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Abstract

Weakly supervised semantic segmentation (WSSS) using
image-level classification labels usually utilizes the Class
Activation Maps (CAMs) to localize objects of interest in
images. While pointing out that CAMs only highlight the
most discriminative regions of the classes of interest, adver-
sarial erasing (AE) methods have been proposed to further
explore the less discriminative regions. In this paper, we
review the potential of the pre-trained classifier which is
trained on the raw images. We experimentally verify that
the ordinary classifier1 already has the capability to acti-
vate the less discriminative regions if the most discrimina-
tive regions are erased to some extent. Based on that, we
propose a class-specific AE-based framework that fully ex-
ploits the potential of an ordinary classifier. Our framework
(1) adopts the ordinary classifier to notify the regions to be
erased and (2) generates a class-specific mask for erasing
by randomly sampling a single specific class to be erased
(target class) among the existing classes on the image for
obtaining more precise CAMs. Specifically, with the guid-
ance of the ordinary classifier, the proposed CAMs Gen-
eration Network (CGNet) is enforced to generate a CAM
of the target class while constraining the CAM not to in-
trude the object regions of the other classes. Along with
the pseudo-labels refined from our CAMs, we achieve the
state-of-the-art WSSS performance on both PASCAL VOC
2012 and MS-COCO dataset only with image-level supervi-
sion. The code is available at https://github.com/
KAIST-vilab/OC-CSE.

1. Introduction
Deep learning has been spotlighted for its effective-

ness and evolved to achieve a higher level of perfor-
mance than conventional techniques. In semantic segmen-
tation [6, 7, 30, 41, 42], it has also achieved significant per-
formance improvement. However, unlike other tasks such

*The first two authors contributed equally. In alphabetical order.
1Throughout this paper, we will refer to a classifier pre-trained on raw

images as a term ‘ordinary classifier’.

Figure 1: Qualitative comparison between the CAMs of
baseline (ordinary classifier [2]) and ours on the PASCAL
VOC 2012. From 1 to 6: original images, ground truth seg-
mentations, baseline CAMs, our CAMs at epoch 1, 5, 9.

as object detection and classification, semantic segmen-
tation requires dense pixel-level annotated labels that are
time-consuming and costly to acquire. Accordingly, many
attempts have been made for weakly-supervised semantic
segmentation (WSSS) that only uses image-level classifica-
tion labels [1–3, 10, 22, 33, 34, 37], scribbles [24, 31], and
bounding boxes [8, 16, 26]. Among them, the most widely
used approach is to utilize only image-level classification
labels that can be easily obtained on massive amounts of
data. In order to localize the object regions with the image-
level labels, most existing approaches [1–3,5,10–12,23,28,
29, 33, 34, 37] utilize Class Activation Maps (CAMs) [40],
represent the importance of image regions for the class pre-
diction. To the best of our knowledge, most of the exist-
ing WSSS researches have pointed out that the CAMs high-
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light only the most discriminative regions rather than the
whole object regions (e.g. 1.3 and 2.3 in Fig. 1). To dispel
this under-activation issue, Adversarial Erasing (AE) meth-
ods [13, 22, 34, 39] have been widely used. They mask out
the most highlighted parts of the CAMs from the image, and
then a new classifier is trained on the masked images to seek
the less highlighted regions.

In this paper, with a simple experiment inspired by the
AE methods in Fig. 2 (which will be explained in Sec. 3),
we review the potential of the ordinary classifier. We find
that the ordinary classifier already has sufficient capability
to identify the less discriminative regions without additional
training. So, in our view, it is redundant to train a new
classifier for the masked images as in existing AE methods.
We experimentally verify that aggregating such regions us-
ing an ordinary classifier can be beneficial to generate the
pseudo-labels for WSSS.

