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Abstract

We present a comprehensive framework for egocentric
interaction recognition using markerless 3D annotations of
two hands manipulating objects. To this end, we propose a
method to create a unified dataset for egocentric 3D inter-
action recognition. Our method produces annotations of the
3D pose of two hands and the 6D pose of the manipulated
objects, along with their interaction labels for each frame.
Our dataset, called H2O (2 Hands and Objects), provides
synchronized multi-view RGB-D images, interaction labels,
object classes, ground-truth 3D poses for left & right hands,
6D object poses, ground-truth camera poses, object meshes
and scene point clouds. To the best of our knowledge, this
is the first benchmark that enables the study of first-person
actions with the use of the pose of both left and right hands
manipulating objects and presents an unprecedented level
of detail for egocentric 3D interaction recognition. We fur-
ther propose the method to predict interaction classes by
estimating the 3D pose of two hands and the 6D pose of the
manipulated objects, jointly from RGB images. Our method
models both inter- and intra-dependencies between both
hands and objects by learning the topology of a graph con-
volutional network that predicts interactions. We show that
our method facilitated by this dataset establishes a strong
baseline for joint hand-object pose estimation and achieves
state-of-the-art accuracy for first person interaction recog-
nition.

1. Introduction
In recent years, there has been tremendous progress in

video understanding and action recognition. Current algo-
rithms can reliably recognize the action the subject is per-
forming in many unconstrained settings from third person
viewpoints [9, 22, 23, 24, 71, 89]. Although action recogni-
tion from first-person views has many applications in aug-
mented reality, robotics and surveillance, it trails behind the
progress in third person views, mostly due to the lack of
large and diverse egocentric datasets. From an egocentric
viewpoint, action recognition is mostly about understand-
ing hand & object interactions. A unified understanding of
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Figure 1: Two hands manipulating objects for first person in-
teraction recognition. We propose a dataset providing rich anno-
tations for 3D poses of left & right hands, 6D object poses, camera
poses, object meshes and scene point clouds, along with their asso-
ciated interaction labels. We leverage our dataset to propose novel
methods for 3D interaction recognition.

the positions and movements of hands and the manipulated
objects is crucial for recognizing egocentric interactions.
However, existing first-person interaction datasets mostly
provide only 2D features (e.g. bounding boxes, hand seg-
mentation) without reasoning in 3D about the motions of
hands and the manipulated objects. In this work, we pro-
pose, for the first time, a unified dataset for first person
interaction recognition with markerless 3D annotations of
two hands manipulating objects, as depicted in Fig. 1. We
collect a richly annotated dataset including synchronized
RGB-D images, camera poses, right & left hand poses, ob-
ject poses, object meshes, scene point clouds and action la-
bels, which provides an unprecedented level of detail for un-
derstanding 3D hand-object interactions. With the help of
our dataset, we present the first method to estimate jointly
the 3D pose of two hands and objects from a color image.
We further propose to learn interdependencies within and
across hand and object poses using an adaptive graph con-
volutional network for 3D interaction recognition.

Jointly capturing hands in action and the manipulated
objects in 3D is a challenging problem due to reciprocal
occlusions. The problem is more challenging from first
person viewpoints due to the unique challenges brought by
egocentric vision such as fast camera motion, large occlu-
sion, background clutter [49] and most importantly, lack of
datasets. Recent works have proposed datasets that success-
fully addressed some of these challenges. Sridhar et al. [73]
have presented one of the earliest datasets for hand-object
interactions, in which a single hand manipulates a cuboid
object. Pioneering works by [26, 32, 34] have further pro-
posed datasets that include 3D annotations for object ma-
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nipulation scenarios of a single hand.
Most of these works, however, are limited by differ-

ent factors. They mainly focus on single hand manipu-
lation scenarios [26, 32, 34]. While single hand manip-
ulation is relevant for some scenarios, most of the time,
hand-object interaction involves two hands manipulating
an object. Using only 2D annotations, [79, 80] presented
datasets for hand-hand and hand-object interactions. The
intricate nature of hand-object interactions, however, re-
quires 3D reasoning rather than 2D to better resolve mutual
occlusions. In the context of hand-object interactions, early
work mostly tackles the problem of joint estimation of 3D
hand and object poses, without reasoning about the actions.
While precise 3D position data for hands and objects is cru-
cial for many applications in robotics and graphics, the sole
knowledge of the pose lacks semantic meaning about the ac-
tions of the subject. To that end, [26] released an egocentric
action dataset including 3D annotations of hands and ob-
jects; however, the data is captured with an intrusive motion
capture system. Although motion capture datasets [26, 75]
can provide large amounts of training samples with accurate
3D annotations, they can only be captured in controlled set-
tings and have visible markers on the images that bias pose
prediction in color images. Synthetic datasets [34] could
provide an alternative to them, however, the existing ones
cannot yet reach the realism that is needed to generalize to
real images and are only for single-image scenarios that lack
temporal context crucial for recognizing interactions.

