broadly
divided into two: vendor-side and client-side.

3.1. Vendor-side Strategy

In the absence of target data, the vendor’s task effectively
reduces to domain generalization (DG) [38]. DG is shown
to be highly effective in the presence of multiple source do-
mains. Thus, we plan to cast the vendor-side model prepa-
ration as a multi-source representation learning problem.

Non-source-free paradigm. We assume access to K
source datasets (xsi , ysi) ∈ Dsi ∀ i ∈ [K]={1, 2, . . . ,K}
where images xsi are drawn from marginal distribution psi .
In non-source-free paradigm, the objective is to utilize all
the domains (including the target) to realize a hypothesis
h∗ = argminh∈A ϵt(h) with a small target error, where

ϵt(h) = E
(x,y)∼pt

[L(h(x), y)] where h ∈ Hα∗
⊂A (1)

Here, L is the loss and A is the hypothesis space. Hα∗ ⊂ A
can be interpreted as a hypothesis subspace spanning the hy-
potheses that can be learned using the best convex combina-
tion of sources α∗ ∈ ∆ = {α ∈ [0, 1]K :

∑K
i=1 α[i] = 1}

in the presence of concurrent access to {Dsi}Ki=1 and Dt,
i.e. α∗ = argminα(argminh∈Aα ϵt(h)).

While operating in a source-free paradigm [35, 36], let
the vendor be approached by M number of clients, each
with different target domains tj ∀ j ∈ [M ]. For every tar-
get tj , there exists a specific α∗

j such that ϵtj (h ∈ Hα∗
j ) ≤

ϵtj (h ∈ Hα) ∀ α ∈ ∆. However, in the absence of con-
current access to source and target domains (SFDA), it is
not possible to optimize for α∗

j for any target tj . Thus, we
propose a source-free multi-domain paradigm.

Definition 1. (Source-free multi-domain paradigm) Con-
sider a vendor who has access to labeled data {Dsi}Ki=1

from K source domains and a client who has access to unla-
beled target data Dtj . In the source-free paradigm, the ven-
dor prepares a prescient model with an immutable hypothe-
sis support set ASF (a union of certain hypothesis supports)
without any information about tj . This model is traded with
the client for target adaptation without any data sharing.

In the hypothetical scenario of source-target concur-
rent access, the client can determine the best α∗

j such that
ϵtj (h ∈ Hα∗

j ) ≤ ϵtj (h ∈ ASF). The proposed paradigm not
only enables adaptation without any data sharing, but also
enables the vendor to prepare a single source-model for all
future clients. Thus, the process becomes more efficient for
both vendor and client in terms of compute and storage.

3.1.1 Multi-source representation learning
Under source-free, the vendor’s objective would be to real-
ize a learning setup that would generalize to a wide range of
unseen targets. While aiming to learn a single hypothesis,
empirical risk minimization (ERM) [70] would be the best
solution (all domains weighted equally). Consider a sce-
nario where ptj , i.e. marginal distribution of the target tj ,
matches with the marginal of one of the source domains.
Here, the domain-specific expert for that source domain
would definitely outperform the ERM baseline. To this end,
a hypothesis support set ASF, i.e. a union of certain hypoth-
esis supports, would provide better flexibility for SFDA.
With this intent, we discuss the following configurations.

a) ERM. Under ERM configuration, we set ASF = HERM

where HERM is formed with equal weightage to all the
multi-source domains i.e. α[i] = 1

K ∀ i ∈ [K].

b) Domain-experts++ (DE++). This configuration encom-
passes a set of K + 1 hypothesis supports. This includes
K number of domain-specific experts alongside one ERM
support. Thus, we set ASF as ADE++ = ∪K

i=1HDE
i ∪ HERM.

