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Abstract

We consider the problem of filling in missing spatio-
temporal regions of a video. We provide a novel flow-based
solution by introducing a generative model of images in re-
lation to the scene (without missing regions) and mappings
from the scene to images. We use the model to jointly in-
fer the scene template, a 2D representation of the scene,
and the mappings. This ensures consistency of the frame-to-
[frame flows generated to the underlying scene, reducing ge-
ometric distortions in flow based inpainting. The template is
mapped to the missing regions in the video by a new (L?-L')
interpolation scheme, creating crisp inpaintings and reduc-
ing common blur and distortion artifacts. We show on two
benchmark datasets that our approach out-performs state-
of-the-art quantitatively and in user studies.'

1. Introduction

Video inpainting is the problem of filling spatial-
temporal regions, i.e., masked regions, with content that
naturally blends with the remaining parts of the video. This
is useful in video editing tasks, including removing water-
marks or unwanted objects and video restoration. As videos
exhibit temporal regularity, to inpaint a given frame, it is
natural to use data from other frames, as the data in other
frames may correspond to parts of the scene behind the
masked region. Many state-of-the-art methods for video in-
painting are flow-guided [7, 29, 19, 5], which take the ap-
proach of copying unmasked data from other frames into
the masked region of a given frame by using optical flow.

While these approaches inpaint with plausible data from
the scene through other frames, unlike single image inpaint-
ing methods (e.g. [3, 35]) that attempt to halluncinate image
values in the masked region from other regions in the image
or learned through datasets, they are highly dependent on
the quality of the optical flow. Even though optical flow has
advanced significantly with the progress of deep learning
to the point that recent methods on benchmark optical flow

Dataset and code: https:/github.com/donglao/videoinpainting
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Figure 1: Comparison with state-of-the-art. Our ap-
proach uses a generative model of formation of images from
the scene to infer flows that are consistent with the scene.
This reduces visual distortions in inpainting compared with
state-of-the-art: DFG [29], STTN [37], OnionPeel [19],
FGVC [5]. Animation in the supplementary materials.

datasets produce only small errors, there are two complica-
tions in applying optical flow to inpainting. First, the flow
that is needed in the masked region for inpainting is the flow
had the contents within the masked region been removed to
reveal the part of the scene that the mask occludes. As this
is not possible to determine directly, it is hallucinated, typ-
ically learned through data [29, 5]. However, there is no
guarantee that this is consistent with the scene or halluci-
nations from other frames, producing visual distortions in
inpainting. Secondly, even small errors in optical flow can
produce noticeable visual distortions in the inpainted video,
which is further amplified as flow is aggregated over mul-
tiple frames as data from far away frames may be needed.
Attempts have been made to reduce these errors by apply-
ing temporal regularity to the flow [29, 38, 37, 5], but these
naive regularizers (flow between frames is close) may not
be consistent with the scene geometry and can still produce
visual distortions (Figure 1).

In this paper, we aim to reduce visual distortions in video
inpainting due to physically implausible and temporally in-
consistent flows by deriving a generative model that closely
models the physical image formation process in generat-
ing images from the scene, and using it to infer flow. This
model represents the 3D scene (all of the scene correspond-
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ing to the video outside the masked regions) as a 2D scene
template. The inpainted image at frame ¢ is a mapping (gen-
eral piecewise smooth warping) of the part of the scene tem-
plate in view in frame ¢ to the image domain. The model
constrains the warps to be consistent with the scene and the
images. This induces temporal consistency by naturally and
efficiently enforcing that all pairwise mappings between im-
ages generated from the model must correctly match im-
ages. This reduces implausible flow hallucinations common
in current approaches. Our inference procedure computes
the warps and the scene template jointly from this model,
which reduces distortions in inpainting. Our contributions
are specifically:

1. We solve flow-guided inpainting by applying a genera-
tive model of the scene to images, and using it to infer flow
and a model of the scene (the scene template). This gives
more temporally consistent and plausible pair-wise flows
compared with existing methods, which results in inpaint-
ing results that are more temporally consistent and have less
geometric distortions. 2. We propose a novel L?-L! com-
bined optimization procedure that generates the inpainting
from the scene template together with a interpolation strat-
egy that significantly improves inpainting quality and fur-
ther reduces geometric distortions and blurring artifacts. 3.
We introduce the first benchmark dataset (Foreground Re-
moval) on removing occluding objects from video. We in-
troduce a quantitative protocol while previous art relies on
visual comparisons. 4. We demonstrate the advantage of
our algorithm on the DAVIS [21] and Foreground Removal
datasets and demonstrate superior results (both through user
studies and quantitatively) compared to state-of-the-art.