To fully exploit the potential of the ordinary classifier,
we propose a class-specific AE-based framework that ag-
gregates the regions from the most discriminative to the
less discriminative. Our framework is composed of two
networks: a CAMs Generating Network (CGNet) and the
ordinary classifier used for guidance. First, we randomly
sample a single class to be erased (target class) among the
existing classes on the image. Then, the CAM of the target
class is picked up among the CAMs generated by CGNet for
masking the input image in a back-propagable manner. Fi-
nally, from the masked image, the ordinary classifier makes
a prediction score of each class. We train the CGNet to
lower the score of the erased target class, while the scores
of the other existing classes are kept high.

The main advantage of the proposed class-specific eras-
ing method is that it enables the CGNet to generate more
precise CAMs. When all existing classes are simulta-
neously erased from the image in a class-agnostic man-
ner [22], a confusion of the CGNet at the object boundaries
between different classes cannot be resolved. Our class-
specific erasing method can reduce such confusion by pe-
nalizing the intrusion of the CAMs at the object boundaries.

Figure 1 is a qualitative comparison between the CAMs
of the baseline [2] (ordinary classifier) and the CGNet in the
proposed framework. It shows that the localization ability
of our CAMs gets better as the training proceeds, which
supports the effectiveness of the proposed framework in
a qualitative manner. We also conduct extensive ablation
studies in Sec. 5.3 and experimentally verify that the pro-
posed framework achieves additional performance gain in
mean Intersection over Union (mIoU).

The contributions of our work are four-fold:

• We experimentally verify that an ordinary classifier has
sufficient capability to segment the whole object region.

• To exploit the potential of the ordinary classifier, we pro-
pose an adversarial erasing-based framework.

• We design a class-specific erasing method that fully uti-
lizes multi-class images which yields CAMs with more
accurate boundaries.

• We achieve new state-of-the-art performance both on the
PASCAL VOC 2012 val/test set and MS-COCO val set
in the WSSS task with only the image-level classification
labels.

2. Related Works

Utilizing only the image-level classification labels for
semantic segmentation requires much less labeling costs
among the various WSSS approaches, so we adopt this ap-
proach.
Earlier works in WSSS Most WSSS methods have em-
ployed CAMs to localize the object by only using the
image-level classification labels. The CAMs, however, have
been criticized for that they tend to focus on the most dis-
criminative region, which can be an important classification
cue, rather than the whole object regions. A group of stud-
ies attempted to expand and refine the sparse CAMs with
seed growing methods [14, 18] or pixel-level affinity-based
methods [2,12,28] to make dense pixel-level pseudo-labels
for semantic segmentation. The aforementioned seed-based
approaches, however, are highly dependent on the quality
of the initial CAMs. Accordingly, numerous studies have
been conducted to improve the quality of CAMs. Multiple
dilated convolution blocks [35] and self-equivariant regu-
larization [33] have been proposed to make the classifier for
the CAMs robust under the scale variation. Also, much re-
search has also been conducted to improve the localization
ability with stochastic feature selection [21], an accumula-
tion at different training phases [15], and cross-image ap-
proaches based on sub-category classification [3] or class-
wise co-attention constraints [23, 29].

Adversarial erasing Adversarial Erasing (AE) method [13,
22, 34, 39] is one of the most commonly used method in
WSSS. By explicitly erasing specific regions from an im-
age, this method forces the network to explore the complete
object region rather than to be biased on the most discrim-
inative region. Wei et al. [34] firstly proposed a recursive
find-and-erase scheme while training multiple classification
networks. This scheme is repeated until newly adopted clas-
sification network fails to find meaningful object regions.
Zhang et al. [39] improved the recursive scheme as an end-
to-end framework composed of two branches with feature-
level masking. In these works, however, even if the initial
classifier succeeded to erase the object perfectly, the com-
plementary network would not notice that fact and suffer
from an over-erasing problem. SeeNet [13] attempted to re-
duce the over-erasing effect by replacing binary threshold-
ing in [39] with the ternary thresholding that includes poten-
tial regions during the mask generation process. However,
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this strategy requires the additional aid of a saliency detec-
tion module. Recently, Li et al. [22] proposed a soft mask
generation network that can be jointly trained by a standard
classification loss and an attention mining loss. The atten-
tion mining loss provides a self-guidance with the weight-
shared networks to erase all the objects from the image by
minimizing the overall class prediction scores of masked
objects. The network obtains better localization capability
while finding and masking out the objects from the image
in a simultaneous manner. However, since the self-guidance
is from the mask generation network itself, it is difficult to
self-correct the overly activated regions judged already.