For ith support HDE
i , αi[i

′] = 1i′=i ∀ i′ ∈ [K] where 1 is
the indicator function (1 if input condition is true, else 0).

c) Leave-one-out++ (LO++). It may happen that using a
particular source may cause information loss that hinders
optimal adaptation for a future target. To improve support
for such targets, we introduce leave-one-out (LO) hypothe-
sis support where ith subspace HLO

i is formed by leaving one
domain out, i.e. with αi[i

′] = 1
K−11i ̸=i′ ∀ i′ ∈ [K]. Similar

to DE++, LO++ also includes K + 1 hypothesis supports,
i.e. K number of LO supports with one ERM. Thus, we set
ASF as ALO++ = ∪K

i=1HLO
i ∪HERM.

We include the ERM support, i.e. HERM, in both LO++
and DE++ to provide complementary domain-generic in-
formation alongside the different forms of domain-specific
information. Here, the individual hypothesis supports are
implemented as separate classifier heads trained on a com-
mon feature extractor (Sec 3.1.3). Note that we only con-
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Figure 2. An illustration of hypothesis subspace constituents of A. ADE++ and B. ALO++. The positions of yellow signs represent the best
non-source-free hypothesis h∗

j for different target domains tj . In the source-free paradigm, for each target tj , the closest vendor hypothesis
constituent would provide the support for a reasonable adaptation. C. The tick and cross marks for different target scenarios (the rows)
denote suitability of the corresponding vendor-side configurations (the columns). For example, HERM is the best support for tj5 , HDE
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the best support for tj3 , HLO

3 is the best support for tj2 , etc. Note that, LO++ is equipped to reasonably support a wide range of target
scenarios. D. Visual illustration of selected AGs (augmented domains) based on the proposed augmentation selection criteria.

sider options that require K heads while other domain-
specific solutions like leave-r-out have higher computa-
tional cost requiring

(
K
r

)
heads. Next, we discuss a result

comparing the target error ϵt(h) of the three configurations.

Result 1. Consider DE++ hypothesis space ADE++, LO++
hypothesis space ALO++, and unseen target data Dt. Then,

ϵt(h ∈ ALO++) ≤ ϵt(h ∈ HERM)

ϵt(h ∈ ADE++) ≤ ϵt(h ∈ HERM)
(2)

As depicted in Fig. 2, the distributed subspace con-
stituents of ADE++ and ALO++ provides better support for
a wide range of unknown target domains as compared to
the same by HERM. Thus, in Eq. 2, ϵt(h ∈ HERM) acts as
an upper bound for the target risk, particularly in source-
free paradigm. Also, the equality holds as both ADE++ and
ALO++ already include HERM as a constituent subspace.

Comparison between DE++ and LO++. Though, both
DE++ and LO++ are better alternatives over ERM, it is not
possible to write a general inequality involving only the tar-
get errors for DE++ and LO++ configurations. Note that,
as shown in Fig. 2, for certain target scenarios, target er-
ror for DE++ would be less than the same for LO++ and
vice versa. However, considering a reasonable domain-shift
among the source domains, LO++ provides lower target er-
ror over DE++ for a wide range of practical target scenar-
ios (see Fig. 2C). DE++ wins particularly for cases when
pt ≈ psi′ for i′ ∈ [K] which is generally quite rare. LO++
wins for a wide range of unique target scenarios.

3.1.2 Preparing virtual multi-source domains
Having identified LO++ as the best option, we focus on ob-
taining the multi-source data. Though, we intend to expand
our source-data horizon, we are restricted to a single labeled
source domain. Thus, we plan to use diverse data augmen-
tations to simulate a multi-source scenario.

Characterizing multi-domain data. Consider a hypothet-
ical data generation process [56] for the source domain: A
data generator ϕ uses the causal class factor fy and the non-
causal domain-related factor fs to construct a data sam-
ple xs = ϕ(fy, fs). Next, a set of domain-varying class-
preserving augmentations {Ti}Ki=1 are applied to obtain,

xsi = Ti(xs) = ϕ(fy, fi + γifs); γi ∈ R (3)

Here, Ti modifies the original domain-specific factor fs
by a weight γi (without altering fy) and introduces a new
augmentation related domain-specific factor fi. Thus, the
augmentations modify the non-causal factors to simulate
novel domains. The augmented datasets are realized by
pairing the input with the corresponding label and are rep-
resented as (xsi = Ti(xs), ys) ∈ Dsi ∀ i ∈ [K].