2. Related Work

Video Inpainting: Single image inpainting methods
[4, 3, 36, 35, 8, 17] have had success in the past decades.
However, when applied to video data, they generally pro-
duce artifacts due to a lack of temporal consistency. Early
video inpainting methods [28, 20, 18] extend patch-based
single image techniques to video data. More recent works
[7, 22,29, 14, 38, 5] use optical flow or variants to model
spatio-temporal correspondence across frames. To hal-
lucinate flow inside the masked region, non-learning ap-
proaches [22, 7] rely on energy minimization assuming
smoothness of the flow; [29, 5] is a deep learning solution
that first computes flow between image pairs, then uses a
neural network to hallucinate flow inside the masked region.
End-to-end learning methods [11, 26, 19, 38, 2, 37, 15]
model cross-frame correspondence in their loss functions.
For example, [38] jointly infers appearance and flow while
penalizing temporal inconsistency. These methods only
process a small fixed number of frames or run at low res-
olution as they are limited by hardware constraints. As our
method does not have such a limitation and produces con-

sistency with the scene, we out-perform these methods.

Layered Approaches: Our method relates to layered ap-
proaches [23, 27, 13, 10], which represent a scene as mov-
ing 2D layers that can occlude each other. Layered ap-
proaches are powerful tools that can be applied to motion
segmentation [1, 32, 24, 34, 12, 30, 31] as they provide a
principled way of occlusion reasoning in videos. We adopt a
layered formulation to create our scene template using mod-
ern advances in optical flow and deep learning, which we
then use for inpainting.

3. Computing the Scene Template

We formulate a joint inference problem for the scene
template and a set of transformations (warps) of the tem-
plate to each of the images. The scene template, i.e., the
background, is a 2D representation of radiance of the scene
without the foreground, i.e., part of the scene corresponding
to masked regions in images to be inpainted. The infer-
ence problem arises from a generative model that explains
how images are formed through geometric transformations
of the scene template; these transformations model trans-
formations arising from both camera viewpoint change and
dynamic scenes. This inference constrains motion behind
masks to be plausible by being consistent with the gen-
erative model and scene template, and hence across video
frames. This alleviates problems with frame-to-frame flow
propagation approaches, which aim to hallucinate the mo-
tion in an image behind the masks without scene consis-
tency. Such a hallucination can lead to errors, which is fur-
ther amplified over multiple frames through temporal prop-
agation. Given the scene template and transformations, the
inpainted result is the mapping of the template to the mask
of the image to be inpainted (see Figure 2).

3.1. Notation and Assumptions

The video, a set of frames, is denoted {/;}7_; where I; :
D c R? — R* (k = 3 for RGB values) is an image, D
is the image domain, and 7" is the number of frames. We
denote the radiance function of the background as f : {2 —
R¥, and Q C R? is the domain of the scene template (often
larger than D to accommodate data from all images). We
denote the mappings (warps) from the domain of the scene
template to each image domain as {w; : @ — D}Z_,. Note
that w; actually only maps the visible portion of the scene
Q) at frame ¢ to D, which is important to deal with moving
cameras (details in next section). w;’s are non-rigid, so can
handle dynamic scenes/backgrounds. Our model assumes
images (outside the mask) are obtained from the scene as
I(x) = f(w; (x)) +ni(z), where 1;() is a noise process
(to model un-modeled nuisances, e.g., small illumination
change, shadows, etc) and w; ! is the inverse mapping from
image ¢ to the template. For the purpose of computation, 7,
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Figure 2: Schematic of our approach. Unmasked regions in images are mapped via piece-wise smooth warps w; ! to create
the scene template. Note portions of the scene template that correspond to masked regions in images are naturally filled from
other frames. The scene template and the warps are jointly inferred. This ensures warps are consistent with the scene and
each other as the formulation implicitly imposes that pairwise mappings w; o w;" ! through the scene template must correctly
match unmasked portions of I; and I;. The part of the scene template in view at time ¢ is mapped to a given video frame via

the inferred warp to obtain the inpainted result in frame ¢.

will be assumed to be a zero-mean Gaussian noise process
independent of = and ¢ following Lambertian assumptions.