3. Potential of Ordinary Classifier
Aforementioned, it has been commonly regarded that the

CAMs from the ordinary classifier usually highlight only
the most discriminative parts of the objects rather than the
entire object region. However, in this paper, we find that the
ordinary classifier already has sufficient capability to acti-
vate the entire regions of the objects.

To reveal the potential of the ordinary classifier, we con-
duct a simple experiment with a recursive erase-and-infer
process as visualized in Fig. 2. With an ordinary pre-trained
classifier, we get initial CAMs from an input image. Then
the image is masked by thresholding the highlighted regions
of the CAMs. Interestingly, we can see that, even with-
out the additional training step, when we re-infer the sec-
ondary CAMs from the masked image, the ordinary classi-
fier activates the object-relevant regions which were origi-
nally suppressed on the initial CAMs. Note that the classi-
fier stays fixed throughout the process, unlike conventional
AE schemes which train a complementary classifier with
masked images in each phase [34] or branch [13, 39]. With
this simple erase-and-infer scheme, the aggregated CAMs
achieve 51.3% mIoU on PASCAL VOC 2012 train set,
which is significantly higher than the performance of base-
line CAMs (47.8%).

It is true that the less discriminative regions are less ac-
tivated on initial CAMs. The experimental results, how-
ever, suggest that such regions are not conspicuous due to
highly-discriminative regions rather than being simply ig-
nored by the classifier. In our perspective, the main limi-
tation of CAMs is not in their sparsity and incompleteness
but in the imbalance between the activation. Therefore, to
generate more precise pseudo-labels for WSSS, it is possi-
ble to aggregate the less-activated regions with an ordinary
classifier if it is well exploited.

This scheme, however, simply processes the image and
aggregates the activated regions from the ordinary classi-
fier in a sequential manner. So, during the process, there
is no chance to recognize and learn the innate patterns of
such regions which can be helpful to generate more com-
plete CAMs. Moreover, it is extremely difficult to optimize

Figure 2: Diagram of a recursive erase-and-infer scheme.
With a fixed ordinary classifier, initial CAMs are inferred
from an input image. Then the image is masked by thresh-
olding the highlighted regions on the CAMs and the CAMs
are re-inferred in a recursive manner. Note that the classifier
stays fixed throughout the whole process in this scheme.

the masking threshold for each image without the ground
truth semantic segmentation labels. Therefore, to unlock
the potential of the ordinary classifier while handling these
issues, we propose a learning-based AE framework that har-
nesses the aforementioned scheme in an adaptive/recursive
manner.

4. Proposed Method

4.1. CAMs Generation

We follow the approach of [40] to compute CAMs from
an ordinary classification network with a small modifica-
tion. Unlike the final layer of the classification network
in [40], which is designed as a Global Average Pooling
(GAP) followed by a fully-connected layer, we use a 1×1
convolution layer which has the number of classes (nc) out-
put channels followed by GAP as in [39]. Thereby the CAM
of a class ck is represented as Ack(x, y) = f cam

ck
(x, y),

where f cam
ck

(x, y) denotes the feature vector at a location
(x,y) on the feature map of the last convolution layer with
the class ck. A class prediction result of the network p for
an image I can be defined as follows:

p = σ(GAP (f cam)), (1)

where σ denotes the sigmoid activation function.
In order to utilize the CAM Ack as a back-propagable

mask for erasing, we further take the Rectified Linear Unit
(ReLU) on it and divide it by its max value so that the the
feature maps be normalized between 0 and 1. Bilinear up-
sampling is applied to match the resolution of the image.
The aforementioned process is shown as follows:

Ack =
ReLU(Ack)

max(ReLU(Ack))
. (2)
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Figure 3: Overview of our AE-based framework with the proposed CSE method. For a given image Ii, class activation maps
Ais are generated from the CGNet. Among the class labels of an input image, one target class, ck, is randomly selected. Then
corresponding mask M ck

i is generated and used for masking the image. After that the remain-region image Îi is fed into the
ordinary classifier, and the gradients back-propagated from the class-specific erasing loss guide the CGNet to generate better
CAMs and a mask.

