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Abstract

A variety of effective face-swap and face-reenactment
methods have been publicized in recent years, democratiz-
ing the face synthesis technology to a great extent. Videos
generated as such have come to be called deepfakes with
a negative connotation, for various social problems they
have caused. Facing the emerging threat of deepfakes,
we have built the Korean DeepFake Detection Dataset
(KoDF), a large-scale collection of synthesized and real
videos focused on Korean subjects. In this paper, we pro-
vide a detailed description of methods used to construct
the dataset, experimentally show the discrepancy between
the distributions of KoDF and existing deepfake detec-
tion datasets, and underline the importance of using mul-
tiple datasets for real-world generalization. KoDF is pub-
licly available at https://moneybrain-research.
github.io/kodf in its entirety (i.e. real clips, synthe-
sized clips, clips with adversarial attack, and metadata).

1. Introduction

In recent years, the fabrication of facial content in im-
ages and videos has become considerably easier and faster,
which previously required heavy computing resources and
expert knowledge. Latest deep-learning-based technologies
have made it possible to handily produce photorealistic fake
images and videos by manipulating facial expressions or
swapping faces. Soon the word deepfake became the de
facto term to indicate such facial forgeries synthesized by
deep learning models.

While mostly utilized for innocuous purposes such as
parody videos [3] and entertaining apps [2, 13], well-
designed deepfakes could be used maliciously to defame
an individual [20, 31], propagate disinformation [55, 18],
or commit fraud [51, 56]. Due to the growing concerns
over deepfakes, there is a recent surge of interest in de-
veloping deepfake detection models, and to this end, var-

*Equal contribution

Figure 1. KoDF is a distribution-controlled large-scale Korean
deepfake detection dataset aimed to complement other datasets
and to accommodate elaborate augmentation techniques for bet-
ter generalization to real-world deepfakes.

ious public datasets [37, 48, 39, 25, 36, 26, 23] and bench-
marks [8, 6, 4, 7] have been constructed. They have greatly
contributed to encouraging, facilitating, and standardizing
deepfake detection research.

In line with these efforts, we release the Korean Deep-
Fake Detection Dataset (KoDF) featuring important differ-
entiations from the previous deepfake detection datasets.
KoDF is the largest among publicly available deepfake de-
tection datasets, containing 175,776 fake clips and 62,166
real clips of 403 subjects. The deepfake samples are gen-
erated with six different synthesis models. To counterbal-
ance the Asian demographics underrepresented in the exist-
ing deepfake detection databases, the participants of KoDF
are comprised mostly of Koreans. Finally, the dataset takes
various measures to better manage the data distribution re-
garding the participants’ age, sex, and content. Table 1 com-
pares KoDF with other public deepfake detection datasets in
various aspects.
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Dataset
Real

videos
Fake

videos
Total

videos
Rights
cleared

Agreeing
subjects

Total
subjects Methods

UADFV [58] 49 49 98 No 0 49 1
DeepfakeTIMIT [37] 640 320 960 No 0 32 2

FF++ [48] 1,000 4,000 5,000 No 0 N/A 4
Celeb-DF [39] 590 5,639 6,229 No 0 59 1

GDFD [25] 363 3,068 3,431 Yes 28 28 5
DF-1.0 [36] 50,000 10,000 60,000 No1 100 100 1
DFDC [23] 23,654 104,500 128,154 Yes 960 960 8

KoDF 62,166 175,776 237,942 Yes 403 403 6

Table 1. Quantitative comparison of KoDF to existing public deepfake detection datasets.

Our contributions are twofold: (1) We propose KoDF
that is the largest public deepfake detection dataset, planned
and examined for the quality and diversity of its samples.
(2) We experimentally demonstrate that none of the estab-
lished deepfake detection datasets single-handedly suffices
in approximating the true deepfake distribution. We then
show how utilizing KoDF in conjunction with them for
training enhances the generality of a detection model, offer-
ing insights into the future strategy in deepfake detection.

