
CPFN: Cascaded Primitive Fitting Networks for High-Resolution Point Clouds

Eric-Tuan Lê1∗ Minhyuk Sung2∗ Duygu Ceylan3 Radomir Mech3 Tamy Boubekeur3 Niloy J. Mitra1,3

1University College London 2KAIST 3Adobe Research

Abstract
Representing human-made objects as a collection of

base primitives has a long history in computer vision and
reverse engineering. In the case of high-resolution point
cloud scans, the challenge is to be able to detect both
large primitives as well as those explaining the detailed
parts. While the classical RANSAC approach requires case-
specific parameter tuning, state-of-the-art networks are lim-
ited by memory consumption of their backbone modules
such as PointNet++ [27], and hence fail to detect the fine-
scale primitives. We present Cascaded Primitive Fitting
Networks (CPFN) that relies on an adaptive patch sam-
pling network to assemble detection results of global and
local primitive detection networks. As a key enabler, we
present a merging formulation that dynamically aggregates
the primitives across global and local scales. Our evalua-
tion demonstrates that CPFN improves the state-of-the-art
SPFN performance by 13 − 14% on high-resolution point
cloud datasets and specifically improves the detection of
fine-scale primitives by 20 − 22%. Our code is available
at: https://github.com/erictuanle/CPFN

1. Introduction
Representing 3D shapes with a compact set of atomic

primitives is a well-established idea that has been evolved
over the decades [2, 23]. While the idea has been mainly
exploited for machine perception in a way to parse objects,
most human-made objects are indeed modeled as a com-
position of geometric primitives. In CAD, modeling tech-
niques such as Constructive Solid Geometry (CSG) [18]
or building a binary tree of simple primitives, have been
conventional practices. Hence, for scanned data of human-
made objects, converting them into a form to reflect how
they were modeled is important not only for the perception
but also for enabling editing capabilities in downstream ap-
plications. The problem of precisely fitting primitives to
the input scan is, however, more challenging than coarsely
parsing and abstracting the shape.

For such a model fitting problem, RANSAC [7] is the de

∗This work was partly done when E. Lê interned and M. Sung worked
at Adobe Research.

SPFN CPFN

Figure 1. A side-by-side comparison between SPFN [20] and our
CPFN. Our cascaded networks are designed to accurately detect
and fit small primitives in a high-resolution point cloud.

facto standard technique in computer vision. The algorithm
of Schnabel et al. [31] or Li et al. [21] which iteratively runs
RANSAC to find fitting primitives has been implemented in
popular geometry processing libraries such as CGAL [24]
and applied to solve the primitive fitting problem with many
real scan data. However, such an unsupervised approach of-
ten suffers from the combinatorial complexity nature of the
problem. From an optimization perspective, different prim-
itive configurations can potentially result in similarly small
fitting errors, although the iterative heuristic algorithm can-
not take into account all the possible configurations. Fur-
thermore, an undesired set of primitives can even result in
a smaller fitting error due to noise in the input. While the
RANSAC-based approach deals with the noise to some ex-
tent with some threshold parameters, the input-specific pa-
rameter tuning requires substantial manual effort.

To tackle the challenge, Li et al. [20] recently proposed a
supervised framework called SPFN that learns the best con-
figuration of primitives for each 3D scan from a large col-
lection of CAD data. Instead of directly regressing the prim-
itive parameters, their network employs PointNet++ [27] as
an encoder of the input point cloud and predicts per-point
information, including association from a point to a primi-
tive, primitive type, and surface normal. A subsequent dif-
ferentiable module computes the best primitive parameters
minimizing the fitting error through an analytic formulation.

7457

While SPFN [20] demonstrated successful results, the
challenge remains in handling high-resolution data. Even
affordable 3D scanners are now capable of capturing local
geometric details with high-resolution (e.g., point sets with
100k+ points). However, efficiently processing the high-
resolution 3D data in neural networks raises a memory limit
issue with consumer GPUs. Even with a simple point cloud
processing architecture such as PointNet [26], the order of
10k points is the limit in training, whereas scans may in-
clude points in the order of 100k to 1M. Downsampling the
input point cloud results in information loss for fine-scale
details and thus fails to fit small primitives (see Figure 1 for
example results with missed features by SPFN on typical
high-resolution scans).