In video inpainting, masks M;’s are given for each
frame. These can either be provided by user annotation or
one can leverage object segmentation algorithms. M, can
contain multiple objects (that may move in different ways)
of arbitrary size and shape. Inpainting is to retrieve the ra-
diance in the scene behind M;’s.

3.2. Energy Minimization Formulation

We now formulate the inference of the scene template
f and the warps w;’s as a joint energy minimization prob-
lem. Note that if f is known, w;’s can be determined by
an optical flow problem. Vice-versa, if w;’s are known,
then template radiance can be determined by back warping
the region outside the masks to {). As neither of them are
known, the problem is setup as a joint energy minimization
on warps and the scene template as follows:

Ef(f’ {wl}zT:I) =

T T
S ) - S @) do 3 Byl
i=1 7 D\M;

i=1

(D
The first term above favors warps (and templates) such that
the mapping of the visible part of the scene radiance into
the image domain matches the image intensity for all pix-
els outside the mask M;. Each pixel in each image outside
M; maps to the scene template, and so each z € D\M;
corresponds to some point in €2, though not each point in 2
will correspond to some point in D. This is desired since
the scene encompasses more than just what is visible from
a single frame I;. This is particularly important as we as-

sume that the camera may translate, and so only a portion of
the scene template will be visible in frame I; (see Figure 2),
and thus the first term only penalizes the visible portion of
the radiance f(w; '(z)),r € D\M; in deviating from the
image intensity. The second term is warp regularity that
is required to make the problem well-posed in light of the
aperture problem. We will discuss the particular form of
regularization in Section 3.3.

One can recognize that this formulation is similar to opti-
cal flow, but for some key differences. Rather than mapping
between frames, we map between images and the scene
template (which is to be determined), providing natural con-
sistency of the mappings with the scene and hence also each
other, which is not present in previous inpainting works.

3.3. Optimization

To optimize, we iteratively update the scene template
given the current estimate of the warps and vice-versa the
warps given the estimate of the template.

Update for the scene template: Given estimates of
w;’s, £ is computed as the union of the back-warpings of
each image domain, i.e., @ = UJ_;w; *(D). Note that
can be larger than D. We now update the scene template
radiance f given ). Since f only appears in the first term
of (1), we can ignore the second term to determine f. Per-
forming a change of variables to compute the integrals on
2, allows the summation to be moved inside the integrand.
One can then show that the global optimizer for f is:

Sin Lwi @) Liwi@) Jip) o
Sy Li(wi(p)) Ji(p) ,

where 1;(-) is the indicator function of D\M;,, i.e., 1 in

2

[ (p) =
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Algorithm 1 Optimization for the scene template.

Algorithm 2 Scene template / Inpainting (faster).

1: Choose a key frame I},

2: Initialize for w;’s by w; = wg;

3: repeat // updating warp and template

4 Q = UL ,w; (D) and compute f by (2)

5 For all 4, update w; and w; ! by computing optical flow
between f to I; // computed in parallel

6: until converges

D\ M;, the background region in I;, and 0 otherwise, and
Ji(p) = det Vw;(p), which results from the change of
variables and measures the area distortion in the warp be-
tween €2 and D. To obtain the radiance at p, one computes
a weighted average of all image intensity values from pixels
over frames 1 that correspond to p.