Effect of number of source domains K. Having a very
high K would lead to significant overlap of the the leave-
one-out subspaces with the ERM, i.e. nullify the advantage
of LO++. Further, a high K would induce a higher compu-
tational complexity. Thus, it becomes essential to filter out
augmentations through a principled selection criteria.

Definition 2 (Augmentation selection criteria) Using
Eq. 3, an augmentation Ti will be selected if |γi| < 1. We
give a tractable surrogate for this condition, using a hypoth-
esis hs = argminh∈A ϵ̂(x,y)∈Ds

(h) trained only on Ds,

ϵ̂(Ti(x),y)∈Dsi
(hs)− ϵ̂(x,y)∈Ds

(hs) > τ ; (4)

i.e. the gap between the empirical risks (i.e. ϵ̂) of hs on Dsi

and Ds should be greater than a threshold τ . This ensures
that Ti exerts a substantial alteration in the image statistics
equivalent to the style gap between two diverse domains.

Intuitively, an augmentation is selected if it can suppress
(i.e. |γi| < 1) the original domain factor fs. In practice,
γi is intractable in the absence of disentangled fy and fs.
Thus, we rely on Eq. 4 whose LHS expresses the gener-
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alization error due to the domain-specific bias (i.e. the cor-
relation between fs and ys) inculcated in hs. See Suppl.
for an extended explanation of the selection criteria. These
diverse domains will help the model generalize to a wider
range of targets. Henceforth, we denote each of these as an
AG (augmentation-group), each representing a specific type
of class-preserving, domain-varying augmentation.

3.1.3 Vendor-side architecture and training

Architecture. Considering the advantages of LO++,
we propose a Source-only Multi-Augmentation Network,
SoMAN, which is essentially a multi-head architecture with
a shared CNN backbone F (see Fig. 3A). Along with a
global output head Hg which is optimized using ERM, we
employ leave-one-out heads {Hi}Ki=1 trained to be sensi-
tive towards the corresponding AG (i.e. Ti) while being in-
variant to others. Formally, the global head is trained using
all the augmented datasets i.e. Dsg = ∪K

i=1Dsi and each
non-global head Hi is trained using a head-specific dataset
D−

si = Dsg \ Dsi .
Training procedure. The SoMAN architecture is trained by
simultaneously optimizing the spatial segmentation losses
computed at the end of each output head. This encourages
F to extract a rich multi-source representation which re-
tains domain-sensitive cues (as a result of the leave-one-out
setup) alongside the extraction of domain-generic features.
We denote the output of global head as hg = Hg(F (x)).
Following a similar convention, output of the leave-one-out
heads are denoted by hi = Hi(F (x)). Thus, the final ob-
jective for end-to-end training of SoMAN is formulated as,

min
θ

K∑
i=1

E
(x,y)∈D−

si

[−⟨y, log hi⟩] + E
(x,y)∈Dsg

[−⟨y, log hg⟩]

(5)
Here, θ denotes a set of parameters from all the heads, i.e.
θF , θHg , {θHi}Ki=1 while ⟨., .⟩ represents the dot product of
the two inputs. In practice, the expectations are computed
by sampling mini-batches from the corresponding datasets.

3.1.4 Conditional prior-enforcing autoencoder (cPAE)
In dense prediction tasks such as semantic segmentation,
not all predictions are equally likely. Though the target an-
notations are not available during the client-side training,
we aim to explicitly impart the general knowledge of scene
prior to constrain the solution space. The use of scene prior
would encourage plausible scene segments while discour-
aging irregularities (see Fig. 3A) such as “car flying in the
sky”, “grass on road”, “split car shape”, “merged pedestri-
ans”, etc. We recognize that the SoMANmay lack the ability
to capture the above discussed inductive bias.
How can structural inductive bias be captured? We pro-
pose a conditional Prior-enforcing Auto-Encoder (cPAE),
denoted by Q, that refines the predicted segmentation
maps (seg-maps) conditioned on domain-generic features
extracted from SoMAN. Instead of training it as a plain auto-
encoder, we plan to train it as a denoising auto-encoder.
The question that arises here is: how do we simulate noise
for the cPAE inputs? We take advantage of sensitivity
of leave-one-out heads to the corresponding AGs to simu-
late noisy seg-maps. Thus, the cPAE output distribution is
Q(y|Fg(xsi), ŷ) where ŷ = Hi(F (xsi)). Fg consists of the
backbone F and the first block of Hg such that Fg(xsi) are
domain-generic features since Hg is trained using all AGs.
We train the cPAE to align its output distribution with the
true source label distribution ps as follows