4.2. Proposed Framework

We denote the training data for a multi-label problem as
D = {(Ii, ti)}i, where the label ti = {c1, c2, · · · , cni

}. As
shown in Fig. 3, our framework is composed of two net-
works: CGNet and the ordinary classifier. The CGNet gets
an image Ii as an input, then generates the class activation
maps Ai and class prediction pi. In order to mask the image,
M ck

i is selected among Ai, where ck is a single mask-class
label randomly sampled from the ground truth classes ti.
Throughout the following explanation, we name the class
ck as a “target class” and the other classes as “remaining
classes”. Then the masked image Îi is computed as follows:

Îi = (1−M ck
i )⊙ Ii, (3)

where ⊙ denotes the element-wise multiplication.
After that, the fixed ordinary classifier gets the masked

image Îi and makes a class prediction p̂i. Our framework
enforces the CGNet to make the masked image not con-
tain the target class anymore, but still include the remaining
classes. The CGNet is trained with a combination of the
two classification loss functions as:

Lours = Lcls + λLcse = ℓbce(pi, ti) + λℓbce(p̂i, t̂i), (4)

where Lcls and Lcse correspond to ℓbce(pi, ti) and

ℓbce(p̂i, t̂i), respectively. Here, ℓbce denotes the binary cross
entropy loss and λ is a weighting parameter which balances
between both terms. Note that t̂i stands for the remaining
class labels defined as t̂i = ti − {ck}.

As discussed in Sec. 3, once the most discriminative re-
gions are masked from the image, the ordinary classifier fo-
cuses on secondary discriminative regions and uses them
as cues for classification. Therefore, if the CGNet fails to
erase some portions of the object of the target class, the or-
dinary classifier could detect such under-erasing and noti-
fies the CGNet to erase them. Also, with extensive ablation
studies in Sec. 5.3, we verify that receiving guidance from
the fixed ordinary classifier is more reliable than from the
weight-shared networks (self-guidance) as in [22].

4.3. Class-specific Erasing Method (CSE)

The proposed CSE method has a superiority over the
Class-Agnostic Erasing (CAE) method [22] in the perspec-
tive of generating the precise CAMs. In the CAE method,
a mask is generated by applying a pixel-wise max function
on CAMs. Since the goal of the CAE method is to erase all
existing classes, the loss function is as follows:

Lagno = Lcls + λLcae = ℓbce(pi, ti) + λℓbce(p̂i,∅) (5)
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Figure 4: The illustration showing how our CSE method
works. The confidence score from the ordinary classifier is
listed for each image. This figure is an example of mask-
ing a sofa class, and notation follows the description of the
framework. Class-specific erasing loss (Lcse) values are
also shown.

where Lcls and Lcae correspond to ℓbce(pi, ti) and
ℓbce(p̂i,∅), respectively. Here, Lcls is a standard classifi-
cation loss and Lcae is a loss between the class prediction
of masked image at the ordinary classifier and ∅, which de-
notes that the label is an empty set.

In this case, the loss function for CAE in Eq. 5 only
checks if there is any object in the masked image. So,
even if the generated mask is imprecise at the boundaries
between the objects of different categories, such unwanted
intrusion can not be penalized since there is no difference on
the loss function. With the class-specific erasing method,
on the other hand, Lcse in Eq. 4 enables CGNet to learn
localization from the ordinary classifier. Since the remain-
ing classes should be predicted from the masked image on
the ordinary classifier, the mask M ck

i is constrained not
to intrude the regions of the remaining classes. The loss
Lcse, therefore, induces the CGNet to generate mask that
fits along the object boundaries.