In this work, we propose a novel framework named Cas-
caded Primitive Fitting Networks (CPFN), which is particu-
larly developed to capture local details in scans and fit small
primitives. Our framework cascades two fitting networks:
one for processing the entire input point cloud, and the other
for processing local patches of the input. Both of them are
SPFNs [20] but trained separately with global/local input
data. Our design breaks the problem into three steps: first,
adaptively sampling patches in regions of small details; suit-
ably regressing primitives in (detected) regions of fine de-
tails; and merging the global and local primitives to get a
multi-scale output.

The framework includes a patch selection network
trained to detect regions with small primitives so that lo-
cal patches fed to the local fitting network can be sampled
in those regions at test time. Our key idea is in the merg-
ing algorithm that aggregates the per-point outputs of both
networks and produces the final fitted primitives. The merg-
ing process is formulated as a binary program, although we
empirically found that a Hungarian algorithm [17] can ob-
tain a near-optimum solution in most cases. In experiments,
we demonstrate that our cascaded networks outperform a
single SPFN trained with downsampled point clouds in fit-
ting primitives in all scales with a performance boost of
13− 14%. The improvement reaches 20− 22% for smaller
primitives. We also show that the fitting performance of the
local fitting network can be improved when it takes global
contextual information of the entire input point cloud from
the global fitting network.

In summary, our key contributions are as follows.

• We propose CPFN, a primitive fitting framework lever-
aging two cascaded networks to adaptively detect both
small and large primitives.

• Our merging algorithm ensembles the per-point infor-
mation predicted by the two networks efficiently and
produces the final fitted primitives.

• Our experiments demonstrate that the performance of
the local fitting network benefits from feeding contex-
tual information learned by the global fitting network.

2. Related Work
We review previous work leveraging neural networks in

primitive fitting as well as recent work on processing high-
resolution point clouds using neural networks. We refer the
reader to the recent survey [15] for a discussion of classical
approaches, particularly RANSAC-based methods.

Neural Geometric Primitive Fitting. Neural-network-
based approaches have been widely investigated in decom-
posing 3D shapes into various types of primitives. To
our knowledge, Tulsiani et al. [37] and Zou et al. [39]
were the first proposing neural decomposition. They pre-
sented networks fitting cuboids to the input 3D shape repre-
sented as either voxels or a depth map. Subsequent works
have extended this idea. For instance, Sun et al. [35] cre-
ated an architecture predicting a hierarchical structure of
cuboids; Smirnov et al. [34] suggested a new loss function
based on distance fields and fitted rounded cuboids; while
Lin et al. [22] introduced a reinforcement-learning-based
approach fitting connected trapezoid boxes sequentially so
that the final output becomes a scaffold mesh. Follow up
work has also focused on fitting different types of primi-
tives. As a generalization of cuboids, Paschalidou [25] used
superquadrics as geometric primitives; Gadelha et al. [8]
explored the use of sphere meshes in the context of learn-
ing a generative model of man-made shapes; while Chen et
al. [5] and Deng et al. [6] concurrently proposed to repre-
sent input shapes as a convex set of planes that recursively
partition the space. Genova et al. [10, 9] used implicit rep-
resentations, namely Gaussians, to explore locality. The
primitive types used in these works, however, have limited
expressibility, and hence these works mostly focused on ab-
stracting the input shapes with a coarse fitting.

Some notable efforts considered multiple primitive types
in the fitting. Sharma et al. [32] and Kania et al. [16] in-
troduced networks predicting a CSG structure from a raw
geometry with various types of primitives. However, the
precision of fitting was limited since the loss was defined
with occupancies in a low-resolution voxel grid. Li et
al. [20] proposed SPFN, a framework for more precisely
fitting multiple primitives including plane, sphere, cylinder,
and cone. It was further extended by Sharma et al. [33] to fit
B-spline patches as well. While showing impressive results,
both approaches employ PointNet++ [27], an off-the-shelf
architecture, for encoding the input point cloud and thus are
limited by the point cloud size (e.g., order of 8k points).
Our method extends SPFN in a novel cascaded framework
that can fit primitives at various scales to a high-resolution
point cloud (e.g., order of 128k points).