min
θQ

K∑
i=1

E(x,y)∈Dsi
[KL(ps(y), Q(y|Fg(x), ŷ))] (6)

Here, KL indicates the Kullback-Leibler divergence. In
practice, cross-entropy loss between the cPAE output and
ground truth seg-map is used, derived from the KL term.

3.2. Client-side Strategy

Since the client can access only unlabeled target data xt ∈
Dt, we propose the use of self-training for this source-free
adaptation step. However, this presents two caveats,
a) Risk of overfitting to wrong overconfident predictions.
To counter this, we propose to utilize the multiple heads of
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SoMAN and the cPAE to generate reliable pseudo-labels.

b) Loss of task-relevant information. To avoid this, we
aim to preserve the task-specific knowledge of the vendor
model. While prior arts trained the entire model, we pro-
pose to train only a handful of weights belonging to the
later layers of F while others are frozen from vendor-side.
The frozen output heads hold useful, domain-generic, task-
related inductive bias. It also constrains the optimization to
operate within the hypothesis subspace of the vendor-side
initialization. Thus, the client can leverage the vendor’s
foresighted preparation to avoid sub-optimal solutions.

3.2.1 Pseudo-label extraction via cPAE

Since pseudo-labels are the only supervision signal in the
proposed source-free self-training, it is crucial to ensure
that they are highly informative and reliable. To this end,
we propose to utilize the optimal head of the vendor pro-
vided SoMAN and the cPAE to obtain improved pseudo-
labels. We consider the optimal head as the one that pro-
duces the lowest average self-entropy for the target train-
ing dataset. Formally, Hi′ is the optimal head where
i′ = argmini∈{g,[K]}

∑
x∈Dt

{−⟨hi, log hi⟩} where hi =
Hi(F (x)). The optimal prediction can be represented as
Q(hi′). Note that we denote the cPAE output as Q(hi′)
omitting the conditional feature input for simplicity.

Using the optimal prediction, we follow [41, 95] for the
confidence thresholding method. Particularly, we choose
the top 33% of the most confident pixel-level predictions
per class over the entire target training set. This gives a
target pseudo-labeled subset (xt, ŷt) ∈ D̂t for self-training.
Note that, the unselected pixels are assigned a separate, ‘un-
known’ class which is not considered in training.

3.2.2 Source-free adaptation via self-training

We perform three rounds of self-training, following [83],
where each round consists of pseudo-label extraction in an
offline manner followed by supervised training on the ex-
tracted pseudo-labels. Entropy minimization is used as a
regularizer during self-training. Further, we use the shared
backbone F along with the optimal head, Hi′ , for both self-
training and test-time inference. Formally,

min
θF

E
(xt,ŷt)∈D̂t

[−⟨ŷt, logHi′(F (xt))⟩] (7)

3.2.3 Test-time inference
As we propose only optimal head (i.e. Hi′ ) self-training, our
inference-stage model is Hi′(F (xt)) as shown in Fig. 3B.
However, cPAE provides a further improvement in perfor-
mance if used during inference. But, unless otherwise spec-
ified, the experiments use only Hi′(F (xt)) for self-training
and evaluation, for a fair comparison. Note that, ‘w/ cPAE’
means that cPAEwas used only for pseudo-label extraction.

4. Experiments
We perform a thorough evaluation of our approach

against state-of-the-art prior works across multiple settings.