In Fig. 4, we visualize how the proposed CSE method
works in more detail. Suppose an image containing two
classes dog, sofa is given, where the target class ck is sofa,
and the remaining class t̂i is dog. If the generated activation
map of the target class (sofa) is under-activated as shown
in Fig. 4-(b), the ordinary classifier would predict 0.43 of
confidence score on the sofa class since the ordinary clas-
sifier has sufficient capability to find the remained regions
of sofa. Since the dog is the remaining class (t̂i) for the
CSE loss (Lcse), the CGNet is trained to decrease the confi-
dence score on the sofa class by expanding the sofa activa-
tion map.

Conversely, when the activation map of the sofa class is
over-activated as shown in Fig. 4-(c) and intrudes the region
of the other class (dog), the confidence score of the dog pre-
dicted by the ordinary classifier would be decreased. In this
case, since the remained image-level label (t̂i) still demands
the dog class to be left, Lcse will successfully notice this in-
trusion and punish CGNet to reduce the activation map of
the sofa class. Through the aforementioned process, we can
expect that the CGNet ultimately be optimized to the opti-
mal solution (Fig. 4-(d)) while balancing between the over-
activation and under-activation with the help of penalization
from Lcse.

As the conventional adversarial erasing approaches have
faced, the classification loss of the image itself cannot spa-
tially constrain the activation maps to be along the object
boundary. However, if we adopt the class-specific eras-
ing method on our framework, then the CGNet could learn
the boundary information between the objects on the multi-
class image while reducing and expanding its activation re-
gions under reliable guidance from the ordinary classifier.
This is a simple but effective way to spatially constrain the
activation maps by only using mere classification loss from
image-level labels.

Even though the ordinary classifier might not be able to
notice when the regions of the remaining classes that in-
truded by the over-activated CAM of the target class are
less-discriminative, the CSE method enables the CGNet to
learn the concept of “object boundary” from cases like in
the Fig 4. Furthermore, qualitative and quantitative results
in Sec 5.3 support that the proposed CSE method properly
works according to the design intent.

4.4. CAM Refinement

To refine the CAMs generated from the CGNet for more
accurate pseudo pixel-level labels, we follow the work of
[2]. The foreground and background labels that are required
to train AffinityNet in [2] are obtained by applying crf [19]
to our refined CAMs. In order to apply CRF to our CAMs,
we compute a background activation map as:

Abg(x, y) =

{
1−max

c∈t
A(x, y)

}α

. (6)

After training AffinityNet, we use those pseudo labels to
train Deeplab [4] to accomplish the goal of WSSS.

5. Experiments
5.1. Dataset and Evaluation Metric

We evaluate the proposed method on the PASCAL VOC
2012 dataset [9] and MS-COCO dataset [25]. PASCAL
VOC 2012 dataset contains 20 foregrounds and one back-
ground categories. As conventional approaches, augmented
training set (10,528) with image-level class labels is used
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Table 1: The ablation study of proposed framework. W.S.:
Weight Sharing as in [22] with CGNet. O.C.: the Ordinary
Classifier. CAE: Class-Agnostic Erasing method. CSE:
Class-Specific Erasing method. crf: Conditional random
fields. For the implementation of the GAIN [22], we em-
ploy the same backbone as Ours. The performance is eval-
uated on the PASCAL VOC train set.

Erasing method Guidance mIoU(%) mIoU(%)
w/ crfCAE CSE O.C. W.S.

Baseline 47.8 53.7
GAIN [22] ✓ ✓ 48.3 53.7

Ours (w/o CSE) ✓ ✓ 53.3 59.7
Ours (w/o O.C.) ✓ ✓ 47.1 52.5

Ours ✓ ✓ 56.0 62.8

Figure 5: Qualitative comparison of CAMs among several
methods on the PASCAL VOC 2012. From (a) to (e): Im-
age, Ground truth segmentation, Baseline CAM, Aggre-
gated CAM, GAIN [22], Ours (w/o CSE), and Ours. Ag-
gregated CAM is generated as the method shown in Fig. 2.

for training. We use validation (1,464) and test sets (1,456)
to evaluate our results and to compare with other methods.
The other dataset, MS-COCO [25], contains 81 classes in-
cluding the background class with 80k train and 40k val im-
ages, which is more general and difficult in the perspective
of WSSS. As an evaluation metric, we employ the mean In-
tersection over Union (mIoU) which is a common standard
for semantic segmentation task.