Neural Networks for High-Resolution Point Clouds.
Recent work has focused on processing high-resolution 3D
data as input in neural networks, particularly to handle

7458

Primitive Parameter
Estimation

Neural Network

Non-Neural Module

Local SPFN
(Sec 3.2)Pa

tc
h

Sa
m

pl
in

g

Pr
im

iti
ve

 M
er

gi
ng

(S
ec

 3
.3

)

Patch
Selection
Network
(Sec 3.4)

Global
SPFN

(Sec 3.1)

TrainingD
ow

n
sa

m
p

lin
g

Input
Point Cloud

Figure 2. A diagram of CPFN. CPFN includes two SPFNs [20]: one for the entire object and the other for local patches. Contextual
information is fed from the global SPFN (Section 3.1) to the local SPFN (Section 3.2). Patch Selection Network (Section 3.4) takes a
downsampled point cloud as input and determines where the local patches should be sampled at test time. The per-point predictions from
both SPFNs are integrated in the merging step (Section 3.3).

large-scale indoor/outdoor scans and detect and/or segment
objects. In terms of voxel representations, OctNet [29] and
SparseConvNet [11] are examples introducing efficient ar-
chitectures to avoid computation in empty space. Partic-
ularly, SparseConvNet has shown the best performance in
3D indoor scene segmentation, as demonstrated by Han et
al. [12]. The others introduced networks that internally vox-
elize input point clouds to utilize 3D convolutions [28, 4].
Although these architectures perform well in scene segmen-
tation, they are not suitable for fitting problems since the
voxelization causes significant discretization errors. As an
alternative to voxelization, Tatarchenko et al. [36] proposed
to exploit 2D convolutions by projecting points in a local
region to a tangent plane. However, this architecture is sen-
sitive to errors in surface normal estimation. Other previous
work on neural point cloud processing proposed to either
cluster points and generate object candidates for instance
segmentation [19, 3, 14] or concatenate hierarchical down-
sampling and upsampling modules as an encoder-decoder
architecture for semantic segmentation [13, 38]. Neither
of these approaches are directly applicable to our problem
since we need to jointly solve for both the semantic and in-
stance segmentations. Our method operates directly at the
point level and ensembles fitting results obtained from both
the coarse global point cloud as well as high-resolution local
patches in a novel merging step to solve the joint segmenta-
tion problem.

3. Method
In this section we describe our cascaded primitive fit-

ting networks. Given an input point cloud with N points
(where N is 128k in our experiments), our networks operate
at two levels, namely global and local. We utilize a global
primitive fitting network, SPFN [20], trained on downsam-
pled versions of the input point clouds (i.e., trained on point
clouds of size n where n ≪ N) due to high memory foot-
prints of point cloud processing backbone modules such as
PointNet++. While the trained network can be tested on the
original point cloud at inference time, it is likely to miss
the small primitives representing fine scale details since

they are lost in the downsampling process during training.
Hence, we train an additional version of SPFN that operates
on local patches of the high resolution point clouds (Sec-
tion 3.2). Given the local predictions for patches and the
global predictions for the rest of the point cloud, the core
of our method is a novel merging step (Section 3.3) that
consolidates all the predictions. In order to ensure that the
capacity of the local network is utilized to learn the predic-
tion of small primitives, at training stage we utilize a smart
strategy to select the training patches from regions of the
point cloud that contain such primitives. At inference time,
we utilize a patch selection network (Section 3.4) that pre-
dicts the regions that are likely to contain small primitives
and thus should be processed with the local network. In the
following, we first provide a short summary of the SPFN
architecture and discuss the different stages of our method
in detail as presented in Figure 2.

