
Visual Graph Memory with Unsupervised Representation for Visual Navigation

Obin Kwon Nuri Kim† Yunho Choi† Hwiyeon Yoo† Jeongho Park† Songhwai Oh

Department of Electrical and Computer Engineering, ASRI, Seoul National University *

{firstname.lastname}@rllab.snu.ac.kr, songhwai@snu.ac.kr

Abstract

We present a novel graph-structured memory for visual
navigation, called visual graph memory (VGM), which con-
sists of unsupervised image representations obtained from
navigation history. The proposed VGM is constructed in-
crementally based on the similarities among the unsuper-
vised representations of observed images, and these rep-
resentations are learned from an unlabeled image dataset.
We also propose a navigation framework that can utilize
the proposed VGM to tackle visual navigation problems. By
incorporating a graph convolutional network and the at-
tention mechanism, the proposed agent refers to the VGM
to navigate the environment while simultaneously building
the VGM. Using the VGM, the agent can embed its naviga-
tion history and other useful task-related information. We
validate our approach on the visual navigation tasks us-
ing the Habitat simulator with the Gibson dataset, which
provides a photo-realistic simulation environment. The ex-
tensive experimental results show that the proposed navi-
gation agent with VGM surpasses the state-of-the-art ap-
proaches on image-goal navigation tasks. Project Page:
https://sites.google.com/view/iccv2021vgm

1. Introduction
Visual navigation has been one of the fundamental build-

ing blocks in developing intelligent autonomous agents. To
effectively navigate through a large-scale environment, an
agent is required to build an internal representation of the
environment from raw sensory inputs and its own actions.
Using this internal representation, the agent can store useful
information such as its navigation history and successfully
perform tasks with additional guidance.

Numerous studies in psychology and cognitive science
have shown that animals build a landmark-based topologi-
cal representation about the environment during navigation
[14, 16, 18, 31, 33]. Inspired by this observation, several
navigation methods based on a topological map have been
proposed [2, 3, 5, 15, 25, 29]. These methods use a graph,
in which a vertex represents a landmark in the environment

*This work was supported by Institute of Information & Communica-
tions Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No. 2019-0-01190, [SW Star Lab] Robot Learning:
Efficient, Safe, and Socially-Acceptable Machine Learning). † These au-
thors contributed equally to this work.

and an edge represents the relationship between two ver-
tices, such as reachability and proximity.

Recent works in computer vision and deep learning show
remarkable improvements in visual navigation tasks using
topological representation [4, 8, 9, 23, 24, 27]. The existing
methods autonomously build a topological map about the
environment using a pretrained classifier network, which
can determine whether two image observations are close
or not. However, there are limitations to currently available
methods. (1) To train the classifier network, elaborately de-
signed annotation rules based on accurate geometric infor-
mation are required for preparing training datasets. (2) Their
navigation performance depends on the quality of geometric
information (e.g., odometry) for calculating distances be-
tween nodes or providing local point-goals to the naviga-
tion policy. (3) The majority of methods [4, 9, 23, 24, 27]
assumes that the environment is previously observed be-
fore. These methods use a pre-built graph and the size of
the graph is fixed during the navigation, demanding a pre-
exploration time to build the entire topological map before
an actual navigation task can begin.

In order to address the aforementioned limitations,
we propose the visual graph memory (VGM), a graph-
structured memory for visual navigation. VGM is con-
structed using an RGBD image encoder, which is trained
in an unsupervised manner. This encoder can be trained us-
ing only an unlabeled image dataset, and this can release the
burden of annotating the training dataset. We also present a
navigation framework which is designed to utilize the VGM
to tackle visual navigation tasks. The proposed navigation
framework consists of two components: a memory update
module and a navigation module, as shown in Figure 1a.
The memory update module selectively stores image rep-
resentations from the navigation history and constructs a
VGM using their spatio-temporal relationships. The navi-
gation module uses the VGM to select an ideal action for
a given navigation task. Specifically, this module encodes
the VGM using a graph convolutional network and extracts
the attention-guided context information from the encoded
VGM using the current and target images.

The proposed navigation framework does not require
robot pose information unlike previous methods, thus the
navigation performance is independent of the environmen-
tal errors. Furthermore, the proposed navigation framework
incrementally builds the VGM during navigation. Hence,
the proposed method is able to conduct a given navigation

15890



task in an unfamiliar environment without pre-exploration,
unlike existing methods.

We evaluate the proposed method for the image-goal
navigation task, which requires an explorative behavior and
memory to find a target location based on an image. The
proposed navigation method finds the target location in 76%
of the test episodes, which is 11.8% better than the best per-
forming baseline among the state-of-the-art approaches us-
ing visual memories. In terms of success weighted by path
length (SPL), the proposed method achieves 0.64, which is
a 14.3% improvement over the baseline. The main contri-
butions of this paper are as follows:

• We present the visual graph memory (VGM), which
can be built without any geometric information-based
annotations. The VGM enables unsupervised topologi-
cal simultaneous localization and mapping (SLAM) in
an unseen environment.

• We also present a navigation framework that can uti-
lize the VGM for visual navigation tasks. The pro-
posed navigation framework is able to conduct a given
visual navigation task in a completely unseen environ-
ment. Furthermore, the proposed method is highly ro-
bust against pose information errors compared to ex-
isting methods.

• The extensive experimental results show that the pro-
posed navigation framework with VGM outperforms
the state-of-the-art visual navigation methods based on
visual memories.