5.2. Implementation Details

Framework The proposed network is implemented with
PyTorch. In our experiments, ResNet38 [36] is employed
as a backbone network for both the CGNet and the ordi-

Figure 6: Qualitative comparison between CAMs on PAS-
CAL VOC 2012. From left to right: Images, Ground-truth
segmentations, CAMs of Baseline [2], CAMs of Ours.

nary classifier. As our framework is guided by the ordi-
nary classifier, the dependency on it will be discussed in the
Supplementary material with additional experiments. Both
networks are initialized with ImageNet [27] weights. Be-
fore training our full framework, the ordinary classifier is
pre-trained by a standard classification loss with PASCAL
VOC 2012 train dataset. Likewise, for experiment using
MS-COCO, we pre-trained the classifier in the same man-
ner. For data augmentation, random resizing, horizontal
flipping, color jittering [20] and random cropping are ap-
plied to the input images. The model is trained on 4 TITAN-
RTX GPUs with batch size 8 for 15 epochs. We use a poly
learning rate which multiplies (1− iter

max iter )
power to an ini-

tial learning rate as in [6]. We set the initial learning rate as
0.01 and the power is set to 0.9.

AffinityNet and Deeplab To refine the pseudo label, we
design both AffinityNet and Deeplab with ResNet38 back-
bone as in [2]. We use 3/24 for α in Eq. 6 to get the
confident foreground/background regions to train the Affin-
ityNet. Learning rate for training Deeplab is set to 0.001.

5.3. Ablation Studies
The ablation study of our method on PASCAL VOC

2012 dataset is shown in Table 1. While adjusting the eras-
ing method (Class-agnostic or Class-specific) and the type
of guidance (Ordinary Classifier or Weight Sharing), per-
formance of each method is evaluated. For the implemen-
tation of weight-shared guidance, we follow the work of
GAIN [22] which receives the guidance from the weight-
shared network and uses CAE method. Comparing with the
baseline, the GAIN achieves slight performance increase
of 0.5%. By utilizing the ordinary classifier as the guid-
ance, the performance is greatly increased to 53.3%. It
implies that the penalization from the ordinary classifier
is more beneficial comparing with that from the weight-
sharing method. We also conduct an experiment to ver-
ify the effectiveness of our CSE method. While the CSE
method can be applied independently to the ordinary classi-
fier, combining it with the weight-sharing guidance lowers
the performance than the baseline. With the ordinary classi-
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Table 2: Performance (mIoU,%) comparison with other
state-of-the-art WSSS methods on the PASCAL VOC 2012
val and test set. I and S represent image-level labels and the
external saliency module used for supervision, respectively.
Bold numbers represent the best results, while underlined
numbers are the second best ones.

Methods Backbone Sup. Pub. Val Test
AdvErasing [34] VGG16 I CVPR17 55.0 55.7
GAIN [22] VGG16 I CVPR18 55.3 56.8
AffinityNet [2] ResNet38 I CVPR18 61.7 63.7
ICD [10] ResNet101 I CVPR20 64.1 64.3
IRNet [1] ResNet50 I CVPR19 63.5 64.8
SSDD [28] ResNet38 I ICCV19 64.9 65.5
SEAM [33] ResNet38 I CVPR20 64.5 65.7
Sub-category [3] ResNet101 I CVPR20 66.1 65.9
RRM [37] ResNet101 I AAAI20 66.3 66.5
BES [5] ResNet101 I ECCV20 65.7 66.6
Ours ResNet38 I - 68.4 68.2
MCOF [32] ResNet101 I+S CVPR18 60.3 61.2
SeeNet [13] ResNet101 I+S NIPS18 63.1 62.8
DSRG [14] ResNet101 I+S CVPR18 61.4 63.2
FickleNet [21] ResNet101 I+S CVPR19 64.9 65.3
CIAN [12] ResNet101 I+S AAAI20 64.3 65.4
OAA+ [15] ResNet101 I+S ICCV19 65.2 66.4
EME [11] ResNet101 I+S ECCV20 67.2 66.7
MCIS [29] ResNet38 I+S ECCV20 66.2 66.9
ICD [10] ResNet101 I+S CVPR20 67.8 68.0
Group-WSSS [23] ResNet101 I+S AAAI21 68.2 68.5