2. Related Works

The early deepfake detection databases—the UADFV
dataset [58] and the DeepfakeTIMIT dataset [37]—before
FaceForensics++ (FF++) [48] and the DeepFake Detection
Challenge (DFDC) dataset [23] have limitations in quantity
and quality. The number of featured identities does not ex-
ceed 50, and the total amount of the real and fake videos
are less than 1,000. They are collected from untraceable
sources, or the agreements from the subjects regarding pos-
sible modification and public use of their face are unclear.
The fake clips contain a large number of unrealistic synthe-
sized results. Furthermore, the number of employed syn-
thesis methods is only one or two, failing to capture the
diversity in the modern means of facial forgery. The two
milestone datasets, FF++ and the DFDC dataset, however,
overcome many of these difficulties, and other viable deep-
fake detection databases have been contributed as well.

FF++ [48] is the first large-scale dataset to contain 1,000
real videos from YouTube and 4,000 fake videos synthe-
sized by two computer-graphics-based and two learning-
based methods. Each of 1,000 raw videos is processed
through the four chosen methods, resulting in a total of
5,000 clips. Accompanied is a public leaderboard [8] where
a deepfake detection model can be evaluated against a hid-
den test set according to benchmark scenario. Before the
release of the DFDC dataset, FF++ served as the de facto

1The source videos of DF-1.0 are from 100 paid actors with informed
consents, but its 1,000 target videos are taken from FF++, which are col-
lected from YouTube without explicit consent.

standard deepfake dataset, thus utilized in various research
projects [16, 49, 17, 57]. However, it fails to fully address
some of the aforementioned issues; the size and the diver-
sity of the dataset are still insufficient for optimal training
of high-performing neural architectures comprised of huge
numbers of parameters, and the subjects’ permissions to ap-
pear in the database are missing.

In 2020, Amazon Web Services, Facebook, Microsoft,
the Partnership on AI’s Media Integrity Steering Commit-
tee, and academics have collaborated for DFDC, a large-
scale project consisting of a competition, a dataset, and ac-
companying papers [24, 23]. The DFDC dataset is released
as a part of the challenge. It is thus far the second-largest
public deepfake dataset next to KoDF, containing over 960
subjects and more than 120,000 videos. To guarantee the
variety of the database, the raw clips are taken from dif-
ferent environmental settings, and the synthesized clips are
generated by eight different methods. The challenge was
highly successful, encouraging a wide range of researchers
to partake in developing effective deepfake detection mod-
els, followed by an increased number of research publica-
tions on the topic of deepfake [32, 38, 40, 53]. However, the
DFDC dataset is not without its flaws. Due to the unguided
recording process where the participants record themselves,
extreme light, audio, and angle conditions are incorporated
(e.g. a person talking in a completely dark room), and the
data format is inconsistent (e.g. resolution and duration
varying across clips). The distribution of participants is not
controlled according to age, sex, or race.

Recent years have witnessed other notable public deep-
fake detection databases varied in focus, composition, and
size. Celeb-DF [39] consists of 590 real videos and 5,639
fake videos. The real videos are taken from YouTube, of
which the contents are interviews of 59 celebrities. The fake
videos are synthesized by an improved face swap method.
The Google DeepFake Detection (GDFD) dataset [25] in-
corporates 3,068 deepfake videos generated based on 363
original videos of 28 consented individuals in 16 different
scenes. DeeperForensics-1.0 (DF-1.0) [36] is yet another
recent deepfake detection dataset. Its source videos are
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recordings of 100 paid actors, and the 1,000 target videos
are adopted from FF++. 1,000 fake videos are synthe-
sized by swapping each of the source identities onto 10 tar-
get videos. Instead of using multiple synthesis methods,
it adds diversity utilizing augmentation on both real and
fake videos with seven perturbation methods. As a result,
50,000 real and 10,000 fake clips are created, respectively.
Albeit these databases are considerably larger and more var-
ied compared to their early correspondences, they have not
been utilized across Deepfake detection studies as much as
FF++ and the DFDC dataset, so their academic validity is
yet to be fully established.