2. Related Work
From the classical robot navigation methods [12, 30] to

the recent learning-based methods [6, 7, 10], explicit 2D-
grid metric maps have been widely used as a method to rep-
resent the environment for navigation. A metric map can
provide accurate information about the environment as well
as the state of the robot if mapping and localization are ac-
curate. However, building and maintaining an accurate map
from raw sensory signals is computationally expensive.

Numerous studies in classical robot navigation [2, 3, 5,
15, 25, 29] build a topological map to represent the environ-
ment. A topological map is a graph, in which a node con-
tains topological information and an edge represents direct
reachability between a pair of nodes. While the topological
representation can be less accurate than metric map-based
approaches, it is more convenient to build and maintain due
to its concise and sparse representation.

One of the main difficulties that arise using topological
representations is place recognition using raw sensory in-
puts. Thus, earlier topological approaches focused on map-
ping and localization rather than on navigation tasks. Fur-
thermore, they all used handcrafted features, which require
relatively accurate geometric information under static envi-
ronments.

In recent years, learning-based methods have been pro-
posed to construct a navigation memory in a form similar
to the classical topological map [4, 8, 9, 11, 20, 23, 24, 27].
A number of approaches use a pretrained classifier network
to build a graph autonomously without human intervention

[4, 8, 20, 23, 24, 27]. The classifier is trained to determine
whether two observations are from the same area. While
these methods can autonomously build a graph represen-
tation from the experience, they need a sufficient amount
of data collected from robot demonstration and manually-
specified annotation rules to prepare training data. For ex-
ample, [20, 24, 27] collected random exploration data using
the agent to train the classifier and a temporal distance be-
tween nodes is specified to teach the network how to detect
novel places. [8] uses the depth information in a 3D mesh
of the environment to calculate the distance and visibility
between two locations. [4] uses a 2D occupancy map to de-
termine whether two locations are visible from each other.
Meanwhile, [23] trained a network that predicts the navi-
gability of a local locomotion policy using robot demon-
strations. The estimated navigability is used as a metric
for determining node boundaries. In contrast, the proposed
VGM uses an image encoder trained with an unlabeled im-
age dataset, without the need for the elaborately designed
annotation rules and accurate geometric information.

Another main limitation of existing methods is that the
majority of them can only be executed on a pre-built graph
[9, 11, 20, 23, 24, 27]. [9, 11] assume that the environment
has a predefined graph structure, so the navigation agent
does not have to determine appropriate landmarks to build
a graph. [20, 23, 24, 27] build a graph memory for naviga-
tion in an unstructured environment, but they need sufficient
exploration time before conducting actual navigation tasks.
Because of this characteristic, these methods are not appro-
priate to be implemented on a target-searching task in un-
seen environments. These methods are unable to search the
target location when the target is not in the pre-built graph.
However, if the target location is in the pre-built graph, it
means that the target has been already discovered during the
exploration time even without the actual navigation policy.

The topological map-based methods [4, 8] that can con-
duct image-goal navigation in unseen environments are re-
cently proposed. They use the pose information of a robot
to build a graph and navigate the environment. [4] stores
the position of each node in the graph to calculate the dis-
tances between nodes. [8] uses a pose sensor to store the
relative pose between nodes and draw a local metric map
for the local point-goal navigation policy. In contrast, our
navigation method does not use any pose information from
the environment or sensors. Thus, our method can be robust
against environmental errors. Also, our method can be eas-
ily implemented in an environment where an accurate pose
information is unavailable.

Different types of navigation memories are also ex-
ploited in various ways. In [26, 34, 36], a knowledge graph,
which is constructed using object relationships or room lay-
outs, is studied. They use a learned (or predefined) knowl-
edge graph to conduct given navigation tasks instead of
building an internal representation of the environment like
the methods mentioned above.

[13, 19] proposed a navigation system which accumu-
lates all past observation features and compares them to
the present one during navigation. Since all past observa-
tions are stored in the memory, the required computational
complexity increases as more observations are collected. In
contrast, the proposed VGM selectively stores observations

15891



(a) Overview (b) Memory Update

Figure 1: (a) Overview of the proposed method. The proposed method consists of two modules as shown in the figure. The memory
update module builds a visual graph memory (VGM) using et, which is the unsupervised representation of the current image ot encoded by
the encoder Floc. In the navigation module, Fvis encodes the current and target images (ot, otarget) into feature embeddings (rt, rtarget).
Then, the memory processor associates them with the VGM and outputs context vectors (ct, ctarget). Finally, ct, ctarget and rt are con-
catenated and fed into a recurrent action policy network Fact. The action policy network Fact returns an action distribution for the agent to
take. (b) Memory update process. In a VGM, each node embedding is an image representation et. At every time step t, the memory update
module compares et with the node embeddings by calculating similarities. Based on the results, the memory update module localizes the
agent and determines how to update the graph structure of the VGM.

and contains a significantly smaller number of memory el-
ements in the memory. In addition, our navigation agent is
able to conduct a given navigation task even with a limited
size of memory.

3. Method
3.1. Problem Formulation

We first formulate the image-goal navigation task before
explaining the proposed navigation method. The objective
of image-goal navigation is to successfully arrive at the tar-
get location using the image of the target location, otarget,
and a sequence of image observations, {ot}, collected dur-
ing navigation. At each time step t, the agent receives an
RGBD panoramic image, ot, of the current location. Any
additional guidance, e.g., GPS, demonstration images, and
language instructions, are not provided.

