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Abstract

In this paper we consider the epipolar geometry between
orthographic and perspective cameras. We generalize many
of the classical results for the perspective essential matrix
to this setting and derive novel minimal solvers, not only
for the calibrated case, but also for partially calibrated and
non-central camera setups. While orthographic cameras
might seem exotic, they occur naturally in many applica-
tions. They can e.g. model 2D maps (such as floor plans),
aerial/satellite photography and even approximate narrow
field-of-view cameras (e.g. from telephoto lenses). In our
experiments we highlight various applications of the devel-
oped theory and solvers, including Radar-Camera calibra-
tion and aligning Structure-from-Motion models to aerial
or satellite images.

1. Introduction
In this paper we direct our attention at something that, at

first glance, might seem like an exotic creature in the land
of epipolar geometry, namely the essential matrix for mixed
orthographic and perspective cameras. By this we mean
the geometry of a two-view scene, where one camera is a
fully calibrated perspective camera and the other is an or-
thographic camera. A schematic of the geometry is given in
Figure 1. This case was first considered by Zhang et al. in
[27] where the ortho-perspective essential matrix was de-
rived. In this work we extend their analysis and derive a
parallel theory to the classical results for the perspective es-
sential matrix. Additionally we consider the case where the
perspective camera is only partially calibrated (unknown fo-
cal length) or when it is a non-central (generalized) camera.
For each of the cases we derive novel minimal solvers which
allow for robust estimation in RANSAC [3] frameworks.

While optical systems that yield true orthographic pro-
jections are not commonplace, the orthographic camera is
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Figure 1. Orthographic-Perspective Epipolar Geometry

applicable in many other settings. For example, 2D-maps
such as floor plans can be seen as an overhead orthographic
image of the scene. Thus registering a camera to a 2D map
is equivalent to relative pose estimation between an ortho-
graphic image and a perspective one. Orthographic projec-
tion can also approximate perspective projection in the case
of narrow field-of-view or when the distance to the scene
is large. In the experiments we will show that using this
approximation can even be preferable to the full perspec-
tive model when the focal length needs to be estimated as
well. Furthermore, while the camera models used for satel-
lite or aerial photography are often complicated, they are
also well-approximated by the simpler orthographic model.
Related Work on Epipolar Geometry. Epipolar geom-
etry deals with the geometry of two cameras viewing a
scene. Often it is characterized in terms of the bifocal
matching tensor (see Triggs [26]) which relates correspond-
ing image points. For projective cameras this is the fun-
damental matrix. The matrix has only a single internal
constraint (being rank-2) and can be minimally estimated
from seven point correspondences [6]. For calibrated cam-
eras the corresponding bifocal tensor is the essential matrix.
While the essential matrix was first introduced by Longuet-
Higgins [12], calibrated epipolar geometry was studied as
early as 1883 by Hauck [7]. The essential matrix can be
minimally estimated from five correspondences and there
have been multiple solvers proposed in the literature (see
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e.g. [14, 22, 4]). Bifocal tensors have also been studied for
non-perspective cameras. For example, Shapiro et al. [20]
derived the fundamental matrix for affine cameras, which
was later specialized for weak-perspective/orthographic in
[21, 16]. Dai et al. [2] derived essential matrices for mod-
elling rolling shutter effects. There are also works which
consider heterogeneous camera setups; e.g. [24, 17] con-
sider para-catadioptric/perspective and [8] studies the multi-
focal tensors for cameras with mixed dimensionality (2D
camera vs. 1D line camera).

The work that is most related to ours is from Zhang et
al. [27] which also considers the epipolar geometry of or-
thographic and perspective cameras. In [27] the authors de-
rive the ortho-perspective essential matrix and identify its
internal structure. They also propose a method for project-
ing a given matrix onto the set of ortho-perspective essen-
tial matrices. While the paper discusses the possibility of
solving for the essential matrix from five point correspon-
dences, no minimal solver is derived. In this paper we build
on the analysis from [27] and derive new properties and re-
sults for the ortho-perspective essential matrix. We develop
new internal constraints that are analogous so the classical
trace-constraints and show how these can be used to derive
a minimal solver.