fier, on the other hand, the performance is further increased
to 56.0%, which is a significant gain (8.2% in mIoU) com-
pared to the baseline. In our view, it is difficult to self-
correct the miss-activated regions with the self-guidance
from the weight-shared network itself, while our scheme
can handle such error with the ordinary classifier. We also
observe that simultaneously updating the ordinary classifier
with the CGNet leads to slightly worse result. In the per-
spective of the optimization, keeping the guidance network
fixed seems to be beneficial since it can provide a more sta-
ble gradient to the CGNet.

When the image has only one object class, it is true that
the proposed CSE method is the same as the CAE method.
But as shown in Table 1, the CSE method achieves signif-
icant performance gain over CAE method on the PASCAL
VOC 2012 dataset, even though only 40% of the train set is
multi-class. It implies that the CSE method can effectively
exploit the rich information of multi-class images, which is
clearly superior to the CAE method. Also, in the perspec-
tive of the segmentation tasks, it is much more general and
practical to handle a dataset with multi-class images such as
MS COCO. As shown in Table 3, the proposed framework
also achieves state-of-the-art on the MS COCO dataset.

When applying crf to our framework, the mIoU of CAMs
is drastically increased to 62.8%. Considering the perfor-
mance gap between the baseline and baseline with crf is
5.9%, our framework could even more benefit from the crf.

Table 3: Quantitative comparison of the proposed
frameworks with other state-of-the-art method on MS-
COCO [25]. The results of [1, 33](∗) are re-implemented
by [38].

Method Publication Backbone val (mIoU)
SEC [18] ECCV16 VGG16 22.4

DSRG [14] CVPR18 VGG16 26.0
Group-WSSS [23] AAAI21 VGG16 28.4

SEAM∗ [33] CVPR20 ResNet38 31.9
IRNet∗ [1] CVPR19 ResNet50 32.6

SEAM+CONTA [38] NeurIPS20 ResNet38 32.8
IRNet+CONTA [38] NeurIPS20 ResNet50 33.4

Ours - ResNet38 36.4

We interpret this performance gain comes from the capa-
bility of CGNet to generate more precise CAMs that match
along object boundaries. As the CAMs less invade across
the object boundaries, the crf less confuses while refining
the CAMs.

Figure 5 shows the qualitative comparison among five
different methods. Comparing (d) the Aggregated CAM
and (e) GAIN with (c) baseline CAM, highly-discriminative
regions become wider. Since the proposed framework with-
out CSE method has much less risk for an over-erasing with
reliable guidance from the ordinary classifier, localization
ability of (f) Ours (w/o CSE) is improved comparing with
the CAM of (c)-(e). With the class-specific erasing method,
as shown in (g) Ours, the CGNet generates much more pre-
cise CAM. Qualitative results shown in Fig. 6 also support
the effectiveness of our framework.

5.4. Comparison with State-of-the-arts
To improve the quality of pixel-level pseudo labels, we

follow the work of [2] as in [3, 33]. After training
the AffinityNet with the CAMs from the proposed frame-
work and applying the crf, the synthesized pseudo labels
achieve 66.9% mIoU on PASCAL VOC 2012 train set. The
pseudo pixel-level labels are employed to train the Deeplab-
LargeFOV [4] with a ResNet38 backbone network. As
shown in Table 2, we achieve 68.4% and 68.2% mIoU on
PASCAL VOC 2012 val and test sets, respectively, achiev-
ing new state-of-the-arts. Table 4 gives class-wise IoU com-
parison with previous methods on val set. As shown in
Fig. 7, our framework more accurately and precisely seg-
ments the objects comparing with [2].