The target location may not be visible from the start po-
sition, so the agent is required to explore an unfamiliar en-
vironment to find the target. Remembering the navigation
history can be helpful to the agent for an efficient target
search. Also, it is important to explore places where the tar-
get is more likely to be present, rather than exploring all
areas.

The action space of an agent is discrete and has four op-
tions: {Stop, Move Forward, Turn Left, Turn Right}. When
the agent performs a forward action, the agent moves 0.25m
forward. A turning action rotates the agent for 10 degrees in
the selected direction. The navigation becomes a success
when the agent takes the stop action within 1m from the
target location.

3.2. Method Overview
Figure 1a shows an overview of the proposed naviga-

tion framework with a visual graph memory (VGM). The
navigation framework consists of two modules: the mem-
ory update module and the navigation module. The memory
update module contains a pretrained image encoder, Floc,
which encodes an image ot into a representation vector et.
The memory update module gradually builds a VGM using
et during the navigation. The navigation module has an-
other image encoder Fvis which encodes the observations
(ot, otarget) into the feature embeddings (rt, rtarget). Us-
ing rt, rtarget and the VGM, the memory processor pro-
duces context vectors (ct, ctarget). The memory processor
consists of a graph convolutional network, Fenc, and the
attention networks, Fdec1 and Fdec2. Finally, ct, ctarget and
rt are concatenated and passed to a long short-term memory
(LSTM) network which returns an action at for the agent to
take. Based on the VGM, the agent can efficiently search for
the target location in an unseen environment. In the remain-
der of this section, the components of the proposed naviga-
tion system are described in detail.

3.3. Visual Graph Memory
The memory update module contains a VGM = (V,E),

where V and E represent nodes and edges, respectively. An
adjacency matrix A can be constructed from a VGM. A pre-
trained image encoder Floc encodes the current image ob-
servation ot into et. Floc produces similar representations if
the observations are from similar locations. The node em-
beddings of V are composed of image representations from
past image observations. Based on similarities between the

15892



current observation and the node embeddings of the VGM,
the memory update module localizes the agent and updates
the VGM.

3.3.1 Representation Learning

Prior studies based on topological maps [4, 8, 20, 23, 24,
27] utilize neural networks similar to Floc, which classify
whether a given pair of observations have a smaller distance
than a specified temporal or spatial distance. Some of them
used a 3D or 2D-grid map of the environment to calculate
the visibility between a pair of locations. Humans, on the
other hand, remember novel landmarks instead of equally-
spaced distances. In this regard, we hypothesize that unsu-
pervised learning of image representation is sufficient to de-
tect the novel observations and build a topological map.

We have adapted the prototypical contrastive learning
(PCL) [21], a recently proposed unsupervised representa-
tion learning method. This contrastive learning method first
clusters images in the dataset. Then, the encoder Floc is
trained to encode images of the same cluster closer while
images of different clusters are placed further. The closer
the distance between the locations of the observations, the
more likely they belong to the same cluster because they
have similar appearances.

The training dataset is only composed of randomly sam-
pled observation images from the training environment.
Once Floc is trained, the parameters of Floc are frozen while
the navigation module is trained. In Section 5, we show
that this unsupervised representation learning is sufficient
for building a compact graph representation of the environ-
ment and this graph is highly effective for navigation. The
implementation details of PCL for our work are provided in
the supplementary material.

3.3.2 Memory Update Module

As shown in Figure 1b, the VGM is updated in two steps:
localization and graph update. In the localization step, the
memory update module looks for a node similar to the
current observation to determine where the agent is in the
VGM. Next, in the graph update stage, the memory update
module determines how to update the VGM.

Localization. The position of an agent can be localized
using node embeddings in the VGM and the current obser-
vation embedding. Assume that the last localized node is
vn ∈ Rd, and the number of nodes in the VGM is Nt at time
t. Floc encodes a new observation ot into et ∈ Rd, where d
is the dimension of the embedding vector. Then, the mem-
ory update module calculates S = {si | si = vi·et

∥vi∥∥et∥ , i =

1, ..., Nt}, a set of cosine similarities between et and nodes
in V = {v1, v2, ..., vNt}. If there is a node vi whose co-
sine similarity si is higher than a threshold sth, the module
decides that the agent is near vi in the VGM. There can be
multiple nodes whose cosine similarities are higher than the
threshold. In this case, the module selects the most similar
node among them.

We set sth considering the number of nodes and sparsity
of the generated graph. Note that the value of sth does not

affect the training of Floc; hence we can adjust the sparsity
of a graph by changing sth without re-training Floc. In Sec-
tion 5, we provide the comparison of generated graphs and
the performances of the agent across various values of sth.

The localization process of our method is simpler than
other methods. Previous methods use an additional network
which takes two images as input to determine whether the
two observations are close. In this case, every pair of an im-
age of a node in the graph and the current observation image
has to be processed by the neural network for localization at
every step. Ours can just calculate cosine similarities using
previously stored visual features of all nodes without the
need for additional computations.

Graph Update. Suppose that the current location is lo-
calized as vi. If the localized node vi is the same as the last
localized node vn, i.e., i = n, the VGM is not updated. If
they are different, a new edge between vi and vn is added.
The embedding of vi is replaced with the current feature et.
If the current location cannot be localized in the VGM, a
new node vNt+1 with embedding et and an edge between
the new node and vn are added to the VGM. We also store
the time step t with the node embedding when the node is
added or updated. These time steps are used to order nodes
in the navigation module as described below. With this up-
date process, the memory update module stores the summa-
rized snapshots of the navigation history and their spatio-
temporal relationships.