3.1. Supervised Primitive Fitting Network [20]
SPFN [20], the Supervised Primitive Fitting Network, is

an end-to-end network trained to detect the set of primitives
(specifically, planes, spheres, cylinders, and cones) of an
input 3D point cloud. SPFN first predicts three per-point
properties; a segment label W, normal N, and primitive
type T. Given such predictions, the actual primitive param-
eters are estimated in a differentiable manner. Ground truth
per-point primitive associations and primitive fitting errors
are used as strong supervision. Specifically, the loss is com-
posed of multiple terms: (i) segmentation loss Lseg, (ii) nor-
mal loss Lnorm, (iii) primitive type loss Ltype, (iv) residual
loss Lres, i.e., fitting loss, and (v) axis loss Laxis that consid-
ers the normal of a plane or the axis of a cylinder or a cone:

L = Lseg + Lnorm + Ltype + Lres + Laxis. (1)

When computing the loss, the predicted primitives are first
mapped to the ground truth primitives using the Hungar-
ian matching algorithm to find the pairs of primitives that
maximize the intersection over union across the matched
primitives. Per-point and per-primitive losses are computed

7459

based on this correspondence. We refer the reader to the
original paper [20] for details.

Our pipeline leverages the SPFN framework as it is in
the global branch. In addition, we train a local version of
SPFN that operates on local patches sampled from the high
resolution point cloud. We provide additional contextual
information to the local SPFN to boost the performance of
the local predictions as we will discuss in Section 3.2.

3.2. Local SPFN
One of the key components of our pipeline is the local

SPFN module, which aims to predict small primitives in
fine-scale regions of the input point clouds. Given a patch
sampled on the input point cloud, local SPFN predicts the
same per-point features, i.e. the segment label Wp, normal
Np, and primitive type Tp as the global SPFN. While we
keep the architecture of the original SPFN fixed, we provide
additional global contextual information as input. Specifi-
cally, given the point cloud representing an object o, we first
extract a latent vector, lo, for the entire point cloud using the
global SPFN. Similarly, for each patch i, we extract patch
features, lgi , that we obtain for the seed point of the patch
using the global SPFN. We concatenate both the object and
patch features obtained from the global SPFN to the latent
code of the patch li generated by the local SPFN encoder:
l
′

i = [li, lo, lgi]. We utilize l
′

i as input to the local SPFN
decoder. Our experiments show that providing additional
contextual information boosts the performance of the local
SPFN as discussed in Section 4.4.

3.3. Segment Merging
Given a local patch, the local SPFN predicts a segmen-

tation label for each point in the patch where each segment
corresponds to a primitive. Our next step is to merge such
local per-patch predictions with the predictions of the global
SPFN to compute the final segmentation, i.e., primitive de-
composition of the high resolution point cloud.

When each local SPFN predicts a maximum of Kloc seg-
ments, we represent the per-point segment label predic-
tions of the i-th patch with a probability matrix, Wi

loc ∈
[0, 1]N×Kloc , which is defined over the entire N number of
input points:

Wi
loc =

pi1,1 pi1,2 . . . pi1,Kloc

pi2,1 pi2,2 . . . pi2,Kloc
...

...
...

piN,1 piN,2 . . . piN,Kloc

(2)

with pia,b = P(Pa ∈ Si
b), a ∈ {1, .., N}, b ∈

{1, ..,Kloc}, denoting the probability of point a belonging
to segment b. Note that a point that does not belong to the
patch has zero probability.

We represent the prediction results of the global SPFN
which predicts a total of Kglob segments in a similar matrix
representation, Wglob. We then stack each of the segmenta-
tion matrices from M patches processed by the local SPFN
and the global segmentation matrix:

W =
[
W1

loc W2
loc . . . WM

loc Wglob
]
. (3)

The goal of the merging step is to compute the one-to-
many relationship between the final set of primitives in the
input and the individually predicted segmentations. Assum-
ing there are a total of Km primitives in the final decompo-
sition, this relationship can be written as a binary matrix
C ∈ {0, 1}Km×(M ·Kloc+Kglob).