Our method aims at tackling these limitations exhibited
by prior work. To this end, we propose an approach for cre-
ating a unified dataset for egocentric 3D interaction recog-
nition that includes markerless annotations of the 3D pose
of two hands and the 6D pose of the manipulated objects,
along with their associated action labels for each frame of a
large number of recordings that include 571,645 synchro-
nized RGB-D frames. In addition, we propose the first
method to jointly predict the 3D pose of two hands and
6D pose of the manipulated objects using only RGB images
and present a novel 3D interaction recognition approach that
learns the interdependencies between hand and object poses
by a topology-aware graph convolutional network.

Our contributions can be listed as follows:
• We present the first unified dataset for egocentric in-

teraction recognition with markerless 3D annotations of
two hands and the 6D pose of manipulated objects. Our
dataset, which we call H2O, standing for 2 hands and
objects, provides rich ground-truth annotations for 3D
hand-object poses & shapes, action labels, camera poses,
scene point clouds and object meshes that enable us to
produce comprehensive egocentric scene interpretations.

• We propose a semi-automatic pipeline to curate a hand-
object interaction dataset with action labels and the poses
of two interacting hands as well as the objects in contact,

using a practical multi-camera system with diverse back-
grounds. We demonstrate the fidelity and accuracy of our
annotations by detailed verifications.

• We introduce a unified approach to recognize hand-
object interactions from RGB images that simultane-
ously predicts, for the first time, the 3D pose of two in-
teracting hands and the 6D pose of manipulated objects,
along with action and object classes.

• Leveraging our dataset, we propose a novel method for
3D interaction recognition that learns the interdependen-
cies between two hands and objects with a topology-
aware graph convolutional network. To this end, we
parameterize both hand and object poses as individual
graphs and combine them in a single multi-graph archi-
tecture. We then learn the interdependencies and connec-
tions between different graph entities with an adaptive
architecture and compute the topology of the multi-graph
structure for recognizing 3D hand-object interactions.
We demonstrate that using the pose predictions facili-

tated by our dataset, we achieve better overall performance
for recognizing interactions outperforming the state-of-the-
art [9, 17, 23]. We further provide baselines for hand &
object pose estimation and interaction recognition to enable
further benchmarking on this dataset. We will make our
dataset and annotations publicly available upon acceptance.

2. Related Work
Datasets for egocentric action recognition and hand-
object pose estimation. While many datasets for third-
person action recognition have been proposed throughout
the years [30, 40, 69, 96], recently there is a surge in interest
for data targeting also egocentric scenarios [12, 13, 29, 47,
60, 68] that involve mostly 2D features. These datasets pro-
vide only limited multi-view data and do not provide hand
and object poses, which have been shown to be useful cues
for a comprehensive understanding of the scene [26, 77].

A few datasets collect hand pose ground truth, acquired
in an automated or semi-automated way (Panoptic [37, 38],
FreiHand [99], Interhand [55]). However, they do not con-
sider interactions with objects. Recently, GRAB [75] uses a
mocap system and objects from [6] to track body and hand
pose while interacting with the scene without providing cor-
responding images. HOnnotate [32] relies on an optimiza-
tion process to estimate accurate hand and object pose from

Dataset Frames Action 6D Obj 3D left 3D right (**)Markerless Real Ego Depth Multiview
H2O 571k ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

FPHA [26] 100k ✓ * (23k) · ✓ · ✓ ✓ ✓ ·
HOnnotate [32] 78k · ✓ · ✓ ✓ ✓ · ✓ ✓
Obman [34] 150k · ✓ · ✓ ✓ · · ✓ ·
Freihand [99] 37k · · · ✓ ✓ ✓ · · ✓
Panoptic [38] 1.5M · · ✓ ✓ ✓ ✓ · ✓ ✓
ContactPose [7] 2.9M · (***) ✓ ✓ ✓ · ✓ · ✓ ✓

Table 1: A comparison of the existing related image-based
datasets with 3D annotations for hand interactions. H2O provides
a total of 571k frames captured from 5 different views. (*): Object
pose provided only for a subset of frames. (**) Methods without
markers on hands & objects. (***) Printed, textureless objects.
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(a) (b) (c) (d) (e)
Figure 2: (a) We calibrate cameras using IR sphere markers and PnP [44], (b) create object meshes using BADSLAM [65] on RGB-D
captures, and (c) estimate object poses using DenseFusion [83] on RGB-D images and mask images from Mask R-CNN [35]. We then
select the pose with the highest confidence among five cameras. (d) Consequently, we detect hand joints with OpenPose [8] and optimize
hand shape using Eq. 1. (e) We finally detect and smooth temporally inaccurate poses.