3.4. Navigation Module
The navigation module processes the updated VGM and

estimates the most appropriate action for the navigation
task. In the navigation module, an image encoder Fvis en-
codes the observations, ot and otarget, into feature embed-
dings, rt and rtarget ∈ Rd, respectively. We set two image
encoders Floc and Fvis separately, as we want Fvis to learn
additional information related to navigation skills such as
obstacle avoidance. In the remainder of this section, we ex-
plain how the feature embeddings, rt and rtarget, are used
with the VGM in the navigation module.

3.4.1 Memory Processor

Encoder. The memory processor has an encoder-decoder
structure as shown in Figure 2. We use a graph convolu-
tional network (GCN) [17], which is a powerful tool for
processing graph-structured data, to encode the VGM =
(V,E). In a single graph convolutional layer, the feature
embedding of each node H ∈ RNt×d is projected by a
parameter matrix W ∈ Rd×d and updated with the aggre-
gated information from its neighbors. An adjacency matrix
A, which is constructed based on edges E, is used for ag-
gregation. Through the multiple (K) graph layers in GCN,
the node embedding is updated with the information from
its K-hop distant neighbors. The encoding process Fenc is
formulated as follows:

H(0) = FC([V ; rtarget]),

H(l+1) = ReLU(ÃH(l)W (l)),

Fenc(V,A;ψ) =M = H(K),

(1)

15893



Figure 2: Detailed structure of the memory processor in the nav-
igation module. Each node in VGM is encoded with the encoder
Fenc. The feature embedding rt and rtarget from Fvis are fed into
the decoder with the encoded nodes M . The context vectors, ct
and ctarget are calculated by attentioning rt and rtarget over M .
PE attaches positional encodings based on node visitation times.

where [·; ·] denotes concatenation, and Ã ∈ RNt×Nt is a
normalized adjacency matrix from A with self-loops, FC is
a fully connected layer, and ReLU is a rectified linear unit.

Before the initial graph convolutional layer, we encode
each embedding of a node with rtarget using a single lin-
ear layer FC to fuse the information about the target ob-
servation. Each node embedding vi ∈ Rd is concatenated
with rtarget ∈ Rd, after which FC projects [V ; rtarget] ∈
RNt×(d+d) into H(0) ∈ RNt×d. Following K graph con-
volutional layers, we obtain a memory M ∈ RNt×d which
contains the spatial knowledge about the environment. The
proposed navigation agent can take the whole graph as an
input using the GCN, and thus it can be trained in an end-to-
end manner. This allows the agent to learn how to use the
graph structured VGM effectively, without any manually-
specified protocol to decide which node to navigate. Also,
the proposed method can be flexible in dealing with local-
ization errors, as the agent can see all the nodes at a glance.

Decoder. We designed the decoder Fdec to extract infor-
mation useful for navigation from the encoded memory M
in the context of the current observation and the target ob-
servation. We apply the multi-head attention mechanism
[32] to aggregate information from the encoded memory
M = {m1, ...mNt

}, where mi ∈ Rd, in the context of ot
and otarget. The feature vectors rt, rtarget ∈ Rd are used
as queries and the encoded memory M ∈ RNt×d is the key
and value. Using multi-head attention, an agent can get di-
verse insights about the VGM from the different decoded
outputs of the heads in the attention network.

The decoder utilizes the time step information, which is
stored with the node embeddings. Inspired by the positional
encoding in the transformer network [32], we add sinusoidal
positional encoding to each element in M according to its
relative temporal distance from the current time step t. We
denote M̃ as the encoded memory of M with positional en-
codings.

The attention function, Att(·, ·), and its multi-head ver-

sion, mhAtt(·, ·), with J heads can be formulated as

Attj(rt,M) = σ

(
(W q

j rt)(W
k
j M̃

T )
√
d

)
(W v

j M̃
T )T ,

mhAtt(rt,M) =Wm([Attj(rt,M)]Jj=1),

(2)

where W q
j ,W

k
j ,W

v
j ∈ Rd×d are the parameter matrices

in the j-th attention head and σ is the softmax function.
[Attj ]Jj=1 means that we concatenated the outputs of at-
tention networks from j=1 to j=J . The parameter matrix
Wm ∈ Rd×(Jd) projects them onto a d-dimension vector.

The decoder Fdec on rt is formulated as:

Fdec(rt,M) = LN(FC(c̄t) + c̄t),

where c̄t = LN(mhAtt(rt,M) + rt),
(3)

where LN is a layer normalization and FC is a fully conn-
tected layer. We also conduct Fdec on rtarget to get the con-
text information related to the target from the memory. The
decoder outputs two context vectors, ct = Fdec1(rt,M)
and ctarget = Fdec2(rtarget,M), where Fdec1 and Fdec2

are separate networks with the same structure.

3.4.2 Navigation Policy

The context vectors ct, ctarget, and the visual feature of the
current observation rt are concatenated as a single vector
and fed into an LSTM network. This network outputs the
distribution of actions based on the concatenated features.
The navigation agent outputs a stochastic policy as follows:

xt, ht = LSTM(FC([ct, ctarget, rt]), ht−1)

p(at|xt) = σ(FC(xt)),
(4)

where ht is the hidden state vector of LSTM.

4. Learning
IL and RL. In contrast to previous topological navigation
methods, the proposed method can be trained for various
tasks, using both imitation learning (IL) and reinforcement
learning (RL). We first train the agent using IL to initialize
networks and finetune with RL.