The optimum assignments between the individually pre-
dicted segmentations and the final set of primitives need
to satisfy certain constraints. Specifically, each segment
should be mapped to exactly one final primitive: CT1Km =
1M ·Kloc+Kglob . We further enforce that two segments pre-
dicted from the same local patch (or global SPFN) should
not be merged under the assumption that the network will
avoid over-segmentation: CA ≤ 1Km×(M+1), where A ∈
[0, 1](M ·Kloc+Kglob)×(M+1) is a matrix indicating the associ-
ation between segments and patches (or global SPFN). Fi-
nally, we prefer to assign two segments Si

k and Sj
l predicted

from patches i and j to the same final primitive, i.e., merge
them, if they have a significant amount of overlap measured
as the number of points that belong to both segments. Since
I = WTW represents the intersections between segments
as sums of joint probabilities for each point, we find C
by maximizing

∑
i,j Iij

(
CTC

)
ij

= tr
(
ICTC

)
, meaning

that we maximize the intersections between the segments
assigned to the same final primitive.

Finally, the final assignment task is formulated as the fol-
lowing binary quadratic programming problem:

C∗ =argmax
C

tr
(
ICTC

)
s.t. CT1Km = 1M ·Kloc+Kglob

CA ≤ 1Km×(M+1).

(4)

Finding the optimum CTC instead (a matrix indicating
whether two segments are merged or not) also becomes a bi-
nary semidefinite programming problem. It typically takes
a huge amount of time to solve either the binary quadratic
or semidefinite programming. Empirically, we found that
a simple heuristic based on Hungarian algorithm [17] can
provide sufficiently good results while being significantly
faster. In I, we find the element that corresponds to the pair
of segments with maximum intersection and mark the cor-
responding indices in CTC as one, i.e., the corresponding
pair of segments is merged. We then zero out all other el-
ements in I that violate the constraints, thus removing any
conflicting segment pairs. These two steps are iterated until
no segments can be further merged.

7460

Once we recover C∗, we obtain the final association be-
tween the individual points in the input point cloud and
the final primitives by computing W|C∗T |∧, where X∧

is a column-wise l1-normalization of X. The output ma-
trix can be considered as including association scores from
each point to the final primitives, and thus the primitive with
the highest score can be picked for each point. The per-
point primitive type is also decided by summing probabili-
ties across the patches including the point and choosing the
type with the highest number. Also, in order to optimize for
the corresponding primitive parameters, we need the per-
point normals which we estimate as the average of the in-
dividual patch-based estimations (we recall that a point can
potentially belong to multiple patches resulting in multiple
type and normal estimations).

3.4. Patch Selection Network
As discussed previously, our method uses a global SPFN

module to detect big primitives while relying on the lo-
cal SPFN to capture small primitives that are likely to be
missed in downsampled versions of the input point cloud.
In order to ensure the capacity of the local SPFN focuses
on small primitive regions, we propose a patch selection
strategy both for training and test time. Since at training
time we have access to ground truth primitives, we simply
sample local patches that belong to small primitives as visu-
alised by the heatmaps in Figure 3. We consider a primitive
as small if it has less than η ·N points with 0 < η < 1 (we
experiment with η values in the range [1%, 5%]). We ran-
domly sample query points on any such small primitive and
generate patches of n points using the n-nearest neighbour
search for each query point.

At test time, areas that are likely to contain small primi-
tives are unknown. One naive strategy is to randomly sam-
ple local patches to be processed by the local SPFN (see
Section 4). Instead, we design a patch selection network
that predicts a heatmap on the input point cloud to predict
such areas. The network is trained using the binary cross-
entropy loss:

Lcross = −
n∑

i=1

(yi log(pi) + (1− yi) log(1− pi)), (5)

where yi is a binary value indicating if point i belongs to a
small primitive or not and pi the estimated probability. Sim-
ilar to global SPFN, we train the patch selection network on
downsampled point clouds. However, we still test the net-
work on low-resolution point clouds which is the resolution
at which query points are sampled.

At test time, we binarize the predicted heatmap and gen-
erate a pool of points that are likely to belong to small primi-
tives. We randomly sample query points from this pool and
generate a local patch. We repeat this process until each

point in the pool is covered by at least one patch. Note that
the local patches can potentially have overlaps.