Update for the warps: Given an estimate of the tem-
plate f*, we minimize (1) with respect to w;’s. This is
equivalent to computing

wi = arg Inin/ |Il(x)—f*(w;1(x))\§ dz+EReq(w;)
D\M;

w;

3)
for each 7, which is similar to an optical flow problem,
but only the non-mask region (D\ M;) is matched, and the
shapes of the domains of the I; (D) and f (2) are different.
For convenience, w; is extended to the whole domain §2 by
a smooth extension outside the portion of the template visi-
ble in frame ¢ through spatial regularity on all of €2, which is
determined by the second term. To naturally handle differ-
ent shaped domains, we use SobolevFlow [33] to refine the
warps initialized by current estimates of w;’s. Our initial-
ization for w; (described below) uses frame-to-frame flow
composition, and the flow update (3) mitigates errors from
the frame-to-frame flow and its aggregation, as it induces
geometric consistency (the w;’s must be consistent with the
scene template, which is a function of w;’s, and hence geo-
metrically consistent with each other).

Initialization: We choose a key frame (e.g., the middle
frame) I}, to be the scene template and initialize the warps
w; to be the optical flow between the key frame and frame
i, i.e., w; = wg,;. Note that k£ and ¢ may represent distant
frames, and thus may involve large displacements, challeng-
ing for optical flow methods. Therefore, we first compute
warp between adjacent frames, i.e. w;(;41) and w;q1);, by
ordinary optical flow then wy; can be computed as a recur-
sive composition of appropriate consecutive frame flows.

To compute the frame-to-frame flow, we use
SobolevFlow [33], which naturally allows one to ex-
clude the masked region M; from computation leading to
accurate flow. For faster computation, we initialize this
with a deep learning based optical flow (FlowNet2 [9] to
extract flow in the whole image, and then replace the flow
inside the mask by spatial regularity). We compute flow in

i

: Initialization: ¢ = 1, initialize w; by identity map
: t < t+ 1, anew frame I; and mask R; available
: Compute wy,;—1 and wy t171 by optical flow
: For all ¢’s, update warps by w; < wyt—1) © w;
. repeat // updating warp and template
Update template f by (2)
For all ¢, update w;’s and w
I; and f /] computed in parallel
: until converges
: Compute inpainting result by (5)
10: Go to Step 2

-1

i

s by optical flow between

O o0

both forward and backward direction, and let wi_jl = wj;
for the initialization, so all warps have an inverse.

Algorithm 1 summarizes the optimization pipeline. Em-
pirically, it takes at most 2 iterations to converge.

3.4. Efficient Updates of the Scene Template

When processing longer videos with large range of back-
ground motion, {2 can grow arbitrarily large, reducing com-
putational and memory efficiency. However, one usually
does not need a full scene template to inpaint a frame [,
since w; 1 (M;) usually only maps to a small portion of the
template. Therefore, we further propose an efficient imple-
mentation of our approach. To do this, we ensure that the
scene template is aligned to the newest frame as follows.
Suppose the template aligns with I;, then given a new frame
I+, we update the warps to align to I;4; through compo-
sitions w; <= w; © w(;41)¢ and wi_l 4 Wy(41) © wi_l for
all i’s, and f is updated by (2). We can then crop 2 to be
D (matching I; 1), and w,, +11 (M) is likely to remain in
D since w,_ +11 is close to the identity map, as the initial tem-
plate aligns with ;. This also makes refinement of w;’s
easier to be handled by existing optical flow methods, as the
domains of the I; and f are the same.

Further, w;’s are computed in parallel since the update
of each are independent. Algorithm 2 shows this scheme,
which is used for the experiments. Since each frame is only
inpainted by previous frames, there may be holes remain-
ing in the initial frames. To alleviate this, we do a for-
ward sweep to inpaint every frame followed by a backward
sweep, which fills the initial frames. In the experiments,
We find using a sliding window of 7 frames to solve the op-
timization already provides good results. Nevertheless, our
method can handle much larger number of frames (e.g. 60
frames in Figure 2) without hitting hardware constraints.