The agent is supervised to minimize the negative log-
likelihood of the ground-truth actions using the cross-
entropy loss. The loss function for the IL stage is

LossIL = Eτ∼D

[
Tτ∑
t=0

−a∗t log p(at|xt)

]
, (5)

where Tτ is the total length of a sampled demonstration,
τ = (ot, a

∗
t )t=0,...,Tτ

, from the training dataset D and a∗t is
the ground-truth action from the oracle agent.

We further finetune the agent’s policy with RL, namely
proximal policy optimization (PPO) [28], to encourage the
exploratory behavior of the agent. We set a dense reward
function proportional to the progress of the distance to the
target location as rt(s, a) = λ(dt−1 − dt), where dt is the
distance to the target and λ is a positive scalar constant for

15894



adjusting the reward scale. A small penalty (−0.01) is added
at every time step to encourage a faster search. When the
agent reaches the target location and chooses a stop action,
a large success reward (+10) is given.

Auxiliary losses. We have added a few auxiliary tasks to
encourage the memory processor to extract the useful infor-
mation from the memory. The first one is to classify whether
the agent has been in the current location before. If the agent
has passed the current area before, the label u∗

t is set to 1.
The second task is to predict the distance score st from the
current location to the target location. This task is to assist
the agent to learn when to apply the stop action near the tar-
get location. Simple two-layer MLP networks, FCaux1 and
FCaux2, are attached to the memory processor for these two
auxiliary tasks. They predict the proper value for each task
using the context vectors (ct, ctarget) from the decoder. The
auxiliary loss term is

ũt, s̃t = FCaux1(ct), FCaux2([ct; ctarget])

lossaux = Eτ∼D

[
Tτ∑
t=0

−u∗
t log ũt + (s∗t − s̃t)

2

]
,

(6)

where s∗t denotes the ground-truth distance score to the tar-
get. These auxiliary tasks are simultaneously trained during
IL and RL. The auxiliary loss term in (6) is added to each
action loss term of IL and RL. For example, in the IL stage,
total loss becomes

Losstotal = lossIL + lossaux. (7)

5. Experiments
5.1. Baseline Methods

We compare the proposed method with a number of
baselines that use various types of memory. The considered
baselines are as follows:

• CNN + LSTM [37]. This baseline is an LSTM model
with CNN, which is adapted from [37].

• ANS + pred. target pose [7]. We implemented this
baseline in a similar manner as [8]. This model builds
a metric map using depth information. Based on the
metric map, a global policy chooses a location to ex-
plore. Then, the local policy navigates to the point cho-
sen by the global policy. Using a pretrained target pose
estimator, we set the output of the global policy to be
the relative position of the target when the target is de-
tected.

• Exp4nav [10]. We adapted this model to the image-
goal navigation task. This model has multiple CNN
networks to process the current observation and the
multi-scale metric map, as well as the target obser-
vation. A recurrent policy takes the features from the
CNN networks and outputs an action.

• SMT [13]. This model stacks all the visual features
of the past observations and the pose information as a
navigation memory. It uses a transformer network to
process this memory in the context of the current and
target observations. If VGM stores all the observations
and fully connects all the nodes, the network architec-
ture would be similar to this baseline.

• Neural Planner [4]. This method first collects a cer-
tain amount of rollouts from an exploration policy
to build a topological map. Then, a pretrained neural
planner calculates the path to the node which is most
similar to the target image. A local point-goal navi-
gaiton policy follows the path. We adapted this model
to use the target estimator of the ANS baseline to de-
termine whether the target location is near. If the tar-
get is not detected after the local policy arrived at a
node similar to the target, the exploration policy starts
the exploration again to enlarge the graph. This model
uses a pose sensor to store the position of each node.

• Exploration + SPTM [27]. Despite [27] can only nav-
igate through the prebuilt graph, this model can be
adapted in similar way as Neural Planner. This base-
line does not require pose information because it uses
image-based local navigation policy and does not cal-
culate explicit distances between nodes. In comparison
to the Neural Planner, the Dijkstra algorithm is used for
planning.

• NTS [8]. This model builds a topological map us-
ing several pretrained networks which provide esti-
mated geometric and semantic information. This base-
line uses a pose sensor to store relative pose between
nodes and provides the local metric map to the local
point-goal navigation policy. We report scores from the
paper [8] as the experimental setting are the same.

All the end-to-end policy baselines (CNN+LSTM,
Exp4nav and SMT) and our proposed model are first trained
using imitation learning, with 200 demonstration trajecto-
ries from each training environment. After imitation learn-
ing, they are trained using reinforcement learning with 10M
frames. ANS model is also trained with 10M frames. Fur-
ther implementation details of the proposed method and the
baseline models are provided in the supplementary material.

5.2. Experimental Settings
We conducted experiments on the Habitat simulator [22]

with the Gibson dataset [35]. All models are trained with
72 scenes, and evaluated on 14 unseen scenes according to
the split used in [22]. We evaluated each method in vari-
ous difficulty settings. The difficulty of an episode is deter-
mined by the geodesic distance to the target location (easy:
1.5m∼3m, medium: 3m∼5m, hard: 5m∼10m). We tested
1,007 sampled episodes for each difficulty level. The max-
imum time step of an episode is set to 500. We used an
actuation noise model from [7]. The baselines requiring a
pose sensor are given a noisy sensor, following the practice
used in [7].