3. Korean DeepFake Detection Dataset
3.1. Contributions

3.1.1 Quantity

KoDF incorporates 62,166 unique 90-second-long real clips
(62.8 days) and 175,776 unique deepfake clips of 15 sec-
onds or longer (30.5 days). It surpasses the DFDC dataset,
the previously largest public deepfake detection database,
in terms of both the total duration (38.4 days of source
videos and 12.1 days of generated outputs) and the number
of clips (48,190 source videos and 104,500 fake videos).
In addition, unlike in the DFDC dataset, audio-swapped or
augmented clips do not count as synthesized data points in
KoDF. To build the fake portion of the dataset, we resort
only to the inference output of the six carefully selected
synthesis models (details to be discussed in Section 3.3.2)
rather than to trivial modifications.

3.1.2 Controlled Subject Distribution

KoDF focuses on a situation in which a person talks to a
camera, since it is particularly vulnerable to synthetic mod-
ifications, and thus frequently targeted by deepfakes. To
maximize diversity of the database, we control the 403 par-
ticipants’ distribution according to age, sex, and recording
location as shown in Table 2.

Characteristic
Number Percentage (%)

403 100

Age

∼19 5 1.24
20∼29 205 50.87
30∼39 106 26.30
40∼49 61 15.14
50∼59 19 4.71

60∼ 7 1.74

Sex
Female 205 50.87
Male 198 49.13

Location
Crowdsourcing 353 87.59

Studio 50 12.41

Table 2. Subject distribution by age, sex, and recording location.

3.1.3 Quality Assurance and Right Clearance

KoDF is quality-assured via a meticulous inspection pro-
cess. Every single one of real and deepfake instances is
cross-checked by human eyes and ears for likely issues.
The details of the process are provided in Section 3.2 and
3.3. The filtering procedure excludes trivial cases such as
a complete failure of synthesis that often appears in other
deepfake datasets. KoDF thus includes only true threats
where the level of realism is so high that a human cannot
easily tell if the clip is real or not.

All the real clips of KoDF are solicited from paid par-
ticipants. We have informed them of the purpose of the
database in great detail, emphasizing the possible conse-
quences where their faces may be manipulated and synthe-
sized. All of them agreed to appear in the database and
signed a formal agreement. In addition, all the synthesis
models employed have been thoroughly examined for po-
tential license issues. If needed, we have asked for the au-
thors’ permission to use their models for the database con-
struction.

3.1.4 Forward-Looking

Real-world deepfakes would undergo countless modifica-
tions (e.g. compression, resizing, manual editing, etc.) in
the process of being generated and shared. Elaborate data
augmentation is essential to simulate such transformation
[54], and consistency in data makes more controlled aug-
mentation possible. We collect and synthesize full HD
videos, equalizing the resolution to 1920×1080. Since it
is much easier to downgrade a video in quality than to up-
grade, the high-resolution clips of KoDF leave a greater and
cleaner room for posterior data augmentation. Expecting
various augmentation tricks to be applied, we exempt KoDF
from any a priori data augmentation (the adversarial attack
on 10% of the data is an addition not a replacement; see
section 3.4). This is in contrast to the DFDC dataset and
DF-1.0 where various perturbations are an inherent part of
data. We intend to leave the choice of optimal augmentation
techniques to researchers.

Although face swap is the best-known method for deep-
fake creation, deepfake technologies are not simple equiv-
alents of face-swap neural networks. There are a number
of other operating means to fake a person’s identity in an
image or a video. The most concerning one is face reenact-
ment, with which one can manipulate actions and expres-
sions of a person in a video, or even in a still image, with
an external video or audio source. [50, 59, 47]. While be-
ing actively researched for obvious commercial use cases, it
has not received due attention in the field of deepfake detec-
tion. We therefore include an extensive amount of reenact-
ment models’ output in our database so that future detection
models can be more resilient against reenacted deepfakes.

10746



The Korean subjects (and the eight Southeast Asians) in
KoDF counterbalance the DFDC dataset, in which the de-
ficiency of East Asian and Southeast Asian is notable (ac-
cording to the preview of the database, the proportion of
East Asian is 9%, and that of Southeast Asian is 3% [24]).
The complementary racial composition of KoDF, when put
together with other databases, will be critical to build more
generalized detection models for real-world applications.