GT Segments η = 1% η = 2% η = 3% η = 4% η = 5%

Figure 3. GT Heatmap. Increasing the threshold η enlarges the set
of small primitives to sample patches from as shown in red.

4. Experiments
4.1. Dataset

We evaluate our proposed method on CAD models from
American National Standards Institute (ANSI) [1] mechan-
ical components provided by TraceParts [30]. SPFN [20]
provides the pre-processed point clouds at two resolutions
of 8k and 128k points. In our experiments, we use these
high-resolution point clouds already provided if not stated
otherwise, i.e., N = 128k.

The dataset consists of 504 categories, and we use
the same training/test splits introduced in [20], providing
13 831/3 366 models for each, respectively. Similar to the
low-resolution version of the data, the high-resolution point
clouds are preprocessed in a way to merge adjacent prim-
itives sharing the same parameters and discard extremely
tiny primitives, which have an area less than 0.5% of the
entire object. (Note that the low-resolution version dis-
carded primitives with less than 2% of the area, and thus los-
ing more small primitives than the high-resolution version.)
The point clouds are normalized to the unit sphere and also
randomly perturbed with uniform noise [−5e-3, 5e-3] along
the ground truth normal direction. The maximum number of
primitives in a given object is 28. Thus, we set Kglob = 28.

The input to our network is the noisy point cloud with
the random noise, denoted by P. The dataset also provides
512 points sampled on each of the ground-truth primitive
surfaces (denoted by {Sk}), which we use to compute the
residual errors of our predictions similar to SPFN.

To train our global SPFN, we downsample the high-
resolution point clouds to have n = 8k points using Fur-
thest Point Sampling (FPS). This ensures that we also ob-
tain points on the very tiny primitives preserved in the high-
resolution data but discarded in the low-resolution version.

To train our local SPFN, we sample patches located in ar-
eas that contain small primitives (with less than η ·N points)
based on the ground truth primitive decomposition. Specif-
ically, we first select a pool of points in the low-resolution
point cloud that belong to any of the small primitives. Then,
patches of n points are extracted from the high-resolution

7461

GT
Primitives

RANSAC
[31]

SPFN [20]

CPFN - 5%

GT Heatmap
η = 5%

Predicted
Heatmap
η = 5%

Figure 4. Primitive fitting results for RANSAC, plain SPFN and our CPFN networks. RANSAC and SPFN directly operate on the global
object failing on the small primitives. Our CPFN pipeline estimates the heatmaps corresponding to small primitives at different scales and
learns a better primitive decomposition on local patches sampled from such regions improving the detection of small primitives. Predicted
heatmaps are displayed with the Jet color map going from blue to green to red. See the supplementary for more results.

point cloud using n-nearest neighbors by randomly sam-
pling query points from our pool. The sampling process
stops when all points in the pool are covered by a patch.
Each patch is then centered at the origin and scaled to the
unit sphere. Per-point normals and primitive parameters are
modified to take into account these transformations. We set
Kloc = 21 which is the maximum number of primitives ob-
served on a single patch.

4.2. Evaluation metrics
We use the same seven evaluation metrics reported

in [20]: (i) segmentation mean intersection over union
(mIoU) in %, (ii) mean primitive type accuracy in %, (iii)
mean point normal difference in degrees, ◦, (iv) mean prim-
itive axis difference in degrees, ◦, (v) mean/std. {Sk} resid-
ual, (vi) {Sk} coverage in % and (vii) P coverage in %.

(i), (ii) and (iv) are computed for all primitives and are
then averaged for each point cloud. As mentioned previ-
ously, the correspondence between the ground truth and pre-
dicted primitives is computed with the Hungarian matching
algorithm so that the mIoU is maximized. In these metrics,
we weight each primitive the same independently from their
scales. (iii) is computed for each point and then averaged
for all points within the point cloud.