In the supplementary material we provide additional dis-
cussion on related works for the applications we consider.

2. Mixed Perspective and Orthographic
We now direct our attention to the special case when one

camera is perspective and the other is orthographic. Let

xp = (x, y, 1)T and xo = (mx, my, 1) (1)

be the image points in the perspective and orthographic
cameras respectively. We assume that the perspective cam-
era is calibrated and the image point is given in the normal-
ized image plane. In the coordinate frame of the perspective
camera, the 3D point corresponding to xp is X = λxp for
some λ > 0. Let the orthographic camera be

Po =

[
rT1 t1
rT2 t2

]
, rT1 r2 = 0, ‖r1‖ = ‖r2‖ = 1 (2)

From the orthographic projection we get the following

mx = λrT1 xp + t1, (3)

my = λrT2 xp + t2. (4)

Eliminating λ we get rT1 xp(my − t2) = rT2 xp(mx − t1),
which can be rewritten as

xT
o Exp = 0, where E =

 −rT2
rT1

t1r
T
2 − t2rT1

 . (5)

Figure 2. Translational ambiguity. The orthographic camera de-
termines the scale of the reconstruction. However it is not possible
to determine the relative translation of the cameras along the view-
ing direction of the orthographic camera.

This is the ortho-perspective essential matrix which was
first identified in [27]. In the following sections we discuss
various properties of the epipolar geometry. In the supple-
mentary we also consider planar induced homographies be-
tween the orthographic and perspective image.

2.1. Scale/Translation Ambiguity

In classical epipolar geometry the scale of the scene is
unobservable. In the ortho-perspective setting the global
scale is fixed to the scale of the orthographic camera. In-
stead an ambiguity appears in the translation along the
viewing direction of the orthographic camera (see Figure 2).

The ortho-perspective essential matrix and epipolar con-
straints are homogeneous in the scale of r1 and r2. It is
therefore not possible to estimate the scaling factor in the
case of scaled orthographic projection (weak-perspective)
as this only rescales E. This ambiguity is directly coupled
to the scale of the scene, as can be seen from (3)-(4) where
any rescaling of r1, r2 can be compensated by the depth λ.
Therefore we will in the remainder of the paper consider r1
and r2 as orthogonal vectors of the same length.

2.2. Internal Constraints on the Essential Matrix

From (5) it is clear that the essential matrix satisfies

eT1 e2 = 0, eT1 e1 − eT2 e2 = 0, det(E) = 0 (6)

where eTk is the kth row of E. These constraints were
also derived in [27]. However, similar to perspective case
there also exist internal constraints that are analogous to the
classical trace constraints. In Section 4 we will show how
these extra equations are very useful for deriving a minimal
solver.

Theorem 1 (Ortho-perspective Trace Constraints.).
For a real non-zero matrix E the following are equivalent

i) E is an ortho-perspective essential matrix (as in (5))

ii) E satisfies the constraints

2EETDE = tr
(
EETD

)
E, (7)

where D = diag(1, 1, 0).
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Remark. The structure of the constraint is perhaps not too
surprising considering orthographic cameras are the limit as
focal length tends to infinity and D = limf→∞K−1.

Proof. Let eTk denote kth row of E. By considering each
row of the trace constraints (7) we get

2(eT1 e1)e1 + 2(eT1 e2)e2 = (eT1 e1 + eT2 e2)e1 (8)

2(eT2 e1)e1 + 2(eT2 e2)e2 = (eT1 e1 + eT2 e2)e2 (9)

2(eT3 e1)e1 + 2(eT3 e2)e2 = (eT1 e1 + eT2 e2)e3 (10)

The implication i⇒ ii follows directly by inserting (5) into
(8)-(10). To prove the converse assume that E satisfies the
constraints. From (8) we get

2(eT1 e2)e2 = (eT2 e2 − eT1 e1)e1 (11)

Thus either e1 ‖ e2 or both coefficients are zero, i.e.

eT1 e2 = 0, ‖e1‖ = ‖e2‖. (12)