multi-view RGB-D data. ObMan [34] collects purely syn-
thetic images of hands holding objects. All these works,
however, consider only single-hand scenarios and do not fo-
cus on action recognition. Similarly to us, FPHA [26] col-
lects egocentric RGB-D frames with action, hand and object
pose annotations. However, the dataset relies on mangnetic
sensors, which pollute the RGB images, and does not in-
clude neither multi-view data nor two-hand poses.

As shown in Table 1, our dataset is the first including
real, multi-view RGB-D data and accurate annotations for
the 3D pose of two hands, object pose, and action labels for
egocentric 3D interaction recognition.

Hand & object pose estimation. While a significant
amount of research has focused on predicting the pose of
hands [27, 54, 56, 58, 70, 93, 94, 98] or objects [5, 48,
59, 78, 83, 90] in isolation, joint understanding of hand-
object interactions has received far less attention. Consid-
ering hands and objects together adds a number of chal-
lenges, which require to reason e.g. about occlusions and
inter-penetrations. Pioneer works in [1, 79, 80] investi-
gate hand-hand and hand-object interactions relying on op-
timization frameworks which might be slow and difficult to
tune. Tekin et al. [77] and Hasson et al. [33, 34] efficiently
estimate hand & object poses directly from RGB images.
However they consider only single-hand scenarios.

Recognizing interactions. Action recognition has re-
ceived a lot of attention in the computer vision commu-
nity [4, 14, 36, 42, 57, 84, 88]. With the advent of deep
learning and the availability of large datasets, significant
progress has been made in third-person action recogni-
tion [9, 22, 23, 24, 51, 89, 85, 95]. Recently, there has also
been an increase in interest for explicitly reasoning about
human-object interactions [16, 18, 28, 31, 39, 50, 63, 81, 86,
91, 97] and skeletal action recognition [10, 45, 52, 66, 92],
however mostly from third-person viewpoints.

Recognizing interactions from first-person viewpoints,
however, poses a number of specific challenges like large
occlusions, fast camera motion and background clutter [49].
While initially the lack of large amounts of data somewhat
hindered the development of effective DNN-based methods,

over the recent years, there has been a renewed interest in
the problem. Some approaches leverage multi-modal input
like head motion [41, 46, 64, 72] and eye gaze [20, 46]. It
is also common to extract features with CNNs and leverage
additional 2D cues related to motion, hand location, object
location or object class, in isolation [3, 46, 53] or jointly
[19, 21, 25, 67, 74]. While all these methods focus on 2D
features, recent work [26, 77] suggests that 3D cues (like
hand and object pose) can be effective in the context of ego-
centric action recognition. However, existing methods have
focused on single-hand tracking and no attention has been
paid so far to estimating the pose of two hands interacting
with objects – a scenario which is more representative of
the interactions encountered in real-world scenarios.

3. Annotation Method
Fig. 2 shows an overview of our annotation pipeline. We

capture synchronized RGB-D frames from multiple views
with five Azure Kinect cameras [76]. One of the cameras
is mounted on a helmet worn by different subjects to cap-
ture egocentric frames. We acquire ground-truth hand and
object poses in a semi-automated way. First, we scan each
object with a Kinect to obtain a complete 3D model. This
model is used to track object 6D pose in each frame via
DenseFusion [83]. To track hands, we fit the MANO para-
metric hand model [62] to multi-view depth data in each
frame. This automated tracking process may fail on some
frames, due to challenges like (self-)occlusions, blur and
cluttered background. We therefore manually detect failure
cases and remove corresponding poses; such poses can be
then replaced via temporal smoothing. Finally, we manually
annotate action labels over the sequences. In the following
sections, we describe each step of our pipeline in detail.

3.1. Camera Calibration
Our setup consists of four static plus one head-mounted

RGB-D cameras. We use the factory-calibrated intrinsic
parameters accessible via Azure Kinect DK [76]. As for
the extrinsic parameters, we obtain them with a calibration
method relying on IR reflective spheres. We choose this
method to make our setup portable and easy to deploy.
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We place nine IR reflective spheres at random locations
in the scene, ensuring that each sphere is visible from all
the cameras. In the IR images captured by our cameras
to reconstruct depth, such spheres are shown as bright cir-
cles, which can be easily detected in an automated way. We
compute the center of each sphere and then obtain its 3D lo-
cation by considering the corresponding pixel in the depth
image. Given the 3D location of the nine spheres in each
frame, we solve for camera pose via PnP [43]. In order
to consistently identify spheres across frames, we define an
initial mapping in the first frame and then track it over time.