Even in the presence of a working deepfake detection
model, the attacking side can take a step further, creating
trickier instances to deceive the detector. For example, de-
structive means to confuse classification models have been
devised [29, 28, 27]. Therefore, we add to KoDF adver-
sarial examples to encourage the development of detection
models that are robust against such attacks. Refer to Section
3.4 for more details.

3.2. Real Data

Unlike previous deepfake detection databases that are
made of found clips [37, 48], the source videos of KoDF are
recorded specially to constitute the database. By governing
the recording process ourselves, we prevent defective in-
stances and control the distribution with regard to recording
environment, emotive content, and speech corpus.

Among the 403 subjects, 353 partake in the crowdsourc-
ing task where a subject is asked to film oneself for 150
clips, each of which should last over 90 seconds. The first
recording of the 150 clips is an idle clip where a subject
remains in a natural pose saying nothing. In the half of
the remaining 149 recordings, a subject reads an assigned
script consisting of 10 sentences. These are script clips.
The remaining 74 clips are scenario clips, in which a sub-
ject chooses or makes up a question, and provides his or
her responses in a given time. To add more diversity, we
introduce minor variations in terms of camera angle, fo-
cal length, recording location, background, composition of
props, and lighting.

Each clip belongs to one of the three emotive categories:
positive, negative, and neutral. The sentences of the script
clips and the questions of the scenario clips are formulated
as such per recording. The purpose of this task design is
to facilitate the recording process for the subjects who are
mostly amateurs with no experience in shooting footage of
themselves. The aforementioned tactics help vary the sub-
jects’ responses while providing them enough materials to
continue talking without prolonged pauses.

The sentence corpus for the script clips is comprised
of definitions and examples crawled from Standard Ko-
rean Language Dictionary [44]. The found sentences are
screened if the length is too short or long, or if non-Korean
symbols are included. They are subsequently organized by
sentence type: statement, question, and exclamation. We
adjust the occurrence ratio between the statement type and

the other two types in a script clip to 8:2 for the diversity of
expression. The chosen sentences are machine-tagged with
respect to their emotion category based on Kunsan National
University Korean Sentiment Lexicon [45] by simply accu-
mulating the valence score per token. A script clip contains
10 sentences of the same emotion category; for example,
for a positive clip, 10 positive sentences are assigned.

For the scenario clips, 420 questions are collected from
amateur writers and proofread. The questions are evaluated
for their emotive quality by three annotators and then cate-
gorized by the majority rule. In each clip, a subject is asked
to choose a question of the corresponding category and an-
swer it during the given time. While a subject is free to
make up his or her own question instead of choosing from
the question bank, the made-up question needs to meet the
emotive category in terms of the content of the question and
the expected answer. The purpose of the scenario design is
to relax the amateur participants and to widen the range of
speaking style, complementing the relatively rigid dynam-
ics and monotonous prosody of the script clips.

The remaining 50 subjects participate in the studio task,
where the recording environment and the task design differ
from those for the crowdsourcing task. They record high-
quality video footage at a professional studio with a skilled
director against a green screen. A subject carries out eight
recording runs in one or two sessions on different days. He
or she reads 300 sentences per run, and each of the runs
takes approximately 35 minutes. The eight long recordings
are later split into 90-second intervals, resulting in 184 clips
in total. These clips are equivalent to the script clips in the
crowdsourcing task, and we do not include scenario design
for the studio task.

The collected real clips are manually inspected for vari-
ous possible defects: (1) audio-video sync problem, (2) ex-
cessive background noise, (3) utterances severely hindered
or stuttered, (4) extreme lighting conditions, and (5) face lo-
cated far outside of the central region. If any of these prob-
lems is detected during the checking process, the subject is
requested to shoot the corresponding clip again.