Now assume first that they are parallel, i.e. e2 = αe1 for
some α ∈ R. Inserting into (11) yields

2α2‖e1‖2e1 = (α2 − 1)‖e1‖2e1, (13)

which implies α2 = −1 =⇒ α = ±i. However, by
assumption E is real and thus e1 cannot be parallel to e2.
Then (12) must hold and we have that e1 and e2 are orthog-
onal vectors of the same length. Let r1 = e2, r2 = −e1. It
remains to show that e3 is of the correct form. From (10),

2(eT3 r2)r2 + 2(eT3 r1)r1 = (‖r1‖2 + ‖r2‖2)e3 (14)

showing that e3 is indeed a linear comb. of r1 and r2.

Remark. From the proof above we can see that trace con-
straints allow for complex solutions on the form

E = [ aT ; ± iaT ; bT ] (15)

2.3. Twisted Pairs

For each regular essential matrix there are four consis-
tent camera pairs. For the ortho-perspective essential matrix
there are only two solutions corresponding to a sign change
in r1 and r2. From equation (3)-(4) we can see that this
corresponds to changing sign of the scalar λ. Thus, as is
the case for the regular essential matrix, this ambiguity can
be resolved by considering the cheirality constraints of the
perspective camera. This is illustrated in Figure 3.

The next result shows that it possible to determine the
correct sign without triangulating any points.

Theorem 2. Given corresponding points xo and xp, the
sign of the ortho-perspective essential matrix E is consis-
tent with positive perspective depth if and only if

xT
o Ee1e

T
2 xp > 0 (16)

where eTk ∈ R3 denotes the kth row of E.

r1

r2

−r1

−r2

λxp

−λxp

Figure 3. Twisted pair for ortho-perspective essential matri-
ces. For each essential matrix there are two possible factorization
which can be disambiguated using cheirality.

Proof. Multiplying (3) with rT1 xp we get

(rT1 xp)(mx − t1) = λ(rT1 xp)
2 (17)

thus λ > 0 if the left-hand side is positive. Using (5) we get

xT
o Ee1e

T
2 xp = xT

o

 1
0
−t1

 rT1 xp = (mx−t1)rT1 xp (18)

Remark. From the proof we can see that there is an anal-
ogous constraint using the second equation (4), which has
the opposite sign, i.e. xT

o Ee2e
T
1 xp < 0. The constraint de-

generates if eT2 xp = 0 (or eT1 xp = 0 respectively) in which
the other constraint can be used. Note that if both are zero
then xp = γr3 which is the right epipole (see Section 2.4).

2.4. Other Properties of the Essential Matrix

The following properties of the ortho-perspective essen-
tial matrix E can easily be verified by explicit calculation.
Factorization. The matrix E can be factorized as

E = [(t1, t2, 1)]×DR =

 0 −1
1 0
−t2 t1

[ rT1
rT2

]
(19)

Epipoles. The epipoles of E are given by

Eep = 0 =⇒ ep = r3 = r1 × r2 (20)

ETeo = 0 =⇒ eo = (t1, t2, 1)
T (21)

Singular Values. Assuming E is scaled such that first row
is a unit vector the singular values of E are

σ1 =
√

1 + t21 + t22, σ2 = 1, σ3 = 0 (22)

This was also shown in [27].

Remark. For t1 = t2 = 0 the singular values become
σ1= σ2 = 1, σ3 = 0. In this case that the ortho-perspective
essential matrix is also a perspective essential matrix, cor-
responding to the same relative rotation but with forward
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translation, i.e. t = (0, 0, 1)T . The left epipole is then in
the image center, yielding radial epipolar lines. To under-
stand why the matrices coincide in this configuration, note
that the differences between the orthographic and the per-
spective projection is only in the radial scaling, which in
this case is also along the epipolar lines.