4. Inpainting

Although we can simply map the template f into the
masked region M; to be inpainted via the warp w; com-
puted in the previous section to produce the inpainting, this
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Figure 3: Example: L? vs L>+L'. L? creates smooth but blurry
inpainting results. By L' regularization, the inpainting result pre-
serves sharp and rigid appearance.

can result in blurry results, as the L? norm in (1) can re-
sult in a blurry template as a result of temporal averaging
in (2). To mitigate these effects, we solve an energy mini-
mization problem for the inpainted radiance P, : M; — RF
that interpolates between the template f and raw image val-
ues from other frames that map to the mask, through the L*
distance that reduces temporal blurring, as follows:

Eomg(P) = /M (1P() = f* (w7 (2)) 2
1 (wei(x))] da,

+IBZ|Pt
“)

where the first term measures fidelity of the inpainting to
the template mapped into M;, and the second measures fi-
delity of the inpainting to mappings of other frames into M.
1 (wy; () indicates whether wy; () is visible in frame i.
Let {t},... ,t™=} denote the m, frames where wy;(z)
maps into M;. From [16], (4) has a closed form minimizer:

Pi(z) = median{]t; (wtt; (z)),--- s Lyme (wtt;”z (z)),
)= SEB.F () = (5E+ 1B,

Li(wi ()

&)
where y = w; !(x). The inpainting is a temporal median
filtering of pixels from different frames that map into the
mask as well as the template appearance. Figure 3 shows an
example of the reduced blurriness of this L' formulation.

We now discuss the evaluation of the images at trans-
formed pixels in (5), which requires interpolation. This
choice is key to producing a visually plausible result. Com-
mon choices are nearest neighbors or bilinear interpolation.
In Figure 4a, we propagate a toy template by a rotational op-
tical flow and show the effects of each scheme. Bilinear pre-
serves the shape but edges are blurred since the pixel value
is a linear combination of white and black pixels around
the endpoint. Nearest-neighbor preserves pixel values and
thus is not blurred. However, rounding endpoints to near-
est pixels lead to geometric distortion. Defects from both

)+ (8

Template Flow Bilinear ~ N. Neighbor

'lI'l'.l'l'

(a) A toy template propagated by a rotational flow.

Bilinear N.Neighbor Our Best Practice

(b) Inpainting results: different interpolation methods.

Figure 4: Interpolation artifacts. Bilinear interpolation induces
blurring; nearest-neighbor interpolation creates distortion. Our
combination achieves the most realistic result.

interpolation schemes are further amplified and propagated
throughout the whole video in flow guided inpainting.

We propose a simple yet effective solution to this long-
ignored problem in flow-based inpainting that our frame-
work naturally suggests. We apply bilinear interpolation in
computing the template (2) to avoid geometric distortion.
After obtaining a smooth template with well-aligned warps,
nearest-neighbor interpolation is applied in computing the
inpainting in (5) to preserve rigid edges. This achieves
the result with the least artifacts. As suggested by Figure
4b, only using bilinear interpolation leads to a blurry result
while only using nearest-neighbor interpolation leads to dis-
tortion. The best result is obtained by our combination.

After the inpainting described above, there may be some
masked pixels that are not filled, as they correspond to
points in the scene that never revealed in the entire video.
To fill these pixels, we use DeepFill [35], following [29, 5].

5. Experiments

To the best of our knowledge, currently, there is no video
inpainting benchmark dataset, but only for object segmenta-
tion (DAVIS [21]). While it is possible to use the segmented
masks from DAVIS for video inpainting (e.g. [29, 5]), there
is no ground truth and evaluation relies on user studies.

As a complement, many methods [29, 38, 11, 37] com-
pose moving objects or masks over background videos, so
inpainting accuracy can be numerically evaluated. Since
data are created in different ways (some are not publicly
released), a direct quantitative comparison is infeasible.
Therefore, we introduce a new dataset under this setting,
called Foreground Removal dataset, with quantitative evalu-
ation protocols measuring inpainting accuracy and temporal
consistency. The dataset will be made publicly available.

DAVIS [21] contains a total of 3455 frames in 50 videos
with pixel-wise per-frame annotations. The task is to re-
move annotated moving objects. We perform a user study
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DAVIS Foreground Removal
TPSNRT  TSSIMT | Avgt #11 | TPSNRT TSSIMtT | PSNRT SSIMtT  FID|
Ours+F+S 29.08 0.881 - - 34.58 0.935 29.15 0.857 1.042
Ours+S 30.86 0.922 724 581 30.14 0.895 28.17 0.825 1.179
DFG[29] 27.58 0.852 6.89 457 30.74 0.886 28.28 0.803  1.376
TILA[38] 30.59 0.894 512 95 31.35 0.910 25.64 0.769  1.292
OnionPeel[19] 26.24 0.817 - - 29.31 0.822 28.71 0.833  1.051
STTNI[37] 29.04 0.874 - - 34.07 0.926 27.62 0.817 1.136
DeepFill[35] 19.56 0.554 396 24 20.77 0.639 19.31 0.568  2.546
FGVC [5] 30.71 0.916 - - 32.89 0.936 31.76 0.886  0.833
Ours+FGVC flow 30.94 0.921 - - 34.56 0.947 31.89 0.894  0.802