3.3. Synthesized Data

We employ six different models to generate deepfake
clips. Among them, FaceSwap [9], DeepFaceLab [46], and
FSGAN [43] are face swapping models. First Order Motion
Model (FOMM) [50] is a video-driven face-reenactment
model. The remaining two, Audio-driven Talking Face
Head Pose (ATFHP) [59] and Wav2Lip [47], are audio-
driven face-reenactment models. Before and after the actual
synthesis, video clips are processed to reduce artifacts and
enhance fidelity.

Hereafter, the terms target and source are used to de-
note different facial identities in face swapping; the target
is the to-be-replaced facial content of the base video, and
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the source is the facial content to replace the target. Thus a
clip resulting from a face swapping method looks identical
to the target video, except for the facial identity which is of
the source. On the other hand, the source and the target are
one and the same in face-reenactment methods; their goal
is to manipulate the pose or expression of the source person
while maintaining the rest. The driving audio or video can
be taken from different identities.

3.3.1 Preprocessing

All the raw clips are preliminarily processed subject-wise.
We employ a facial landmark algorithm 2DFAN [19], by
which the facial regions are cropped, aligned, and resized to
512×512 pixels. These regions are computed by an affine
transformation of positions centered around eyes and nose.
To train face swapping models, 4,000 to 5,000 face frames
are selected according to their sharpness and to the diver-
sity of face angles (reenactment models require little or no
additional training).

3.3.2 Synthesis Models

The synthesis models of KoDF are a diverse collection of
facial manipulation techniques. Although we try to main-
tain equal distribution amongst the models, since all of the
generated clips are validated under manual screening pro-
cesses, the number of videos per method is not equal. Some
methods guarantee a stable level of realism, accounting for
a larger chunk while others respond sensitively to lighting
and noise, resulting in a number of unusable clips that do
not make it into KoDF. Figure 2 shows the example frames
generated by the selected methods, and the distribution of
the synthesized videos is illustrated in Figure 3.

FaceSwap FaceSwap [9] is an open-source face-
swapping software initially developed by a Reddit user
/u/deepfakes and later maintained by its developing com-
munity. It bears an encoder-decoder architecture. Two sepa-
rate decoders handle the source and target faces respectively
while sharing one encoder. The three networks are trained
concurrently; the encoder learns the non-identity features,
while the two decoders capture traits that are more con-
tingent to each of the identities. The model consequently
infers face images that maintain the source identity while
matching the target’s non-identity features. We include this
model because of its historical importance as the starting
point where the term deepfake originates from.

DeepFaceLab DeepFaceLab [46], currently the most
popular means to generate deepfake videos, provides an im-
perative and easy-to-use pipeline, along with a collection of
synthesis models [5]. These models are highly FaceSwap-
like, with respect to the convolutional autoencoder architec-
ture as well as the training and inference processes. One of

Figure 2. A selection of synthesized frames. Each row is created
using FaceSwap, DeepFaceLab, FSGAN, FOMM, and Wav2Lip
from top to bottom.

Figure 3. KoDF video distribution by synthesis methods. Audio-
driven includes ATFHP and Wav2Lip.

notable improvements from FaceSwap is, however, the in-
tervening network in between the shared encoder and the
two decoders. This modification helps capture common
non-identity features underlying both the source person and
the target person, contributing to robust mapping between
the two. In addition, a mixed loss combines structural dis-
similarity index with mean squared error, leading to im-
proved fidelity.

FSGAN FSGAN [43] is capable of both face swapping
and reenactment. The model first reenacts the source iden-
tity according to the target’s pose and expression, and seg-
ments the facial regions of both faces. Then it inpaints the
missing parts of the reenacted face and blends the com-
pleted face with the target, creating the final result. During
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reenactment, the model selects multiple source frames that
correspond most to the target by Delaunay Triangulation,
and uses the weighted average of the reenactment results ac-
cording to barycentric coordinates. This process makes the
model subject agnostic so it does not require heavy tuning
on every new source. For this paper, we use the face swap-
ping scheme of the official implementation [11]. We adopt
the author’s recommended swap method for better quality
of synthesis2, which fine-tunes the model for each source-
target pair for 800 iterations and utilizes the target mouth
area for better teeth quality.