4.1. Experimental Settings

a) Network architectures. Following [41, 83], we em-
ploy 2 widely-used network architectures for the DA setting
on semantic segmentation, DeepLabv2 [4] with ResNet101
[18] backbone and FCN8s [45] with VGG16 [62] backbone.
See Suppl. for the complete details.
b) Datasets. We extensively evaluate the proposed ap-
proach on two popular synthetic-to-real benchmarks i.e.
GTA5→Cityscapes and SYNTHIA→Cityscapes. We pro-
vide the complete implementation details in the Suppl.
c) Evaluation metric. Following [41, 83], we com-
pute per-class IoUs as well as mean IoU (mIoU) over
all 19 classes for the GTA5→Cityscapes task. For
SYNTHIA→Cityscapes, we report the same for 13 and 16
classes because of the lower number of overlapping classes.
Following [50, 74, 88], we use multi-scale testing. Due to
space limitations, we report mean IoUs for class-groups2

instead of reporting IoUs for each individual class.
d) Augmentations. We select the following K = 5 AGs
(see Fig. 2D) using Definition 2 with the mIoU metric.

Aug-A (FDA [83]): This uses Fourier transform to trans-
fer style from a reference image while retaining the seman-
tic features [82] of the input. While FDA [83] transfers
the style from target images, we do not access target data
for vendor-side training. We use a small subset from style
transfer dataset [23] and random noise as reference images.

Aug-B (Style augmentation [25]): This technique uses a
deep style transfer network for style randomization by ran-
domly sampling a style embedding from a multivariate nor-
mal distribution instead of using reference style image. This
provides practically infinite number of stylization options.

Aug-C (AdaIN [23]): This uses Adaptive Instance Nor-
malization (AdaIN) layers to inject style from a given ref-
erence image. In contrast to Aug-B, this provides a way to
stylize images using a desired style image. We use a small
subset from style transfer dataset [23] as reference images.

Aug-D (Weather augmentation) [27, 51]: We use real-
istic weather augmentations to generate varying levels of
snow and frost in the images. Compared to other AGs, this
simulates realistic variations in the road scene images.

Aug-E (Cartoon augmentation) [27]: This technique
generates cartoonized versions of input images. This
augmentation is diverse and useful as it produces almost
texture-less images as in cartoons or comic books.

2Background (BG) - building, wall, fence, vegetation, terrain, sky; Mi-
nority Class (MC) - rider, train, motorcycle, bicycle; Road Infrastructure
Vertical (RIV) - pole, traffic light, traffic sign; Road Infrastructure Ground
(RIG) - road, sidewalk; and Dynamic Stuff (DS) - person, car, truck, bus.
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Table 1. Quantitative evaluation on GTA5→Cityscapes. Perfor-
mance on different segmentation architectures: A (DeepLabv2
ResNet-101), B (FCN8s VGG-16). SF indicates source-free adap-
tation. See Suppl. for the extended table with per-class IoUs. Ours
(V) indicates use of our vendor-side AGs with prior art, * indicates
results produced using the released code of prior arts.

# Method Arch. SF BG MC RIV RIG DS mIoU

1. PLCA [28] A × 57.3 28.3 31.1 57.2 60.2 47.7
2. CrCDA [22] A × 57.5 24.5 33.8 73.9 57.6 48.6
3. RPT [88] A × 62.5 34.9 42.0 67.3 59.4 53.2
4. DACS [67] A × 63.1 24.2 45.9 64.7 61.8 52.1
5. FADA [74] A × 61.9 26.7 35.0 70.8 56.7 50.1
6. IAST [50] A × 60.4 32.6 34.1 76.5 60.7 52.2
7. Ours (V) + FADA* A × 62.8 27.1 35.3 71.1 57.2 50.6
8. Ours (V) + IAST* A × 61.0 33.1 34.6 77.1 61.2 52.8
9. URMA [63] A ✓ 55.8 23.8 22.3 73.7 52.8 45.1
10. SRDA* [2] A ✓ 57.1 20.2 33.5 68.8 51.9 45.8
11. Ours (w/o cPAE) A ✓ 61.8 30.3 35.1 69.2 60.8 51.6
12. Ours (w/ cPAE) A ✓ 62.8 33.4 36.2 72.0 66.4 53.4