Table 1: Quantitative Results. On both datasets, our method achieves the best performance in terms of temporal consistency and
inpainting quality. Our results are more preferred in the user study. F: FlowNet2 [9]; S: SobolevFlow [33].

Distribution of the ratings Distribution of the rankings

80%
60%
40%

20%

S N B & ®

0% = -

#2
DFG

#4
Deepfill

#1
® Ours

#3

®Ours "DFG ®=ILA = Deepfill ILA

Figure 5: User study on DAVIS. Ours achieves highest average
and median rating. Ours also receives the most # 1 ranking.

by inviting 24 volunteers from both inside and outside the
field to rate the inpainting quality of each video from 1 to
10. Videos are displayed at 15 fps and users can stop, re-
play, and zoom-in freely. The ordering of the methods is
randomly permuted (not known to the users). Each user is
required to rate at least 15 sequences and we collected 871
results in total. We also evaluate temporal consistency fol-
lowing [38] by measuring visual similarity of the inpainted
region in adjacent frames, labeled as TPSNR and TSSIM.

Foreground Removal dataset includes 25 composed
videos ranging from 29 to 90 frames whose backgrounds
are collected from Youtube. We paste moving foreground
from DAVIS and SegtrackV2 [25] to background videos.
The dataset contains representative challenging cases in-
cluding viewpoint change, deforming background, illumi-
nation change, fast zooming-in, motion blur, image noise
(e.g. rain), and constant (e.g. overexposed) regions. We
evaluate inpainting accuracy by computing PSNR, SSIM,
and Frchet Inception Distance [6] to the ground truth, and
evaluate temporal consistency as in DAVIS.

Comparison: We compare our approach with state-of-
the-art methods. They are: flow-guided DFG [29] and
FGVC [5]; end-to-end ILA [38], OnionPeel [19], STTN [37];
and single image DeepFill [35]. For the user study, we
choose DFG, ILA and DeepkFill since they are representa-
tive of each category of method. Due to author-released
code of [38, 29, 19] operating at different resolutions, we
resize all results to the same resolution for a fair numerical
and visual comparison. As described in Section 3.3, we ap-

ply SobolevFlow [33] for flow refinement (Ours+S). To be
comparable to [29], we use FlowNet2 [9] for flow initial-
ization (Our+F+S). We compare to FGVC [5], which uses
a more advanced flow method. For this comparison, we ini-
tialize our method with the flow used by [5].

5.1. Results

DAVIS Dataset: Figure 6 shows representative visual
results on DAVIS. Ours are more visually plausible than
competing methods. DFG is vulnerable to distortion due
to frame-to-frame propagation and nearest-neighbor inter-
polation. OnionPeel and ILA have blurry results (frequently
observed in other learning-based methods [37, 11, 14], too).
Our method preserves rigid object appearances, showing the
effectiveness of the L2-L! optimization and interpolation
strategy. Ours also significantly outperforms the competi-
tion in videos with long-term occlusion (e.g. Figure 1) since
the method is less vulnerable to flow error accumulation.

Figure 5 summarizes the user study. Our method has the
best average user rating. It also receives the highest count
of number one rankings (tie allowed). In 67% of the rat-
ings, ours rank the best among the four methods. Table 1
shows quantitative results. Ours+S achieves the best tem-
poral consistency. This is presumably because the region-
based formulation of SobolevFlow provides a more consis-
tent background motion estimation. Initialized by the same
flow as [5], we achieve better temporal consistency, which
shows that the scene consistency in our method improves
over even more advanced optical flow (also see Figure 1).