2.5. Projection to the Essential Manifold

In some applications it is desirable to find the closest es-
sential matrix to a given 3× 3 matrix, i.e. to solve

min
E
‖E − Ê‖2F s.t. E is an essential matrix. (23)

for a given matrix Ê ∈ R3×3. This is for example use-
ful as a post-processing step when estimating E from non-
minimal number of points using DLT [5]. For regular es-
sential matrices this projection has a nice closed form ex-
pression in terms of the singular value decomposition (by
simply setting the singular values to 1,1,0). Unfortunately
things are not as easy in the ortho-perspective case. Instead
we now present a simple two-step approach which approxi-
mately solves (23) for ortho-perspective essential matrices.
1. Estimating the right epipole. We start by estimating the
right epipole from Ê by minimizing

min
ep

‖Êep‖2F s.t. ‖ep‖ = 1 (24)

This problem has a closed form solution given by the right
singular vector corresponding to the smallest singular value.
2. Projection with fixed epipole. Next we solve the pro-
jection assuming the right epipole is known, i.e.

min
E
‖E − Ê‖2F s.t. E o-p. essential and Eep = 0 (25)

Let B ∈ R3×2 be an orthonormal basis for the vectors or-
thogonal to ep, i.e. BTep = 0 and BTB = I2. The ortho-
perspective essential matrices that have ep as a right epipole
can then be parameterized as

E =

[
Q

x y

]
BT , Q ∈ R2×2, QTQ = γI (26)

The cost in (25) can then be simplified as∥∥∥∥[ Q
x y

]
BT − Ê

∥∥∥∥2
F

=

∥∥∥∥[ Q
x y

]
− ÊB

∥∥∥∥2
F

(27)

The optimization problem now separates in the unknowns
(Q, x and y) and we can solve for them independently.
While x, y are unconstrained and given directly as the third
row of ÊB, we have constraints that Q should be a scaled
orthogonal matrix. Fortunately this has a closed form solu-
tion given by computing the SVD of the top 2× 2 block of
ÊB and replacing the singular values with their average.

Once we have recovered Q, x and y we can compute the
scale γ and convert back into the parameters from (5) with[

r1
r2

]
=

1

γ

[
0 1
−1 0

]
QBT , [t1 t2] = −

1

γ2
[x y]QT .

While this projection step does not solve (23) optimally,
we found that it gives very good solutions in practice. In
Section 5.1.1 we show experimental results verifying this.

In [27] the authors proposed a similar approach for pro-
jecting onto an ortho-perspective essential matrix which in-
stead first solve for the epipole in the orthographic camera
(or equivalently the translation). To recover the rotation the
method then computes another 3× 3 singular value decom-
position (compared to 2 × 2 in the proposed method). Fur-
thermore, as we will show in the experimental evaluation
(Section 5.1.1), this approach yields less accurate estimates.

2.6. Unknown Focal Length

So far we have assumed that the perspective camera was
calibrated. We now turn our focus to the scenario where the
perspective focal length fp is unknown and needs to be esti-
mated. From the fundamental matrix F we get the essential
matrix by multiplying with K from the right, E = FK,
with K = diag(fp, fp, 1). Inserting this expression for E
in (7) and multiplying with K−1 from the right gives the
following constraint

2FKKTFTDF = tr
(
FKKTFTD

)
F. (28)

In this expression the focal length only appears as β = f2p ,
and we can rewrite the expression in the following way;

FKKTFD = βFDFT +F (I−D)FT = βA+B. (29)

We can now rewrite (28) as

2βAF + 2BF = βtr (A)F + tr (B)F, (30)

which can be written[
2Afi − tr(A)fi 2Bfi − tr(B)fi

]︸ ︷︷ ︸
Mi

[
β
1

]
= 0, i = 1, 2, 3.

(31)
where fi is the ith column of F . Since (31) should have a
solution, we get that necessary conditions for a fundamen-
tal matrix F with an unknown focal length are that all 2× 2
sub-determinants of Mi should vanish. These constraints
are nine polynomials of total degree six in the entries of F ,
and define together with the rank-2 constraint, the manifold
of possible ortho-perspective fundamental matrices with an
unknown focal length. It is also easy to verify (e.g. using a
computer algebra system such as Macaulay2) that the ideal
associated with this manifold is generated by the subset of
(three) equations for i = 3 together with the rank-2 con-
straint. All three equations include the factor fT3Df3 which
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can be divided away. So in essence the manifold is gen-
erated by three polynomials of total degree four and one of
degree three (the rank constraint). This is similar to the case
for the ordinary essential matrix with one-sided unknown
focal length found in [9].