13. LTIR [29] B × 58.6 14.0 26.5 73.5 42.5 42.3
14. FADA [74] B × 57.7 16.3 25.8 71.7 50.1 43.8
15. PCEDA [82] B × 56.4 20.5 31.2 67.5 49.5 44.6
16. SFDA [44] B ✓ 51.6 7.8 15.9 58.6 43.7 35.8
17. Ours (w/o cPAE) B ✓ 54.7 19.9 27.3 66.2 50.3 43.4
18. Ours (w/ cPAE) B ✓ 49.9 30.3 32.9 74.9 50.8 45.9

Table 2. Ablation study for GTA5→Cityscapes. * indicates 3
rounds of self-training after the mentioned method. The client-
side ablations begin from the best vendor-side model.

Method mIoU

Vendor-side

Standard single-source* 44.4
Multi-source ERM* 47.6
Domain-experts++ (DE++)* 48.0
Leave-one-out++ (LO++)* 51.6

Client-side

w/o cPAE 51.6
+ Inference via cPAE 52.5

w/ cPAE 53.4
+ Inference via cPAE 54.2

4.2. Discussion

We provide an extensive ablation study of both the
vendor-side and the client-side preparation. Further, we
show that our approach generalizes across novel target sce-
narios and is compatible to online domain adaptation.
4.2.1 Comparison with prior arts.
We compare our proposed approach with prior arts in Table
1 and 3. We also compare our vendor-side approach with
prior DG works in Table 4. Our method achieves state-of-
the-art performance across all benchmarks. We also present
the qualitative evaluation of our approach in Fig. 4.

Our proposed client-side adaptation is more scalable
compared to prior works like PCEDA [82], RPT [88], IAST
[50] in two ways. First, our method does not require
image-to-image translation networks (PCEDA) or adversar-
ial training (RPT, IAST) thereby reducing the adaptation
complexity. Also note that the frozen cPAE is used only to
obtain better pseudo-labels and is not involved in backprop-
agation for adaptation training. Second, the client can per-
form adaptation to multiple different target domains without

Table 3. Quantitative evaluation on SYNTHIA→Cityscapes. Per-
formance on different segmentation architectures: A (DeepLabv2
ResNet-101), B (FCN8s VGG-16). mIoU and mIoU* are aver-
aged over 16 and 13 categories respectively. SF indicates whether
the method supports source-free adaptation. See Suppl. for the
extended table with per-class IoUs.

# Method Arch. SF BG MC RIV RIG DS mIoU mIoU*

1. CAG [86] A × 81.3 32.9 18.0 62.6 54.9 44.5 52.6
2. USAMR [91] A × 81.3 33.0 25.1 60.7 61.7 46.5 53.8
3. DACS [67] A × 85.4 38.1 23.3 52.8 63.1 48.7 54.8
4. RPL [90] A × 81.8 32.8 25.6 64.8 63.3 - 54.9
5. IAST [50] A × 83.9 38.9 29.9 61.7 63.4 49.8 57.0
6. RPT [88] A × 85.7 37.2 35.1 68.2 66.2 51.7 59.5
7. URMA [63] A ✓ 80.1 23.6 25.1 41.9 46.6 39.6 45.0
8. Ours (w/o cPAE) A ✓ 82.9 34.4 22.5 66.8 65.3 48.1 55.5
9. Ours (w/ cPAE) A ✓ 84.3 42.2 29.3 69.8 67.8 52.0 60.1

10. PyCDA [42] B × 75.4 16.4 24.0 53.6 47.6 35.9 42.6
11. SD [14] B × 79.2 6.3 10.7 64.4 54.4 - 43.4
12. FADA [74] B × 82.1 16.1 15.1 58.2 52.6 39.5 46.0
13. BDL [41] B × 78.3 25.2 17.7 51.2 50.5 39.0 46.1
14. PCEDA [82] B × 79.8 30.7 19.5 57.5 49.2 41.1 48.7
15. Ours (w/o cPAE) B ✓ 82.0 9.5 21.9 67.0 51.4 40.0 46.7
16. Ours (w/ cPAE) B ✓ 83.1 17.7 24.5 69.4 51.8 41.3 48.9

Table 4. Domain generalization evaluation. For SYNTHIA, mIoU
computed over 16 categories. SO, ERM and LO indicate source-
only, empirical risk minimization and leave-one-out respectively.