5.3. Evaluation Metrics
Two evaluation metrics are used: the success rate and

success weighted by path length (SPL) [1]. The naviga-
tion becomes a success when the agent takes the stop ac-
tion within 1m from the target location. SPL represents
the efficiency of a navigation path and it is calculated as
SPL = 1

E

∑E
i=1 Si

li
max(pi,li)

, where E is the total number
of evaluation episodes, Si ∈ {0, 1} represents whether the
agent succeeded (Si = 1) the i-th episode or not (Si = 0),

15895



Methods Memory Type Need
Pose info.

Easy Medium Hard Overall
SR SPL SR SPL SR SPL SR SPL

CNN + LSTM [37] hidden vector yes 0.73 0.70 0.53 0.49 0.22 0.18 0.49 0.45
ANS + pred. target pose[7] metric map yes 0.74 0.21 0.68 0.23 0.30 0.11 0.58 0.18

Exp4nav [10] metric map yes 0.70 0.62 0.61 0.52 0.47 0.39 0.59 0.51
SMT [13] stack yes 0.82 0.77 0.66 0.52 0.56 0.40 0.68 0.56

Neural Planner [4] graph yes 0.72 0.41 0.65 0.39 0.42 0.27 0.60 0.36
Exploration + SPTM [27] graph no 0.67 0.41 0.64 0.39 0.42 0.25 0.58 0.35

NTS [8] graph yes 0.87 0.65 0.58 0.38 0.43 0.26 0.63 0.43
VGM (ours) graph no 0.86 0.80 0.81 0.68 0.61 0.46 0.76 0.64

Table 1: Comparison and evaluation results of the baselines and our model. (SR: success rate, SPL: success weighted by path length)

and li and pi are the shortest path distance to the target lo-
cation and the actual path length taken by the agent, respec-
tively.

5.4. Quantitative Result
Comparison with the baselines. The overall results of
the baselines and the proposed method are shown in Ta-
ble 1. The proposed navigation framework brings perfor-
mance improvement over other types of memory models.
The CNN+LSTM model shows the poorest performance be-
cause of its limited size of the implicit memory. Compared
to the metric map-based model (Exp4nav), VGM shows an
improvement of the success rate by 28.8% (from 0.59 to
0.76) and SPL by 25.5% (from 0.51 to 0.64). The metric
map can contain the overall structure of the environment,
but it cannot represent possible target regions. On the con-
trary, VGM can provide the information about what nodes
are similar to the target observation.

Comparing the results of SMT and VGM, we can see
that the graph structure of the memory significantly helps
the agent to find a target with a smaller number of mem-
ory elements. On average, VGM uses 96% fewer memory
elements than SMT (for more information, see the supple-
mentary material). The success rate is increased by 11.7%
(from 0.68 to 0.76) and SPL is increased by 14.3% (from
0.56 to 0.64) from the SMT model.

The handcrafted models with an exploration policy
(ANS, Neural Planner and SPTM) shows relatively lower
SPL. The graph-based methods (Neural Planner, SPTM)
can robustly navigate between the nodes in the noisy envi-
ronment, but they can not actively search for the target be-
yond the given graph. Consequently, these models depend
highly on the performance of the exploration policy and the
target estimator. However, the exploration policy only looks
for novel places rather than the target-like places. In con-
trast, our method looks for the places that the target might
present by expanding the graph memory, so it can find the
target much faster.

Our method also benefits from end-to-end structure that
can utilize much larger dataset from RL. Note that NTS [8]
uses smaller dataset (300 demonstrations per env.) than ours
(200 demonstrations per env. + 10M RL frames). We pro-
vide experiment results with limited sizes of dataset in the
supplementary material.

Importantly, the noise of the pose sensor af-
fects the performance of the other models. Figure
3 shows the model performances at different noise

Figure 3: Experiments with various noise levels of pose sensor.
Level 0 is when the ground-truth position of the agent is given.
The dotted lines of the ANS and Neural Planner denote when the
ground-truth position of target location is also given.

levels tested on scenarios with hard difficulty. The
average absolute error (x, y, orientation) of Level
1 is (0.22cm, 1.37cm, 0.089 deg) and Level 5 is
(1.9cm, 12.31cm, 0.81 deg) with equal intervals from
Level 1 to Level 5. Level 0 is when the ground-truth robot
pose information is given. We can see that the metric-map
based models (ANS, Exp4nav) are highly dependent on
the pose noise levels. The Neural Planner also shows a
performance drop because it uses the positions of nodes
to calculates the distance between them. These distances
can be inaccurate due to noise and affect negatively to path
planning. Also, using a target pose estimator rather than
the ground-truth target position lowers the performances of
ANS and Neural Planner as shown in Figure 3 (at Level 0).
Our model is highly robust against the pose sensor noise
and the pose estimation error since the pose information is
not used during navigation.

Localization. We measured the localization accuracy of
the memory update module across various sth. Localization
succeeds when the memory update module correctly selects
the closest node from the current location. All episodes are
sampled from episodes with hard difficulty. The results are
shown in Table 2. The proposed method shows robust lo-
calization even though the image encoder is trained using
unsupervised representation learning.