Foreground Removal Dataset: Figure 9 and Ta-
ble 1 show qualitative and quantitative results on the
dataset. Ours obtains visually plausible results. Since the
dataset contains more challenging background motion and
FlowNet2 has a stronger capability to handle complex mo-
tion, Ours+F+S achieves dominant performance. Similar to
DAVIS, our method improves over [5].

We want to highlight two cases in Figure 9: in the
car scene (2nd column), our approach successfully han-
dles two foreground objects with different motions; in the
horse scene (5th column) our approach handles strong cam-
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Figure 6: Comparison on the DAVIS dataset. With our scene template and corresponding optimization and interpolation scheme, our

method obtains the most realistic results. Better viewed zoomed in.

Figure 7: Sample fixed region removal from a dynamic scene
(from DAVIS). Animation in the supplementary materials.

era zooming, a challenging case to video inpainting.

Fixed Regions (DAVIS): The literature considers re-
moval of content within a fixed region of video in scenes
with dynamic objects. Our formulation (1) can, in princi-
ple, be applied to this case (Figure 7). However, for high
accuracy, one requires additional occlusion reasoning in op-
tical flow, which will be subject of future work; the focus of
the current paper is to illustrate the benefits of the scene
template. Even with our current methodology, our results
are comparable to [5], the state-of-the-art for fixed regions:
PSNR 28.02 vs 28.20, SSIM 0.959 vs 0.957 on DAVIS fol-
lowing the experimental setups of [5]. We provide detailed
discussions in the supplementary materials.

5.2. Further Application and Discussion

Incomplete annotations: One task that has not been
considered by previous work is handling incomplete or in-

(a) Inpainting with missing annotations.

Estimated Original Result Shadow removal

S

(b) Automatic shadow estimation and removal.

Figure 8: Inpainting with incomplete annotations. Our method
can be applied to correct incomplete annotations. It estimates
missing annotations by (6) and performs inpainting. Red: given
annotations; blue: estimated masks.

perfect annotations. Existing methods (e.g. [7, 29, 38, 5])
assume perfect annotations. In practice, masks often come
from user annotation or segmentation algorithms, and so an-
notations may not be available for the whole video or may
contain errors. Figure 8 shows two examples. In the first,
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Figure 9: Comparison on Foreground Removal dataset. Our novel dataset contains challenging cases including irregular background
motion, illumination change, fast zooming-in, motion blur, image noise, and constant regions. Our method obtains the most visually
plausible and temporally consistent results. Better viewed zoomed in.

Imag DFG

DFG+Ours

Figure 10: Multi-frame aggregation improves regularity Even
if using the same optical flow, our method shows stronger regular-
ity than frame-to-frame propagation.

masks from only the first 10 frames are provided; in the sec-
ond, shadows are not included in masks. Our method can
estimate foreground masks by thresholding the residual be-
tween the scene template (computed from available noisy
annotations) and images:

Ry = {|Ii(z) = f(w; " ()5 > a},

Our method infers missing annotations and corrects incor-
rect annotations, and so to the best of our knowledge, the
first to inpaint despite inperfect annotations. This makes
fully automated foreground removal algorithm possible,
which can be a future direction of research.

Multi-frame aggregation improves regularity: In this
experiment, we use the same optical flow as DFG (without

a=01. (6)

refinement), so the only difference is multi-frame aggrega-
tion v.s. frame-to-frame propagation. On DAVIS, TPSNR
rises from 27.58 to 30.53 and TSSIM rises from 0.852 to
0.966, showing stronger temporal consistency. We can even
observe results with stronger spatial regularity, shown in
Figure 10. This shows the advantage of our scene template.

6. Conclusion

We proposed a novel method for flow-guided video in-
painting by introducing the scene template, which is a 2D
representation of the background. The method aggregates
appearance information across frames into the scene tem-
plate by non-rigid maps, which are solved jointly, then maps
the template to the images for inpainting. This results in
more plausible and temporally consistent flows than exist-
ing flow-based methods as the maps must be consistent with
the scene. We proposed a simple interpolation scheme,
which significantly reduced inpainting artifacts. Experi-
ments showed that our method achieved state-of-the-art re-
sults on two datasets in terms of inpainting accuracy and
temporal consistency. Our method can also handle missing
and noisy user mask annotations.
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