(v) assesses the fitting error of each predicted primitive
Sk using the 512 points pre-sampled on the assigned ground
truth primitive surfaces. (vi) computes for each primitive
the proportion of the pre-sampled points that are closer to
the predicted primitive surface than an ϵ distance. Both (v)
and (vi) are then averaged for each point cloud.

(vii) reports the proportion of points P that are closer to
any predicted primitive surface than an ϵ distance.

We finally report the average of all of these metrics over
all the point clouds in the test set.

4.3. Results
Comparison with Global SPFN. As a baseline, we first
show the case when using only the global branch of our
method. At test time, as the memory limitation due to Point-
Net++ is lifted, we evaluate the performance of the global
SPFN on high-resolution point clouds. As shown in Table 1,
the original SPFN (row 2) achieves an mIoU of 66.29% on
the original test set 1. As shown numerically in Table 2
and visually in Figure 4, the performance highly depends
on the size of the primitives and significantly drops when
only small primitives are considered. Specifically, for prim-
itives that have a scale of less than 1%, i.e., primitives that
contain less than η · N points, η ≤ 1%, mIoU drops to
44.25%. Similarly, for 1% ≤ η ≤ 2%, mIoU is 55.53%.

CPFN. We train the local, patch-supervised primitive fit-
ting network (local SPFN) with patches sampled on ground
truth small primitives and test on patches identified by our
patch selection network. During training, we consider 5 dif-
ferent scales, η ∈ {1%, 2%, 3%, 4%, 5%}, to identify small
primitives and hence train 5 different versions of our local
SPFN. In Table 1, we report the accuracy of the complete
pipeline, i.e., CPFN, using each of the local SPFN versions
SPFN (rows 3-7). We further report the accuracy of each
local SPFN version at the patch level in Table 3.

As shown by the quantitative numbers, we improve the
accuracy of the original SPFN with respect to almost all the

1Note that we use a high-resolution version of the dataset that also in-
cludes more small primitives. Thus, the numbers reported here are differ-
ent from the ones in [20].

7462

Table 1. Quantitative comparisons across our CPFN, other baseline methods, and ablation cases. li, lo, and lgi indicate patch features from
Local SPFN, object features from global SPFN, patch features from global SPFN, respectively (see Section 3.2), and GP and PN stand for
Global SPFN and Patch Selection Network (Section 3.4). If PN is not used, patches are sampled randomly to cover the whole object.

.

Id Method Seg. (Mean
IoU) (%) ↑

Primitive
Type (%) ↑

Point
Normal (◦) ↓

Primitive
Axis (◦) ↓

{Sk} Residual
Mean ± Std. ↓

{Sk} Coverage (%) ↑ P Coverage (%) ↑
ϵ = 0.01 ϵ = 0.02 ϵ = 0.01 ϵ = 0.02

1 RANSAC [31] 55.01 59.14 11.16 3.24 0.073 ± 0.039 61.88 67.66 78.93 86.64
2 SPFN [20] 66.29 89.50 10.59 1.25 0.020 ± 0.010 72.94 82.31 88.69 94.57
3 CPFN (η = 1%) 70.11 93.49 9.37 1.37 0.026 ± 0.013 72.58 80.88 87.60 93.76
4 CPFN (η = 2%) 75.85 95.55 7.79 1.17 0.034 ± 0.017 72.94 79.58 87.36 92.69
5 CPFN (η = 3%) 78.45 96.22 6.87 1.39 0.033 ± 0.017 75.46 81.23 88.84 93.11
6 CPFN (η = 4%) 79.09 96.37 6.63 1.48 0.032 ± 0.016 76.63 82.18 89.19 93.41
7 CPFN (η = 5%) 79.64 96.45 6.48 1.44 0.030 ± 0.015 76.64 82.54 88.73 93.12

li lo lgi GS PN Ablation Study (CPFN, η = 5%)