3. Non-Central Cameras
In the previous sections we considered the case of a cen-

tral perspective camera, i.e. the viewing rays of the perspec-
tive camera intersect in a single point (the camera center).
Now we extend our analysis to the setting of non-central
cameras (sometimes called generalized cameras) where the
viewing rays do not intersect. This can for example model a
calibrated multi-camera system, or as we will show later, it
can be used to register a full Structure-from-Motion model
to the orthographic image. Each viewing ray can then orig-
inate from different cameras in the Structure-from-Motion
reconstruction and thus have different camera centers.

Now consider a correspondence between an ortho-
graphic camera and a non-central camera. Again let xo

denote the image point in the ortho-image and parameter-
ize the viewing ray in the non-central cameras as λxp + cp.
In contrast to a central camera, the non-central camera fixes
the scale of the reconstruction. Thus to register to the ortho-
image (which also fixes the scale) we need parameterize the
relative scale change s. The projection equations are

mx = rT1 (λxp − scp) + t1, my = rT2 (λxp − scp) + t2 (32)

Eliminating the depth λ we get

rT1 xp(my − t2 + srT2 cp)− rT2 xp(mx − t1 + srT1 cp) = 0
(33)

This constraint can be rewritten as xT
o Exp =

−s(rT1 xp)(r
T
2 cp) + s(rT2 xp)(r

T
1 cp) = (34)

scTp (r1r
T
2 − r2r

T
1 )xp = −scTp [r3]×xp (35)

where r3 = r1 × r2. The generalized epipolar constraint is

xT
o Exp + scTp [r3]× xp = 0 (36)

This constraint is analogous to the classical generalized
epipolar constraint derived in [23] where it was derived us-
ing Plücker lines. In the supplementary material we show
how (36) can also be derived in a similar fashion.

4. Minimal Solvers
In this section we derive minimal solvers for the ortho-

perspective essential matrix. Due to the very similar struc-
ture as the regular essential matrix, similar solution strate-
gies are applicable. The ortho-perspective essential matrix
has five degrees of freedom and can thus be minimally esti-
mated from five point correspondences.

x3 x2y xy2 y3 x2z xyz y2z xz2 yz2 z3 x2 xy y2 xz yz z2 x y z 1
f1 1 m1

f2 1 m2

f3 1 m3

f4 1 m4

f5 1 m5

f6 1 m6

f7 1 m7

f8 1 m8

f9 1 m9

det(E) 1 m10

eT
1 e2 1 m11

|e1|2 − |e2|2 1 m12

Figure 4. Elimination template for o.p. essential matrix solver.
The first nine equations fi are the trace-constraints (7) and the
other equations are the original constraints on E from (6).

Each point correspondence yields one linear constraint,
xT
o Exp = 0. From five correspondences we can extract a

4-dimensional linear space of possible 3× 3 matrices,

E = E1x+ E2y + E3z + E4w (37)

Since the constraints are homogeneous we can fix the scale
by setting w = 1. Inserting (37) into the trace constraints
(7) and det(E) = 0 yields 10 cubic equations in x, y, z.
This equation system has nearly identical structure to clas-
sical five-point algorithm and indeed we find that this sys-
tem also has 10 solutions. It would here be possible to
directly apply the same solution strategy as in the classi-
cal five point solvers (see e.g. [14, 22, 4]). However, in
the ortho-perspective setting we know that the trace con-
straints allow for additional complex solutions of the form
(15). These solutions can be removed by adding the ad-
ditional constraints from (6). Except for the determinant,
these equations are quadratic in terms in the nullspace pa-
rameters x, y, z. Similar to [22] we derive an action matrix-
based solver. We stack all equations into a matrix where
each column contains the coefficients for one monomial.
Performing linear elimination on this allow us to directly
recover the action matrix for multiplication with x asMx =