Poses computed for the head-mounted camera can ex-
hibit jitter. We smooth them via Kalman filtering [82], un-
der the assumption that the head moves with uniform speed.
The overall framework allows us to use multiple cameras
during annotation, which eventually increases the fidelity
and accuracy of our annotations.

3.2. Object Pose Annotation

We obtain accurate per-frame object 6D poses using
multi-view images together with camera pose information.
We first reconstruct a 3D mesh model for each object. To
this end, we scan the object by capturing RGB-D frames
with a hand-held Kinect camera moving around it. We feed
these frames into a state-of-the-art RGB-D SLAM method,
BADSLAM [65], to reconstruct a 3D mesh. We obtain tex-
ture for each object in Blender [11]: we project the RGB
images obtained at scanning time onto the mesh surface,
using the camera pose returned by BADSLAM.

We leverage these models to train an object pose tracker.
First, we train an object mask predictor based on Mask R-
CNN [35]. As training data, we use the masks obtained
by projecting our 3D models onto the images used for their
BADSLAM-based reconstruction. Then, we feed mask pre-
dictions together with the corresponding RGB-D images
into DenseFusion [83] to estimate object pose. We obtain
a pose prediction for each camera view, and select the one
with the highest confidence. Finally, we refine this pose
estimate via ICP [43]. Namely, we compute a point cloud
from each of the five depth images and merge them into a
single point cloud by using camera pose information; then,
we fit our object model to this point cloud, taking the pre-
diction from DenseFusion as initialization.

3.3. Hand Pose Annotation

For hand pose estimation, we rely on the widely used
MANO hand model [62]. MANO factorizes human hand
shape into a set of identity parameters β ∈ R10 and a set
of pose parameters θ ∈ R51, storing angles for 15 skeleton
joints plus global rotation and translation. Formally, we can
define MANO as a function HV (θ, β) returning a triangu-
lated mesh with NV vertices. We also define the MANO
skeleton as a function HJ(θ, β) which returns NJ = 21

joint locations (the 15 original ones plus 6 other for finger-
tips and wrist, to map to the OpenPose [8] skeleton – see
Supp. Mat.). We take the object pose estimated as above,
and we leverage it when tracking hand pose.

We track hands by minimizing at each frame, f , a loss
function defined as:

θ̂f = argmin
θ

NC∑
c=1

(λ1Ls + λ2L2D) + λ3L3D+

λ4Lp + λ5Lphy + λ6La + λ7Lm

(1)

where Nc is the number of cameras. Here, Ls is a
silhouette-based error term, L2D and L3D measure joint
error in 2D and 3D, respectively, Lp and La are regular-
izers for pose, Lphy penalizes physically implausible inter-
penetrations between hand and objects, and Lm penalizes
distance in 3D between the hand depth data and the MANO
surface. Lambdas weight the contribution of each error
term. Note that, in order to obtain subject-specific param-
eters, we minimize Eq. (1) with respect to β on one frame
only. Then, we track hand pose over the sequence by keep-
ing β fixed and optimizing Eq. (1) with respect to θ (for
both left and right hands). We omit β from the following
equations for simplicity.
2D joint error. We penalize distance in 2D between
MANO joints and OpenPose estimates by defining:

L2D(θ) =

NJ∑
i=1

∥J2D,c[i]−Πc(HJ(θ)[i])∥ (2)

where J2D denotes the 2D joint positions pre-computed
with OpenPose, and HJ(θ)[i] returns the ith 3D joint lo-
cation of the MANO skeleton.
3D joint error. Similarly to the 2D joint error, we com-
pute a penalty in 3D by triangulating OpenPose estimates.
We found that using this error term helps achieve faster con-
vergence and increase stability.
3D mesh surface error. We obtain a point cloud for hand
data by merging the point clouds obtained from each depth
image across our different views, and segmenting out the
points that do not project onto the hand mask computed as
above. Our 3D surface error term penalizes the distance
between this point cloud and the MANO surface:

Lm(θ) =

NV∑
i=1

∥∥(pj −HV (θ)[i]) ·H⊥
V (θ)[i]

∥∥
where j = argmin

j
∥pj −HV (θ)[i]∥

(3)

where pj is the jth point of the point cloud, and H⊥
V (θ)

denotes the normal of the hand mesh vertex i.
As shown in Eq. 1, our optimization function further in-

cludes a silhouette error term and regularizers for joint an-
gle limits and physical constraints. We refer the reader to
the Supp. Mat. for more details on these terms and for an
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Read Grab Squeeze Spray
Figure 3: RGB and depth images with the corresponding annota-
tions of hand & object pose, and action label. First row: Left hand
keypoints, right hand keypoints, and 3D object bounding box are
projected on the RGB image. Second row: Synchronous depth im-
ages. Third row: Ground-truth data for hand and object meshes.
We provide further examples of ground-truth data in Supp. Mat.

ablation study on the influence of different error terms in
the annotation accuracy.