To show the superiority of the proposed framework more
clearly, we also conduct experiments on the MS-COCO [25]
dataset. Since there are more multi-class images in MS-
COCO than PASCAL VOC 2012, the benefit of the pro-
posed CSE method would be more evident. We just apply
the crf on the CAMs generated by the CGNet to acquire
pseudo-labels, which achieves 37.2% mIoU on the train set.
Note that we skip the phase for training the Affinity network
since it consumes too many resources, and the performance
could be even higher with the Affinity phase. As shown in
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Figure 7: Qualitative results of the segmentation networks trained with pseudo pixel-level labels. Note that those pseudo
labels are generated using only image-level labels. From top to bottom: Image, Ground truth, Segmentation results of a
baseline [2], Segmentation results of ours.

Table 4: Class-wise IoU comparison on PASCAL VOC 2012 val set with only image-level supervision.
Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mIoU

TPL [17] 82.8 62.2 23.1 65.8 21.1 43.1 71.1 66.2 76.1 21.3 59.6 35.1 70.2 58.8 62.3 66.1 35.8 69.9 33.4 45.9 45.6 53.1
AdvErasing [34] 83.4 71.1 30.5 72.9 41.6 55.9 63.1 60.2 74.0 18.0 66.5 32.4 71.7 56.3 64.8 52.4 37.4 69.1 31.4 58.9 43.9 55.0
AffinityNet [2] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 61.7

SEAM [33] 88.8 68.5 33.3 85.7 40.4 67.3 78.9 76.3 81.9 29.1 75.5 48.1 79.9 73.8 71.4 75.2 48.9 79.8 40.9 58.2 53.0 64.5
SSDD [28] 89.0 62.5 28.9 83.7 52.9 59.5 77.6 73.7 87.0 34.0 83.7 47.6 84.1 77.0 73.9 69.6 29.8 84.0 43.2 68.0 53.4 64.9
BES [5] 88.9 74.1 29.8 81.3 53.3 69.9 89.4 79.8 84.2 27.9 76.9 46.6 78.8 75.9 72.2 70.4 50.8 79.4 39.9 65.3 44.8 65.7

Ours 90.2 82.9 35.1 86.8 59.4 70.6 82.5 78.1 87.4 30.1 79.4 45.9 83.1 83.4 75.7 73.4 48.1 89.3 42.7 60.4 52.3 68.4

Table 3, we experimentally verify the effectiveness of the
proposed framework. Our framework achieves 36.4% on
the MS-COCO val set, which is a new state-of-the-art that
surpasses the previous best method by 3.0%.

6. Conclusion and Future Works
In this paper, we proposed a class-specific adversarial

erasing-based framework while fully exploiting the poten-
tial of ordinary classifier. Motivated by that the ordinary
classifier already has enough capability to identify less dis-
criminative regions, we designed the CGNet to extract the
full potential from the ordinary classifier. Furthermore, the
proposed class-specific erasing (CSE) methods guide the
CGNet to generate more precise CAMs by learning bound-
ary information between the objects on multi-class images.
Extensive qualitative and quantitative experimental results
support the effectiveness of the proposed framework. Along
with the pseudo pixel-level labels refined from our CAMs,
we achieved the state-of-the-art WSSS performance on both

PASCAL VOC 2012 val / test set and MS COCO val set
only with image-level supervision.

The proposed framework succeeds to unlock the valu-
able potential of the ordinary classifier, however, by nature
of using a pre-trained classifier for guidance, the proposed
framework has a limitation. We observe that the miss-
classification results of the ordinary classifier sometimes
lead to failure cases and therefore limit the upper bounds
of the performance of our framework. In this sense, future
studies could investigate the training scheme to handle such
miss-classification, or replacing the ordinary classifier with
another classifier specialized in WSSS to further enhance
the performance of the proposed framework.
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