[−m3;−m5;−m6;−m8;−m11;−m12;u2;u5] (38)

where mi follows the notation from Figure 4 and ui is the
ith canonical basis vector, i.e. u1 = (1, 0, . . . , 0) etc. From
the eigenvectors of Mx we can then recover the solutions.
Note that this approach is identical to [22], except that the
two additional constraints allow us to eliminate two extra
monomials (using the last 8, instead of the last 10).
Remark. We also experimented with only using the original
constraints (6) derived in [27]. Applying the method from
Larsson et al. [10] yields a solver with template size 42×54
returning 12 solutions. The four additional solutions are
complex and have eT1 e1 = eT2 e2 = 0. More comparisons
can be found in the supplementary material.

4.1. Unknown focal length

For the case with an unknown focal length for the per-
spective camera we have an additional parameter to esti-
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mate, and hence we need minimally six point correspon-
dences to solve for the relative pose. Each point corre-
spondence yields one linear constraint, xT

o Fxp = 0, where
E = FK, with K = diag(fp, fp, 1). From six correspon-
dences we can extract a three-dimensional linear space of
possible 3× 3 matrices,

F = F1x+ F2y + F3z. (39)

We again fix the scale by setting z = 1. Inserting the
expression of F (x, y) into the unknown focal length con-
straints leads to a system of three fourth degree polynomials
in (x, y) and one third degree polynomial (p4(x, y)). These
polynomials contain the parameters (x, y) in 15 monomials.
The problem can easily be verified to have at most nine so-
lutions. We can construct a solver based on an action matrix
in the following way. We take y as action variable and

b =
[
x2y xy2 y3 x2 xy y2 x y 1

]
, (40)

as a linear basis for the quotient space. After multiplication
of the action variable y, we have the monomial vector yb,
which will still be contained in the 15 monomials from the
initial equations. We can add the two polynomials yp4(x, y)
and xp4(x, y) to our equations. Since p4(x, y) is of degree
three, these two new polynomials will be of degree four,
and not add any new monomials. These six polynomials
will directly give a compact template from which our ac-
tion matrix can be extracted by Gaussian elimination, in the
same manner as in Section 4. From the eigenvectors of the
action matrix we find x and y and from these we recover F
from (39). The focal length is then found from (31).

4.2. Non-Central

We now derive a solver for the generalized case dis-
cussed in Section 3. The problem (including estimating the
relative scale) is minimal with six correspondences. Each
correspondence gives a linear constraint (36) on E and sr3.
From these we can extract a 12 − 6 = 6 dimensional
nullspace basis, such that the solutions can be written

[E sr3] =

6∑
k=1

αkBk, Bk ∈ R3×4. (41)

Since the constraints are homogeneous we can fix the scale
by setting α6 = 1. From the trace constraints (7) and (6) we
get polynomial equations in α1, ..., α5. However, sr3 is not
independent from E and we must also enforce Er3 = 0,
yielding three additional quadratic equations in αk. Apply-
ing the solver generator from Larsson et al. [10] we find that
the problem has 16 solutions. The resulting solver performs
linear elimination on a 170×186 linear system followed by
solving a 16× 16 eigenvalue problem.

Remark. Note that the proposed 6-point solver does not
correspond to the regular generalized 6-point relative pose
solver since it also estimates a scale between the reconstruc-
tions. As far as we are aware, there is currently no known
minimal solution for the regular generalized relative pose
problem with unknown scale (which would use 7 points).

5. Experiments
5.1. Synthetic Experiments

To evaluate the numerical stability of the proposed
solvers we generate synthetic scenes. We uniformly sam-
ple image points in a 1000×1000 image for the perspective
camera. The field-of-view for the perspective camera is uni-
formly sampled from [45◦, 90◦]. The points are then back-
projected to a random depth and reprojected into a randomly
oriented orthographic camera. The orthographic camera’s
translation and the scene scale is then set such that ortho-
graphic image also becomes 1000 × 1000. For the gen-
eralized solver we randomly sample different camera cen-
ters for each correspondence. For the experiment we gener-
ate 10,000 random noise-free instances where we apply the
solvers from Sections 4–4.2. Figure 5 show the distribution
of the errors in the estimated epipolar geometries. All of the
proposed solvers yield stable estimates. The runtime of our
MATLAB implementations (on a 2.5 GHz i7 Macbook Pro)
are 0.5ms, 0.3ms and 0.85ms for the three full solvers.