After running our automated pipeline, we inspect all the
frames to identify and remove inaccurate poses. As a final
step, we smooth and interpolate poses via Kalman filtering.

3.4. Temporal Action Annotation

We provide action labels as verb-noun pairs. We con-
sider 11 verb classes: grab, place, open, close, pour, take
out, put in, apply, read, spray and squeeze. As for nouns, we
consider 8 classes: book, espresso, lotion, spray, milk, co-
coa, chips, cappuccino. By combining verbs and nouns, af-
ter excluding pairs which are not represented in our dataset,
we obtain a total of 36 action classes. Note that we pick
only one verb and one noun for every frame, so there are
no overlapping action labels. We select action labels for the
entire dataset manually, using the VIA annotation tool [15].
Fig. 3 shows some annotation examples.

4. The H2O Dataset
We acquired the images of the H2O dataset in indoor

settings in which the subjects interact with eight different
objects using both of their hands. The dataset includes
571,645 RGBD frames, and features four participants per-
forming 36 distinct action classes in three different envi-
ronments. With the methodology described in Sec. 3, we
annotate accurate ground-truth data for left and right hand
pose, 6D object pose, camera pose and action labels. In our
dataset we further provide MANO [62] hand fits for both
left and right hand, and high-quality object meshes. In ad-
dition, we also compute scene point clouds using the camera
poses and the synchronized RGBD data. Altogether, the cu-
rated dataset allows for a comprehensive understanding of
the egocentric scene.

4.1. Capture Setup

Fig. 4(c) demonstrates our data capture setup. We use
five Azure Kinect cameras to acquire synchronized RGB

(c)

(d)

Figure 4: (a) Number of instances per action in the H2O dataset.
(b) Average number of frames per each action class. (c) Schematic
camera capture setup. Four static cameras can capture parts that
can not be observed by the egocentric view. (d) Scene point cloud
computed from multi-view data.

and depth images. To ensure synchronization between mul-
tiple cameras, we use physical cables between them. This
results in less than 100 microseconds of lag between cam-
eras [76]. As instructed in [76], to avoid interference be-
tween multiple depth cameras, we further offset camera
captures from one another by 160 microseconds, which re-
sults in a total maximum of only 0.74 ms of delay between
cameras. We place four different static cameras at arbitrary
locations that cover hand-object interactions. An egocentric
camera is further mounted on the forehead of a helmet and
adjusted by the participants to set egocentric views. We cal-
ibrate all of the five cameras with nine IR reflective balls as
explained in Sec. 3.1. The data is acquired in three environ-
ments (e.g. hall, office and kitchen) using several different
backgrounds. We record videos at a resolution of 1280x720
pixels for both RGB and depth images with a frame rate of
30 fps. Each video corresponds to a series of actions involv-
ing various hand-object interactions.

4.2. Dataset Statistics

We divide the dataset into a training and test set. We split
the training and test data with a subject-based split where
we leave one subject out for testing and the rest for train-
ing. We further use a part of the training data of one sub-
ject as the validation dataset for model selection. The data
from multiple views consists of 344,645 frames for training,
73,380 frames for validation and 153,620 frames for testing.

We plot the number of instances per action and the aver-
age number of frames for each action class in Fig. 4. Ac-
tion instances are well distributed across the dataset with
the least frequent action appearing 21 times. In the dataset,
both hands are used in 57.8%, only left hand in 12.4%, and
only right hand in 29.8% of the dataset. The length of ac-
tion clips spans a wide range demonstrating the diversity of
the dataset that includes both slow and fast actions.
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5. Recognizing 3D Hand-Object Interactions
Given the rich annotations of H2O, our goal is to con-