FOMM FOMM [50] is a self supervised network that
applies the motion of a driving video sequence to an im-
age where both contain objects of the same category (e.g.
faces). It decouples appearance and motion by modeling
the movement around the keypoints using affine transfor-
mations in a self-supervised manner. It warps the source
image based on the motion of the driving video then re-
covers the warping artifacts by inpainting. We use the
official code and the pretrained model [10] on VoxCelab
dataset [41]. This model is chosen to represent the face-
reenactment strategy and for its real-world applications. For
instance, Open Avatarify [12], a popular real-time reenact-
ment tool for video chats, adopts this model.

ATFHP and Wav2Lip We employ two different audio-
driven face synthesis models for KoDF: ATFHP [59] and
Wav2Lip [22]. The former reflects the active research
domain of face synthesis based on 3D morphable model.
ATFHP takes audio and video inputs to create an out-
put video, which retains the identity of the input video
while synchronizing facial expressions to the audio. This
is achieved by creating a list of 3D model parameters from
the input audio and render them to synthesized frames. A
memory-augmented GAN module then refines the rendered
frames into realistic ones with smooth background transi-
tion for various face identities. After pretrained with the
Lip Reading in the Wild dataset [21], it only requires fine-
tuning with a small number of frames to learn personalized
talking behavior.

Soon after starting to generate audio-driven face-
reenactment instances for KoDF using ATFHP, we exper-
iment with a newly published alternative, Wav2Lip. Unlike
similar models that generate a talking face from a driving
audio with a GAN-based architecture, Wav2Lip utilizes a
pretrained lip-sync discriminator, which helps the model to
learn the appropriate lip motion according to the audio. To
capture the temporal context of speech, the model uses five
consecutive face frames and the respective speech content
as input.

While the synthesized results from ATFHP are promis-
ing, we switch from ATFHP to Wav2Lip due to the relative

2https://github.com/YuvalNirkin/fsgan/wiki/
Face-Swapping-Inference

efficiency of the synthesis process of the latter. For every
input identity, the pretrained model of ATFHP [1] requires
careful fine-tuning to acquire high-fidelity syntheses that
meet our quality assurance criterion. On the other hand, that
of Wav2Lip [15] can efficiently generate samples of proper
quality with respect to unseen facial identities without fine-
tuning. As a result, 455(2.5%) and 17,915 (97.5%) clips are
synthesized using ATFHP and Wav2Lip, respectively.

3.3.3 Postprocessing

All the methods listed above produce a sequence of image
frames matched to the facial region cropped during the pre-
processing step. Because most models fail to reconstruct
accurate details around the facial boundaries, necessitated is
the process of blending the synthesized outcome back into
the original frame.

Using the same facial landmark detection [19] from the
preprocessing stage, we create a facial mask from the syn-
thesized image frame. The border of the mask region goes
under a Gaussian blurring process to reduce the artifacts,
and the blurred images are blended into the original video
frames of corresponding temporal positions. This postpro-
cessing procedure reduces jitters while preserving details
around the facial borders.

3.3.4 Quality Evaluation of KoDF

Once videos are generated from the synthesis models, they
go through a manual screening process where they are pre-
sented to two raters and subjected to two questions: (1) Is
the clip of high quality? and (2) Can the figure in the clip
pass as a real human? We keep only the clips that win both
raters’ approvals for both of these questions. Each clip is
presented once in the size of the horizontal cell phone lay-
out. Raters also examine various technical issues regarding
orientation, audio-video synchronization, duration, among
others. Clips that fail to pass the screening are simply dis-
carded.

The quality of the synthesized output is evaluated with
peak signal-to-noise ratio (PSNR), structural similarity in-
dex measure (SSIM), Fréchet Inception distance (FID) [33],
and average keypoint distance (AKD).