We also measured the average distance between nodes
and the performance of the agent across various sth. The

15896



Figure 4: Example visualization of a target searching episode. To visualize the behavior of the agent, we plot the VGM in the top-down
map of the environment. Each node in the map denotes the node elements which is added throughout the path of the agent. Additionally,
we visualized the attention scores of nodes as blue circles and red stars. The blue circle is the attention score in the context of current
observation in Fdec1. The red star is the attention score in the context of the goal observation in Fdec2. More vivid the color, the higher the
attention score. We wrote the attention score next to the node in each corresponding color if the value is over 0.1. Best shown in color.

sth SR SPL Avg. dists Loc. acc.
0.30 0.60 0.41 4.21 0.97
0.45 0.58 0.42 3.41 0.94
0.60 0.60 0.44 2.55 0.93
0.75 0.61 0.46 1.69 0.94
0.90 0.59 0.44 0.86 0.93

Table 2: Success rates and SPLs at different sth. The average dis-
tances between nodes and localization accuracies are also shown
in the table.

average distance increases as sth becomes smaller since the
memory update module acknowledges a larger area as a
neighborhood of a node. The low value of sth does not af-
fect the success rate significantly, but it slightly decreases
SPL. We believe that this difference arises from the dif-
ferent amounts of information in the VGM. When we use
small values, there is less information available to the agent
because fewer nodes are added to the VGM.

5.5. Qualitative Result
We show an example of episodes from target search in

Figure 4. The agent has found the target location after head-
ing to some wrong places. Attention scores for ct are usu-
ally distributed to the nodes far from the agent. In contrast,
attention scores for ctarget are usually concentrated on the
nodes near the agent. An interesting point is that the atten-
tion scores for ctarget are spreaded when the agent returns to
a previously visited node. For example, the agent headed to
a room at t = 60. However, it has found that the room is dif-
ferent from the target location and comes out from the room
at t = 93. At t = 93, the attention scores are distributed to
the previously visited nodes. It appears that the agent is try-
ing to find a potential target region using the VGM. Usually,
the agent conducts an exploration policy, but when the agent
returns to the place where it has been before, it looks for the
next explorable nodes by attending to nodes in the VGM.

In supplementary material, we provide additional analy-

ses on the proposed method. (1) We ablated each element
in the navigation module, such as Fvis, Fenc and Fdec. We
found that every element is helpful to improve the naviga-
tion performance. Especially, Fvis plays an essential role
for the agent to learn navigation skills, such as obstacle
avoidance. (2) Considering the scalability issue, we tested
the proposed navigation method with limited memory bud-
gets and found that the proposed method can conduct a
given navigation task with a significantly smaller memory
budget. (3) We also ablated auxiliary losses and unsuper-
vised representation. The results show that auxiliary tasks
improve the performance; however, the proposed method
still outperforms other baselines even without the auxil-
iary tasks. We also found that training Floc with supervised
learning further brings the performance improvement of the
proposed method (about 8% improvement). (4) More ex-
amples of navigation episodes and generated graphs are
also provided in the supplementary material. (5) We have
also tested the proposed navigation framework on the cover-
age task. Our method shows competitive performance with
other baselines. Detailed experiment results and discussions
are preseneted in the supplementary material.

6. Conclusion

This paper proposes a new type of navigation mem-
ory, visual graph memory (VGM). The VGM is built on-
line during the navigation with an image encoder, which
is trained using an effective unsupervised representation
learning method. Also, the proposed navigation framework
with the VGM has shown to learn a goal-oriented policy di-
rectly from the graph representation. The experiment results
have shown that the proposed method has achieved 11.8%
improvement in success rate, and 14.3% improvement in
SPL over the state-of-the-art methods with various types of
navigation memories.

15897



References
[1] Peter Anderson, Angel X. Chang, Devendra Singh Chaplot,

Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,
and Amir Roshan Zamir. On evaluation of embodied navi-
gation agents. arXiv preprint arXiv:1807.06757, 2018. 6

[2] Henrik Andreasson and Tom Duckett. Incremental Robot
Mapping with Fingerprints of Places. IFAC Proceedings Vol-
umes, 2004. 1, 2

[3] Adrien Angeli, Stéphane Doncieux, Jean-Arcady Meyer, and
David Filliat. Visual topological SLAM and global local-
ization. In IEEE International Conference on Robotics and
Automation (ICRA), 2009. 1, 2

[4] Edward Beeching, Jilles Dibangoye, Olivier Simonin, and
Christian Wolf. Learning to plan with uncertain topological
maps. In European Conference on Computer Vision (ECCV),
2020. 1, 2, 4, 6, 7

[5] David M Bradley, Rashmi Patel, Nicolas Vandapel, and
Scott M Thayer. Real-Time Image-Based Topological Lo-
calization in Large Outdoor Environments. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
2005. 1, 2

[6] Devendra Singh Chaplot, Abhinav Gandhi, Dhiraj Gupta,
and Ruslan Salakhutdinov. Object Goal Navigation using
Goal-Oriented Semantic Exploration. In Conference on Neu-
ral Information Processing Systems (NeurlIPS), 2020. 2

[7] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta,
Abhinav Gupta, and Ruslan Salakhutdinov. Learning To Ex-
plore Using Active Neural SLAM. In International Confer-
ence on Learning Representations (ICLR), 2020. 2, 6, 7

[8] Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav
Gupta, and Saurabh Gupta. Neural Topological SLAM for
Visual Navigation. In IEEE Conference on Computure Vi-
sion and Pattern Recognition (CVPR), 2020. 1, 2, 4, 6, 7

[9] Kevin Chen, Juan Pablo de Vicente, Gabriel Sepulveda, Fei
Xia, Alvaro Soto, Marynel Vázquez, and Silvio Savarese.
A Behavioral Approach to Visual Navigation with Graph
Localization Networks. In Robotics: Science and Systems,
2019. 1, 2