struct comprehensive interpretations of egocentric scenes
from image sequences to understand human interactions.
For this purpose, we propose a unified framework that
jointly estimates the poses of two hands & the manipulated
objects, and recognizes egocentric interactions. We use this
framework to establish baselines on first person interaction
recognition and hand & object pose estimation.
Pose Prediction. We build upon the network architecture
of [77] to estimate the poses of both left and right hand,
and the pose of the manipulated object. While [77] ad-
dresses only single hand scenarios, in our case, we aim to
predict the pose of both hands. To this end, each frame in
a sequence is passed through a fully convolutional network
with a backbone of YOLOv2 [61]. We produce a 3D grid
as the output of our fully convolutional network, instead of
producing a 2D grid as in [61]. To be able to predict the
pose of both hands and objects at the same time, we asso-
ciate each output grid cell with 3 vectors for left hand, right
hand and the manipulated object. These vectors contain tar-
get values for left hand (yh,l

i ), right hand (yh,r
i ) and object

pose (yo
i ), with overall confidence values (ch,l,ch,r, co) for

individual pose predictions. The confidence values are de-
fined on-the-fly during training as a function of the distance
of the predicted poses to the ground-truth ones. The final
layer of our single-shot network produces, for each cell i,
predictions for left hand (ŷh,l

i ), right hand (ŷh,r
i ) and object

(ŷo
i ), along with their associated overall confidence values,

ĉh,li , ĉh,ri and ĉoi . For each frame, the loss function to train
our network is defined as follows:

L = λpose

∑
i

(||ŷh,l
i − yh,l

i ||+ ||ŷh,r
i − yh,r

i ||+ ||ŷo
i − yo

i ||) (4)

+ λconf

∑
i

((ĉh,li − ch,li )2 + (ĉh,ri − ch,ri )2 + (ĉoi − coi )
2) (5)

While the poses for the left and right hand are defined
by 3D joint coordinates, object pose is parameterized by
corner points of a 3D bounding box surrounding the object.
Given the control point predictions of the network on the 3D
bounding box, 6D object pose can be efficiently computed
by aligning the predictions to the reference 3D bounding
box with a rigid transformation. Predictions with low confi-
dence values are pruned and the ones with high confidence
values are selected as pose predictions.
Interaction Recognition. RNNs have been successfully
used before to recognize actions [2, 77]. However they do
not fully leverage the special graph structure of the skeleton
data for hand-object interactions. Therefore, we resort to
parameterizing the left hand skeleton, right hand skeleton
and object bounding box as individual graphs and combine
them in a multi-graph structure. We then compute the topol-
ogy of the multi-graph structure using a graph convolutional

Figure 5: Qualitative results on the H2O dataset. We show es-
timated hand 3D pose, object 6D pose, and action labels. The
proposed method can properly handle challenging occlusions.

network (GCN) by learning the links across hand and ob-
ject locations that are involved in interaction. While mod-
eling intra-dependencies within a single graph, this frame-
work also allows for learning interdependencies between
left hand-right hand, left hand-object, and right hand-object.

More particularly, we employ a spatiotemporal graph
to encode both spatial and temporal information as in ST-
GCN [92] and 2s-AGCN [66]. Standard ST-GCN [92]
for human action recognition models structured information
between body skeleton joints using

fout =
∑
j

Wjfin(Aj ⊙Mj) (6)

where fin ∈ RCin×T×N is an input feature map, Aj ∈
RN×N is an adjacency matrix that represents skeletal con-
nections, Wj ∈ RCout×Cin×1×1 is a weight vector of 1× 1
convolutions and Mj ∈ RN×N is an attention map. Here
j denotes the vertex neighborhood defined by the convolu-
tional kernel, C is the number of channels, T is the tempo-
ral length and N is the number of vertices. ST-GCN works
on a single graph entity, e.g. human skeleton, and models
intra-skeleton connections with a fixed adjacency matrix.
In our case, in addition to intra-graph dependencies, we aim
to model also inter-graph dependencies between hands and
objects. Since each time different hand and object parts are
involved in interactions, a fixed adjacency matrix to model
inter-dependencies would not yield optimal results. There-
fore, individually for left hand, right hand and object, we
employ the following to be able to model their dependen-
cies:

fout =
∑
j

Wjfin(Aj,intra+Aj,inter+Tj,intra+Tj,inter+Sj) (7)

While Aj,intra plays the same role as Aj in Eq. 6
for left hand, right hand and object, Aj,inter models inter-
related dependencies between hands and objects via static
connections between symmetric hand parts and object cen-
ter. Here, both of these matrices are fixed adjacency ma-
trices as in ST-GCN (Eq. 6). In addition to them, we rep-
resent inter-connections between left hand and right hand,
left hand and object, and right hand and object with an
additional adjacency matrix, Tj,inter. Differently from
Aj,inter, Tj,inter is not fixed, but rather parameterized. Its
values are unconstrained and jointly optimized with other
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network parameters, which means that the graph topology
and edge weights are fully learned from the training data.
In addition to Tj,inter, we also use an additional parameter-
ized adjacency matrix, Tj,intra that adaptively learns intra-
related dependencies within single graph entities (e.g. left
hand, right hand or object) during interaction. This data-
driven model allows us to learn graphs that are fully target-
ing the hand-object interaction task.