PSNR(r, g) = 10 · log10(
MAX2

I

MSE(r, g)
) (1)

SSIM(r, g) =
(2µrµg + c1)(2σrg + c2)

(µ2
r + µ2

g + c1)(σ2
r + σ2

g + c2)
(2)

AKD(r, g) =
1

P

√√√√ P∑
p=1

(rp − gp)2 (3)
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Method PSNR ↑ SSIM ↑ FID ↓ AKD ↓
FaceSwap 22.10±2.02 0.76±0.05 1.11±0.08 0.21±0.04

DeepFaceLab 21.86±1.82 0.75±0.05 1.12±0.09 0.22±0.04

FSGAN 21.09±2.07 0.79±0.08 1.07±0.09 0.16±0.02

FOMM 26.16±2.96 0.87±0.04 1.00±0.07 0.15±0.02

Audio-driven 24.47±2.39 0.84±0.06 1.09±0.08 0.17±0.02

Total 23.72±3.17 0.81±0.07 1.06±0.09 0.18±0.04

Table 3. Quality evaluation of KoDF for each synthesis method.
Audio-driven includes ATFHP and Wav2Lip.

Dataset PSNR ↑ SSIM ↑ FID ↓ AKD ↓
FF++ 23.11±3.22 0.77±0.09 1.11±0.08 0.26±0.08
DFDC 24.54±3.23 0.79±0.08 1.14±0.09 0.25±0.13
DF-1.0 22.15±1.76 0.76±0.06 1.11±0.06 0.19±0.11
KoDF 23.72±3.17 0.81±0.07 1.06±0.09 0.18±0.04
Table 4. Quality comparison of KoDF and other datasets.

For the evaluation, we randomly choose 500 real clips
and 500 corresponding synthesized clips. From each of the
fake samples, 100 frames are uniformly extracted, and their
real matches are taken from the identical temporal positions.
Each metric is averaged for these 100 pairs to compute the
value for each synthesized clip. Table 3 shows the results
by the synthesis methods of KoDF, and Table 4 compares
KoDF with the FF++, DFDC, and DF-1.0 datasets.3

3.4. Adversarial Attack

In the midst of the burgeoning interest in deepfake detec-
tion technologies, researchers are thinking ahead to the next
step: adversarial attacks to fool detecting models. Meth-
ods that are known to be disruptive for deepfake detection
include gradient-based adversarial attacks [27] and inten-
tional noises that hide spatial and spectral artifacts arising
from a synthesis model [34]. There is even a toolbox to
create such adversarial instances [30], and researchers re-
port the vulnerability of deepfake detection models against
black-box attacks [42, 35].

The fast gradient sign method [29] is the means cho-
sen for KoDF to simulate potential malicious attempts to
evade detection, for it is the most widely known adversar-
ial method. The process of creating adversarial examples
are as follows: we train a preliminary detector model, ob-
tain a sequence of noise frames that confuse the preliminary
model, and mix the noise sequence with the corresponding
input clip. This strategy is based on the assumption that
most detectors are similarly structured as the preliminary
detector, which allows the generated adversarial examples
to generalize their elusive effects across architectural details
of detectors.

We build the preliminary model by topping a pretrained

3GDFD is not included here due to the time differences between its
corresponding real and fake clips and the lack of metadata to correct them.

EfficientNet-B4 [52] base with two fully connected layers.
The model is then trained with a portion of KoDF, which is
structured as follows: from 10% of randomly selected fake
samples, frames between the 150th and 450th positions are
extracted at a chance of 0.8%, and from 2% of real clips,
one in a hundred frames is stochastically drawn. Approxi-
mately 40,000 frames are compiled for each category, and
the model is trained for 10 epochs.

To create noised instances, every one in ten clips is ran-
domly selected regardless of its real or fake category and
decomposed into a sequence of frames. Each frame is iter-
atively fed into the trained preliminary model. Obtained is
the sign of the generated gradients with respect to the input
image x, which is scaled and added to the original frame.

xadv = x+ ϵ · sign(∇xJ(θ, x, y)) (4)

The scaling factor ϵ for the noise is varied between 0.01,
0.05, and 0.1, and the preliminary model is retrained three
times over the course of time, to generate noises of varying
nature and intensity. The noised frames are once again put
together into a video with the addition of audio from the
original source.