Method GTA5→Cityscapes SYNTHIA→Cityscapes

ResNet-101 VGG16 ResNet-101 VGG16

IBN-Net [54] 37.1 34.7 35.6 33.0
ASG [6] 38.8 35.4 36.9 34.2
DRPC [85] 42.5 - 37.6 35.5
Ours (ERM) (SO) 43.1 38.9 40.1 36.9
Ours (LO++) (SO) 43.5 39.2 40.6 37.4

the complex vendor-side training and without access to the
source data. We study the second aspect further in the paper.
a) Comparison with source-free prior arts. We imple-
mented [2] for GTA5→Cityscapes (see #10-12 in Table 1)
since they only report results for single object segmenta-
tion. We outperform their approach by a significant mar-
gin (8.1%). We also compare with concurrent source-free
works [44, 63] (see #9 vs. #12, #16 vs. #18 in Table 1 and
#7 vs. #9 in Table 3) and outperform them by ∼12%.
b) Disentangling the gains from use of augmented data.
We show the results for 2 prior arts [50, 74] using our
vendor-side AGs during training (#5-8 in Table 1). While the
performance improves compared to that originally reported,
our proposed method (#12 in Table 1) still outperforms
them. Thus, the improvement of our proposed method de-
pends not only on the use of AGs but also on the multi-head,
leave-one-out SoMAN framework and the cPAE.
4.2.2 Ablation study
Table 2 reports a detailed ablation to independently analyse
the components of the vendor and client side strategies.

First, we evaluate the effectiveness of the proposed
vendor-side strategies. For a fair comparison, we use a con-
sistent client-side training for all the vendor-side ablations.
As a baseline, we employ a standard (unaugmented) single-
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Table 5. Evaluating generalization and compatibility to online adaptation for GTA5→Cityscapes models on Foggy-Cityscapes and NTHU-
Cross-City datasets. 0.005, 0.01, and 0.02 indicate the levels of fog in the dataset and GT indicates ground truth segmentation maps. *
indicates experiment reproduced by us using the released code of prior arts. We also show standard Cityscapes results for reference.

# Method Access to
GTA5 | Citysc.

Cityscapes Foggy-Cityscapes (19-class) NTHU-Cross-City (13-class)

19-class 13-class 0.005 0.01 0.02 Avg. Rio Rome Taipei Tokyo Avg.

Vendor-side
(GTA5)

1. BDL (w/o ST) [41] ✓|✓(no GT) 43.3 53.2 40.4 36.8 30.3 35.8 38.9 42.2 42.2 41.2 41.1
2. FDA* (w/o ST) [83] ✓|✓(no GT) 42.7 51.9 42.1 40.3 35.3 39.2 42.2 42.3 37.5 42.3 41.0
3. Ours (vendor-side) ✓| × 43.1 51.5 43.6 42.4 38.3 41.4 47.0 48.7 43.4 44.5 45.9

Client-side
(→Citysc.)