Note that in contrast to Eq. 6, we do not use an atten-
tion map as in [66], since our parameterized adjacency ma-
trices can play the same role of the attention mechanism
performed by Mj in Eq. 6 to attribute more importance to
edges between hands and objects that are involved in inter-
action. Besides in Eq. 6, if one of the elements of Aj is
0, the result will be 0 regardless of the value of Mj due to
the dot multiplication. Therefore we use addition instead of
dot multiplication in Eq. 7 to allow for forming new con-
nections between our graphs. Similarly with [66], we use
an additional data-dependent term, Sj in our formulation
which learns a unique graph for each sample that use the
dot product to measure the similarity of the two vertices in
an embedding space.

Sj = softmax(fTinW
T
θjWϕjfin) (8)

where Wθ and Wϕ are the parameters of the embedding
functions θ and ϕ, respectively. Here, embedding functions
are chosen as 1× 1 convolutional layers.

By stacking the layers defined by Eq. 7, with a total of
10 layers, we build our topology-aware graph convolutional
network (TA-GCN) for 3D interaction recognition. It takes
at each iteration the combination of ŷh,l

i , ŷh,r
i and ŷo

i as its
initial feature map to model hand object-interactions. We
demonstrate learned graph connections for a hand-object in-
teraction scenario in Fig. 8 and analyze our design choices
in Sec. 6. We provide further details for the architecture,
hyperparameters and training of the pose prediction and in-
teraction recognition models in the Supp. Mat..

6. Evaluation
In this section, we first verify the accuracy of our ground-

truth annotations. We then present baseline results on hand
& object pose estimation and egocentric action recognition
on our dataset. For the latter, we also compare our baseline
approach against the state-of-the-art in action recognition
and demonstrate the clear benefits of our approach based on
hand-object poses with respect to the existing methods.
6.1. Dataset Analysis

Verfication. We verify the accuracy of our hand-object
pose annotations on a random split of our dataset. To that
end, we annotate 500 images on 5 different camera views
with the fingertips of the hand and the predefined keypoints
of the manipulated objects. We then triangulate these 2D

Figure 6: Contact modelling on H2O. Our dataset facilitates mod-
elling hand-object contact and 3D affordances.

Pose feature Object Left hand Right hand
Mean (std) 1.10 (±0.37) 0.82 (±0.43) 0.93 (±0.57)

Table 2: Hand & object pose verification results (in cm) for eval-
uating the accuracy of the provided ground-truth data.

points to get manual 3D annotations for hands and objects.
We compute the distance of our annotations to those of the
manually created ones to measure the accuracy of our poses.
We demonstrate the results of our verification in Table 2.
For both hands and the object, the error is approximately
within a range of 1 cm, which demonstrates the high pre-
cision of our dataset. Our error margin is comparable with
those of [32, 99] even though our dataset features more mu-
tual occlusions due to two-hand manipulation.

Contact Modelling. Having precise hand & object pose
annotations and meshes, H2O further facilitates modelling
hand-object contact [7, 75]. To this end, for each vertex in
the hand mesh, we find the nearest vertices on the object
within a certain a threshold (e.g. 2 cm). We then compute
a histogram counting the number of neighbors for each ver-
tex of the MANO mesh and normalize it to model contact
hotspots on hand. We repeat the same procedure also for the
object mesh to create a contact map on the object surface.
We visualize example contact maps of our dataset in Fig. 6.

6.2. Experimental Results

Predicting jointly the 3D pose of two hands and the ma-
nipulated objects. We train and evaluate our method using
the training, validation and test splits described in Sec. 4.2
and report baseline pose estimation accuracies for hands
and objects in Fig. 7. We use the percentage of correctly
estimated poses to evaluate hand and object pose estimation
accuracy. Specifically, we use the 3D PCK metric for hand
pose estimation, and the 2D reprojection and ADD metrics
for object pose estimation as in [77]. We demonstrate that
our method can reliably predict the pose of two hands and
the manipulated objects with a low error margin and con-
stitutes a strong baseline for joint pose estimation of two
hands interacting with objects. Note also that our approach
constitutes the first method and baseline for estimating the
pose of two hands interacting with objects from a single
RGB image. We still evaluate our approach against single
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(a) (b) (c)
Figure 7: Pose estimation results on the H2O dataset using differ-
ent thresholds, for (a) hands with 3D PCK metric, and for objects
with (b) 2D reprojection and (c) ADD metric.