4. Detection Evaluation
The ultimate goal of a deepfake detection dataset would

be to help develop a general detection model that performs
well against a variety of real-world deepfake cases. Most
studies on deepfake detection are designed so as to measure
how their proposed detection models perform based on a
certain deepfake detection dataset. The premise here is that
the target deepfake detection dataset is a good approxima-
tion of the distribution of real-world deepfake instances.

In the subsequent experiments, we investigate if exist-
ing deepfake detection datasets guarantee a sufficient level
of generality and how they fare when mixed and tested with
out-of-domain data. To this end, we train the winning model
of the DFDC competition [14] with combinations of the
FF++, DFDC, and KoDF datasets. The multiple variants are
then evaluated against unseen test sets, which include the
adversarial samples of KoDF (Attack), the GDFD dataset,
and DF-1.0.

For fair comparison, the DFDC dataset and KoDF are
sampled to match the size of FF++. 1,000 real videos
and 4,000 fake videos are randomly chosen from the two
datasets. Following the preprocessing method of [14], we
use MTCNN [60] to extract a face from every frame of
the FF++ and DFDC clips, and frames with unrecognizable
faces are ignored. In the case of KoDF, we randomly se-
lect 300 frames from each clip to match the total number
of face samples per dataset. The extracted facial frames are
then divided into training, validation, and test sets for each
dataset, with a ratio of 8:1:1. We train the DFDC winning
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Figure 4. ROC curves of the DFDC winning detection model trained on FF++, the DFDC dataset, KoDF, and their combinations. All
training set variants are of equal size. The trained models are evaluated on unseen test sets, including the adversarial samples of KoDF
(Attack), the GDFD dataset, and DF-1.0. We also include a corresponding accuracy heat map.

model on different combinations of the three training sets,
all of which are of equal size. After 30 epochs of training,
the epoch with the minimum loss value on the validation set
is chosen, and the trained models are evaluated on each of
the six test sets. Figure 4 summarizes the results.

The results show that each of the three deepfake detec-
tion datasets, on its own, is not enough to approximate the
true distribution of deefakes in the wild, resulting in de-
tection models that are incapable of adapting to different
deepfake detection datasets. The issue is relatively sev-
erer with KoDF, but it is only natural since the distribu-
tion of our dataset is systematically controlled to a greater
extent (as detailed in Section 3.1.2 and 3.1.4). The point
here is that, when trained on their combinations, the model
becomes much more robust against various out-of-domain
data. Noteworthy is the performance improvement when
the model utilizes all three in comparison to training with
only FF++ and the DFDC dataset. This observation sup-
ports the complementary utility of KoDF.

From the experimental results, we can deduce that the
deepfake detection task is strongly prone to overfitting,
much more so than regular image classification tasks where
models learn diverse signals recurring naturally (i.e. local
patterns and global structures). On the other hand, deepfake
detection models focus on artifacts arising during the gener-
ation process, which inevitably vary depending on the syn-
thesis methodologies. An ideal deepfake detection dataset
should thus incorporate examples of a maximal variety of
deepfake methods and a wide range of real videos. No stan-
dalone deepfake dataset published so far achieves sufficient

generality to meet these conditions on its own, and a practi-
cal solution is to utilize multiple datasets adjoined.

5. Conclusions

We present a new large-scale dataset to help researchers
develop and evaluate deepfake detection methods. KoDF
focuses on Korean subjects to compensate for the Asian
underrepresentation of other major deepfake detection
databases. It expands the range of employed deepfake meth-
ods, regulates the quality of the real clips and the synthe-
sized clips, manages the distribution of subjects according
to age, sex, and content, and simulates possible adversarial
attacks. While KoDF is an extensive database, our expecta-
tion is that it will work even more effectively in the mutual
complementation of existing and future deepfake detection
databases, including the two milestone datasets FF++ and
DFDC. We experimentally demonstrate the benefit of com-
positing datasets for in-the-wild deepfake detection. We
hope KoDF to serve as a stepping stone for future studies
in the field of deepfake detection.
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