4. ASN [68] ✓|✓(no GT) 42.4 51.1 41.0 38.0 31.7 36.9 41.8 44.5 37.5 41.9 41.4
5. MSL [5] ✓|✓(no GT) 46.4 54.5 44.3 40.9 34.2 39.8 44.4 47.0 45.6 44.7 45.4
6. BDL [41] ✓|✓(no GT) 48.5 57.7 46.0 42.6 36.3 41.6 44.1 47.1 47.5 44.3 45.7
7. FDA [83] ✓|✓(no GT) 48.8 57.8 47.6 45.2 39.1 44.0 47.8 46.6 42.7 48.1 46.3
8. Ours (client-side) × | ✓(no GT) 53.4 61.4 51.7 48.9 42.3 47.6 47.1 47.7 45.7 46.5 46.7

Online Adapt.
(→FoggyC /
→NTHU)

9. CBST [95] × | ✓(w/ GT) - - - - - - 52.2 53.6 50.3 48.8 51.2
10. MSL [5] × | ✓(w/ GT) - - - - - - 53.3 54.5 50.6 50.5 52.2
11. CSCL [13] × | ✓(w/ GT) - - - - - - 53.8 54.8 51.4 51.0 52.7
12. Ours (client-side) × | × - - 53.6 51.1 45.9 50.2 54.3 55.0 51.6 51.3 53.0

Vendor-sideBaselineGTImage Client-side (w/o cPAE) Client-side (w/ cPAE)

Target-free domain generalization Still there is effect of domain-gap

Figure 4. Qualitative evaluation of the proposed approach. Vendor-side model generalizes better than the baseline but performs worse than
client-side due to the domain gap. Inculcating the prior knowledge from cPAE structurally regularizes the predictions and overcomes the
merged-region (yellow circle) and split-region (blue circle) problems. See Suppl. for extended evaluation. Best viewed in color.

source-trained model. The ERM model gives an improve-
ment of 3.2% over the baseline. Next, we evaluate DE++
and observe an improvement of 0.4%. LO++ gives a further
improvement of 3.6% over DE++. This shows the clear su-
periority of LO++ over both ERM and DE++.

Second, under client-side ablation, cPAE for pseudo-
label extraction gives a boost of 1.8%. Further, using cPAE
for inference gives an additional 0.8-0.9% improvement.

4.2.3 Analyzing cross-dataset generalization
Unlike prior arts which assume concurrent access to source
and target (inculcates target-bias), our target-free vendor-
side model is expected to generalize well to unseen tar-
gets. To this end, Table 5 shows our generalizability to
other road-scene datasets, such as Foggy-Cityscapes [59]
and NTHU-Cross-City [10]; before (#1-3) and after (#4-
8) self-training on the related real domain, i.e. Cityscapes.
Among different variants, we achieve a superior average
generalization even without concurrent access to samples
from the related domain, Cityscapes. Note that concurrent
access is beneficial to better characterize the domain gap.

4.2.4 Compatibility to online domain adaptation
Online adaptation [26, 49] refers to a deployment setting
where the model is required to continuously adapt to the
current working conditions. The current state of the model
may overcome its past domain-biases to perform the best
at a given scenario. The proposed client-side training can
be seen as an online adaptation algorithm. Here, the frozen

parameters of the multi-head SoMAN helps to retain task-
specific knowledge while allowing adaptation to unlabeled
samples from the new environment. In the last section
of Table 5, the initial Cityscapes adapted SoMAN is inde-
pendently adapted to different secondary domains under
Foggy-Cityscapes and NTHU-Cross-City. We also com-
pare our results with recent Cityscapes→NTHU-Cross-City
works (#9-12) that concurrently access labeled Cityscapes
and unlabeled NTHU-Cross-City datasets. The improved
performance shows our compatibility to online adaptation.

5. Conclusion
We introduced a source-free DA framework for semantic

segmentation, recognizing practical scenarios where source
and target data are not concurrently accessible. We cast the
vendor-side training as multi-source learning. Based on the-
oretical insights, we proposed SoMAN that balances gener-
alization and specificity using the systematically selected
AGs without access to the target. To provide a strong sup-
port for the dense prediction task, cPAE is trained to de-
noise segmentation predictions and improve pseudo-label
quality for client-side source-free self-training. Extending
this framework to more DA scenarios involving category-
shift can be a direction for future research.
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Cord, and Patrick Pérez. ADVENT: Adversarial entropy
minimization for domain adaptation in semantic segmenta-
tion. In CVPR, 2019. 2

[73] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu
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