5.1.1 Evaluation of Essential Matrix Projection

In Section 2.5 we presented a two-step projection method
which approximately finds the closest ortho-perspective es-
sential matrix to a given 3×3 matrix. We now evaluate how
close this approximation comes to the optimal projection.
Similarly to the previous section we generate random syn-
thetic instances. For each image we add zero-mean gaussian
noise to the image correspondences and estimate the essen-
tial matrix using DLT [5] from 25 point correspondences.
Due to the noise, these matrices will not satisfy the internal
constraints. We compare projecting with the method from
Section 2.5 with the method from Zhang et al. [27]. We
also include the result of local refinement initialized both
from the ground truth essential matrix (used to generate the
scene) and from the result the two methods, and the best
result is kept (denoted GT). Figure 6 shows the average rel-
ative errors (‖E−Ê‖F /‖Ê‖F ). The proposed method yields
results very close to the ground-truth projection.

5.2. Application: Approximating Cameras with
Large Focal Lengths as Orthographic

For cameras with very large focal lengths (narrow field-
of-view) the viewing rays are approximately parallel. In
this section we experiment with approximating such cam-
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Figure 5. Numerical Stability Evaluation. The figures show the distribution of the log10 relative errors for 10,000 synthetic instances
(see Section 5.1 for more details). Each of the three proposed solvers yield stable estimates.
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Figure 6. Projection onto Essential Manifold. The average rela-
tive distance ‖E− Ê‖F /‖Ê‖F after projection for varying noise.
The proposed projection method gives better estimates compared
to the method from Zhang et al.[27] and is very close to optimal.

eras with the orthographic projection model. We consider
a dataset containing 1557 DSLR images with varying fo-
cal lengths (24mm, 50mm, 105mm, 150mm, 300mm and
600mm). We create a psuedo-ground truth by reconstruct-
ing the scene using COLMAP [18]. For the experimental
setup we then select pairs of images; one with a shorter fo-
cal length (24mm, 50mm, 105mm) and one with a larger
(150mm, 300mm, 600mm). The image with the larger focal
length we approximate as an orthographic camera. We con-
sider all pairs with at least 100 (SIFT [13]) matches which
gave 10237 (150mm), 9391 (300mm) and 3313 (600mm)
pairs respectively. Note that the extreme difference in field-
of-view (105.8◦ for 24mm and 3.4◦ for 600mm) leads to
some very challenging image pairs (see Figure 7).

For each image pair we estimate the epipolar geometry
using RANSAC with the ortho-perspective essential ma-
trix solvers; 5-point (OPE; Section 4) and the 6-point
(OPE+fp; Section 4.1) which estimates focal length for
the perspective camera. The RANSAC is limited to 1000
iterations and the best model is selected with MSAC-
scoring [25] on the symmetric epipolar error. We also
compare with solvers that try to jointly estimate the fo-
cal length; the 6-point solver from [9] (fo+E) which es-
timates one-sided focal length (used to estimate the larger
focal length) and the 7-point fundamental matrix solver [6]
(F = fo+E+fp) which estimates both focal lengths. For the
solvers which require partial calibration (OPE and fo+E)
we use the focal lengths from the EXIF tags.