Model Acc. (%)
LEFT HAND 33.61
OBJECT 48.55
RIGHT HAND 52.70
BOTH HANDS 58.92
ALL 79.25

Model Acc. (%)
NO INTERCONNECTION 75.52
LEFT HAND-RIGHT HAND 76.76
HANDS-OBJECT 78.84
ALL INTERCONNECTIONS 79.25

Model Acc. (%)
ST-GCN 73.86
TA-GCN wo Sj 73.44
TA-GCN wo Tj,inter 75.52
TA-GCN wo Tj,intra 76.76
TA-GCN wo Aj,inter 76.35
TA-GCN wo Aj,intra 77.59
TA-GCN 79.25

(a) (b) (c)
Table 3: Impact of different (a) input modalities, (b) interconnec-
tions and (c) graph terms on interaction recognition accuracy.

hand-object pose estimation methods of [33, 77], for com-
parison purposes, in Table 4 and further provide qualitative
examples of our pose predictions in Fig. 5.

Interaction recognition. In Table 3(a), we show the in-
fluence of different input modalities on the accuracy of in-
teraction recognition on the H2O dataset. To this end, we
evaluate the impact of hand & object poses for interaction
recognition. Hand pose and object keypoints are predicted
through our single pass network described in Sec. 5. We
show that the combination of right and left hand pose as
well as the combination of hand and object poses signif-
icantly improve overall action recognition scores, which
demonstrates the individual contributions and the comple-
mentary nature of each input modality. We further eval-
uate the importance of modelling inter-dependencies be-
tween both hands and objects in Table 3(b) and demonstrate
that modelling interdependencies between left hand & right
hand, and hands & objects, boosts the accuracy for recog-
nizing interactions. In Table 3(c), we evaluate the influence
of different terms of Eq. 7 and demonstrate that with all the
graphs added together, the model obtains the best results
compared to the baselines. We visualize the learned con-
nections of our model in Fig. 8.

We further compare our action recognition accuracy
to the state-of-the-art image-based learning methods of
C2D [87], I3D [9] and SlowFast [23] using the PySlowFast
library [17] and pose-based learning methods of H+O [77]
and ST-GCN [92] and show our results in Table 4. Follow-
ing [17], we train image-based models using a batch size of
16 and a temporal window size of 64 frames with a sam-
pling ratio of 2. We use a ResNet-50 backbone and train the
network using SGD with a learning rate of 0.1. Pose-based
methods are trained as in [77, 92], and evaluated with the
estimated poses using our method from RGB images of our
dataset. Our approach to interaction recognition achieves
the highest validation and test accuracy on the H2O dataset,

Figure 8: Learned graph connections for different layers. We
demonstrate the top-20 learned intra-(top) and inter-(bottom) con-
nections at layer 1, 5 and 9, respectively, in each column. The
thickness of the connections corresponds to the weight of learned
connection value. Hand-object connections are given more weight
than hand-hand connections during interaction with an object. Our
model attributes more importance to fingertips and DIP joints that
are more commonly involved in manipulation.

Method Left h. Right h. Object
Hasson[33] 39.56 - 67.47
Hasson[33] - 41.87 66.05
H+O[77] 41.42 - 48.06
H+O[77] - 38.86 52.57
Ours 41.45 37.21 47.90

Model Val acc. (%) Test acc. (%)
C2D [87] 76.10 70.66
I3D [9] 85.15 75.21
SlowFast [23] 86.00 77.69
H+O [77] 80.49 68.88
ST-GCN [92] 83.47 73.86
OURS (TA-GCN) 86.78 79.25

Table 4: Pose errors (left, in mm) and action accuracies (right).
Single hand methods of [33, 77] are separately trained for left &
right hand. [77, 92] use pose predictions of our method.

demonstrating the effectiveness of our method and the im-
portance of the 3D pose predictions facilitated by H2O.

7. Conclusion

In this paper, we propose a method to collect a dataset of
two hands manipulating objects for first person interaction
recognition. We provide a rich set of annotations includ-
ing action labels, object classes, 3D left & right hand poses,
6D object poses, camera poses and scene point clouds. We
further propose the first method to jointly recognize the
3D poses of two hands manipulating objects and a novel
topology-aware graph convolutional network for recogniz-
ing hand-object interactions. Our framework models the
interactions between hands and objects in 3D to recognize
actions from first-person views and yields state-of-the-art
accuracy. We believe that our dataset and experiments can
be of interest to communities of 3D hand pose estimation,
6D object pose estimation, hand-object interaction, robotics
and action recognition, and help bridge the gap between
hand-object interaction and egocentric action recognition.
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