[10] Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning
Exploration Policies for Navigation. In International Con-
ference on Learning Representations (ICLR), 2019. 2, 6, 7

[11] Zhiwei Deng, Karthik Narasimhan, and Olga Russakovsky.
Evolving Graphical Planner: Contextual Global Planning for
Vision-and-Language Navigation. In Conference on Neural
Information Processing Systems (NeurlIPS), 2020. 2

[12] Alberto Elfes. Using occupancy grids for mobile robot per-
ception and navigation. Computer, 1989. 2

[13] Kuan Fang, Alexander Toshev, Li Fei-Fei, and Silvio
Savarese. Scene Memory Transformer for Embodied Agents
in Long-Horizon Tasks. IEEE Conference on Computure Vi-
sion and Pattern Recognition (CVPR), 2019. 2, 6, 7

[14] Patrick Foo, William H Warren, Andrew Duchon, and
Michael J Tarr. Do humans integrate routes into a cogni-
tive map? Map-versus landmark-based navigation of novel
shortcuts. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 2005. 1

[15] Friedrich Fraundorfer, Christopher Engels, and David Nistér.
Topological mapping, localization and navigation using im-
age collections. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2007. 1, 2

[16] Sabine Gillner and Hanspeter A Mallot. Navigation and ac-
quisition of spatial knowledge in a virtual maze. Journal of
cognitive neuroscience, 1998. 1

[17] Thomas N. Kipf and Max Welling. Semi-Supervised Clas-
sification with Graph Convolutional Networks. In Inter-
national Conference on Learning Representations (ICLR),
2017. 4

[18] Benjamin Kuipers. The “map in the head” metaphor. Envi-
ronment and Behavior, 1982. 1

[19] Ashish Kumar, Saurabh Gupta, David Fouhey, Sergey
Levine, and Jitendra Malik. Visual Memory for Robust Path
Following. In Conference on Neural Information Processing
Systems (NeurlIPS), 2018. 2

[20] Dong Li, Qichao Zhang, Dongbin Zhao, Yuzheng Zhuang,
Bin Wang, Wulong Liu, Rasul Tutunov, and Jun Wang.
Graph Attention Memory for Visual Navigation. arXiv
preprint arXiv:1905.13315, 2019. 2, 4

[21] Junnan Li, Pan Zhou, Caiming Xiong, Richard Socher, and
Steven C.H. Hoi. Prototypical Contrastive Learning of Un-
supervised Representations. In International Conference on
Learning Representations (ICLR), 2021. 4

[22] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv
Batra. Habitat: A Platform for Embodied AI Research. In
IEEE International Conference on Computer Vision (ICCV),
2019. 6

[23] Xiangyun Meng, Nathan Ratliff, Yu Xiang, and Dieter Fox.
Scaling Local Control to Large-Scale TopologicalNaviga-
tion. In IEEE International Conference on Robotics and Au-
tomation (ICRA), 2020. 1, 2, 4

[24] Lina Mezghani, Sainbayar Sukhbaatar, Arthur Szlam, Ar-
mand Joulin, and Piotr Bojanowski. Learning to Visually
Navigate in Photorealistic Environments Without any Super-
vision. arXiv preprint arXiv:2004.04954, 2020. 1, 2, 4

[25] Michael J Milford, Gordon F Wyeth, and David Prasser. Rat-
SLAM: A Hippocampal Model for Simultaneous Localiza-
tion and Mapping. In IEEE International Conference on
Robotics and Automation (ICRA), 2004. 1, 2

[26] Yiding Qiu, Anwesan Pal, and Henrik I. Christensen. Learn-
ing Object Relation Graph and Tentative Policy for Visual
Navigation. In European Conference on Computer Vision
(ECCV), 2020. 2

[27] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun.
Semi-parametric Topological Memory for Navigation. In In-
ternational Conference on Learning Representations (ICLR),
2018. 1, 2, 4, 6, 7

[28] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal Policy Optimization Algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 5

[29] Adriana Tapus and Roland Siegwart. Incremental Robot
Mapping with Fingerprints of Places. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2005.
1, 2

[30] Sebastian Thrun. Probabilistic Robotics. Communications
of the ACM, 2002. 2

[31] Edward C Tolman. Cognitive maps in rats and men. Psycho-
logical Review, 1948. 1

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is All you Need. In Conference on
Neural Information Processing Systems (NeurlIPS), 2017. 5

[33] Ranxiao Frances Wang and Elizabeth S Spelke. Human spa-
tial representation: Insights from animals. Trends in cogni-
tive sciences, 2002. 1

[34] Yi Wu, Yuxin Wu, Aviv Tamar, Stuart Russell, Georgia
Gkioxari, and Yuandong Tian. Bayesian Relational Mem-
ory for Semantic Visual Navigation. In IEEE International
Conference on Computer Vision (ICCV), 2019. 2

15898



[35] Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Ji-
tendra Malik, and Silvio Savarese. Gibson Env: Real-World
Perception for Embodied Agents. In IEEE Conference on
Computure Vision and Pattern Recognition (CVPR), 2018. 6

[36] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and
Roozbeh Mottaghi. Visual Semantic Navigation using Scene
Priors. In International Conference on Learning Represen-
tations (ICLR), 2019. 2

[37] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim,
Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven
Visual Navigation in Indoor Scenes using Deep Reinforce-
ment Learning. In IEEE International Conference on
Robotics and Automation (ICRA), 2017. 6, 7

15899