OPE fo+E OPE+fp F E

fo 5pt. 6pt. [9] 6pt. 7pt. [6] 5pt. [14]

150mm
(N=10237)

AUC10 16.05 44.52 18.66 44.13 69.53
F1 0.87 0.92 0.90 0.93 0.90

300mm
(N=9391)

AUC10 27.13 34.71 25.36 31.21 67.05
F1 0.91 0.93 0.93 0.94 0.92

600mm
(N=3313)

AUC10 37.78 21.76 29.20 20.18 59.09
F1 0.92 0.93 0.93 0.94 0.92

Table 1. Ortho-approximation for large focal lengths. The table
shows the AUC for 10 degrees rotation error and the F1 score of
the inliers w.r.t. the ground truth inliers. Orthographic approxima-
tion works better for large focal lengths whereas the performance
degrades for the solver which tries to estimate the focal length
(OPE vs. fo+E). The same trend occurs when the focal length
in the perspective camera is unknown (OPE+fp vs. F ).

Figure 7. Example image pairs from the evaluation in Section 5.2.
The focal lengths are between 24mm and 600mm.

Table 1 shows the area-under-curve (AUC) for the ro-
tation error (i.e. the number of successful trials up to some
threshold as a percentage of the complete square) and the F1
score for the inlier classification (compared to the structure-
from-motion ground truth).

The experiment shows that as the focal length in-
creases the orthographic approximation improves. In addi-
tion to requiring one less point-correspondence, the ortho-
perspective solvers show improved accuracy for large focal
lengths compared to the fully-perspective counterparts. We
believe this is partially due to the difficulty of estimating
the focal length for the extremely narrow field-of-view cam-
eras. For comparison we also show the result of estimating
the regular essential matrix [14] (using known intrinsics).

5.3. Application: 2D Radar Calibration

The last years have seen a renewed interest in radar ap-
plications, especially in combination with image data. The
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Figure 8. Aligning Structure-from-Motion Reconstructions with Orthographic Images. The images show SfM reconstructions (3D
points in green, cameras in blue) overlayed on ortho-photo. Top left: Grossmünster Church [11]. Top middle:. Two disjoint reconstructions
of the San Marco square (green) and the Doge Palace (magenta) registered to the same orthophoto. Top right: Statue of Liberty [15]
registered to a 45◦ degree satellite image. Bottom: Lund Cathedral [15]. All ortho-images are taken from Google Maps [1]
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Figure 9. Reprojection errors for the radar experiment using the
proposed method. Left: Camera image. Right: Radar image.

attraction of the combination of radar and image data is
their complementary nature and failure modes.We show
here how our theory can be applied to relative calibration
of a 2D radar with a camera. For our calibration setup, per-
sons walking were tracked both in the radar and a calibrated
camera, and the goal is to automatically find the relative
pose between the camera and the radar. We model the radar
using an orthographic camera, and use our minimal 5-point
solver in RANSAC. Reprojection results can be seen in Fig-
ure 9. See the supplementary for more results and details.

5.4. Application: Aligning Structure-from-Motion
Reconstruction to Overhead Images

In this section we consider the problem of aligning
Structure-from-Motion reconstructions with orthographic
images using the generalized solver from Section 4.2. We
assume that we have a sparse set of 2D-2D correspondences
between different images in the SfM reconstruction and

the orthographic image. For the experiment we manually
created around 50-100 correspondences in total. However
these correspondences might be automatically found using
aerial to ground matching methods (see e.g. [19]) depend-
ing on the viewing angle of the orthographic image. We
consider five datasets from [15, 11]. Using COLMAP [18]
we reconstruct the scenes. The cameras from each recon-
struction is now considered as a single generalized camera
which we want to register to the orthographic image. Us-
ing the solver from Section 4.2 in RANSAC we estimate
the similarity transform aligning the reconstruction with the
ortho-image. Figure 8 shows the aligned reconstructions.
In Figure 8 (Top middle) we show two different reconstruc-
tions co-registered to the same ortho-image.

6. Conclusions
We have in this paper presented a unifying theory for

epipolar geometry in the mixed case of orthographic and
perspective projections. We have derived a number of ba-
sic properties of the ortho-perspective essential that can be
used to construct efficient minimal solvers for the calibrated
case, the case with unknown focal length and for general-
ized cameras. These solvers can be used for bootstrapping
estimation in a number of different applications, including
aligning Structure-from-Motion reconstructions with ortho-
graphic cameras, approximating cameras with large focal
lengths, and in radar and camera extrinsic calibration.
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