8 ✓ ✓ ✓ 77.70 95.12 6.68 3.07 0.053 ± 0.029 64.55 70.60 85.21 90.53
9 ✓ ✓ ✓ ✓ 78.30 95.96 6.61 1.70 0.033 ± 0.016 74.43 80.92 87.99 92.55
10 ✓ ✓ ✓ ✓ 77.95 95.55 6.65 2.51 0.052 ± 0.026 64.72 70.92 86.00 91.37
11 ✓ ✓ ✓ 74.13 91.97 5.15 1.85 0.063 ± 0.022 71.09 75.73 87.15 91.61
12 ✓ ✓ ✓ ✓ 78.44 95.47 5.28 1.67 0.052 ± 0.026 50.62 62.36 74.42 83.65
13 ✓ ✓ ✓ ✓ ✓ 79.64 96.45 6.48 1.44 0.030 ± 0.015 76.64 82.54 88.73 93.12

14 CPFN w/ GT Heatmap 80.94 96.74 6.83 1.45 0.028 ± 0.014 79.45 84.94 90.63 94.55

Table 2. The accuracy of CPFN, SPFN, and RANSAC in de-
tecting primitives with varying scales in terms of mIoU (%). GP
and PN stand for Global SPFN and Patch Selection Network (Sec-
tion 3.4). Each scale bucket contains roughly the same number of
primitives.

Scale ∼1% 1%∼2% 2%∼4% 4%∼12% 12%∼

RANSAC [31] 34.68 40.38 56.78 70.63 69.50
SPFN [20] 44.25 55.53 70.12 74.29 79.75

CPFN (η = 1%) 56.21 61.93 71.91 76.04 80.02
CPFN (η = 2%) 63.50 73.31 78.06 79.31 81.93
CPFN (η = 3%) 64.89 76.19 82.85 81.62 83.54
CPFN (η = 4%) 65.23 76.37 83.71 82.85 83.68
CPFN (η = 5%) 65.74 77.31 84.19 83.55 83.95

GS PN Ablation Study (CPFN, η = 5%)

52.38 66.81 64.36 79.24 88.24
✓ 60.10 75.32 82.71 83.83 85.38
✓ ✓ 65.74 77.31 84.19 83.55 83.95

metrics. Specifically, we achieve a significant improvement
in terms of mIoU (+13.35%), type accuracy (+6.95%),
point normal accuracy (decreasing difference by −38.81%),
and {Sk} coverage (+3.70% at ϵ = 0.01) for η = 5%.

We note that the patches selected by our selection net-
work do not solely contain small primitives but also a por-
tion of larger primitives. Thus, CPFN has a positive im-
pact both on small and larger primitives, especially improv-
ing the predicted normals in high curvature areas between
the primitives. Also, by improving the segmentation on the
smaller primitives (Figure 4), CPFN achieves a substantial
boost in mIoU performance as the metric is independent to
the size of the primitive. Differently, small primitives have
a lower weight in the computation of P coverage thus lim-
iting the improvement gain on this metric.

Increasing the scale of the primitives to be used for sam-
pling training patches of local SPFN improves the overall
performance. As shown in Tables 1 and 2, CPFN with

η = 5% local SPFN generally outperforms the other ver-
sions. However, as we discuss in the ablation, training local
SPFN on all patches without considering any threshold η
results in lower accuracy. Our patch selection strategy en-
sures the capacity of local SPFN is utilized to improve the
detection of small primitives, the main bottleneck of SPFN.

Comparison with RANSAC. We compare our method
with the commonly used RANSAC-based approach for
primitive fitting. Specifically, we use the efficient
RANSAC [31] implementation provided by CGAL [24].
We use the default parameters except for the maximum
point-to-surface distance for which we choose a value equal
to twice the noise level 2 · ν = 0.01.

As shown in Table 1, RANSAC (row 1) under-performs
on all metrics compared to both SPFN and CPFN. It is
specifically prone to either under- or over-segmentation (see
Figure 4) due to noise resulting in a segmentation accu-
racy as low as 55.01% mIoU. Due to ambiguity in prim-
itive types, it also has a low type prediction accuracy of
59.14%. Table 2 shows that, similar to SPFN, the perfor-
mance of RANSAC significantly drops for smaller primi-
tives (34.68% and 40.38% mIoU for η ≤ 1% and 1% ≤
η ≤ 2% respectively). The poor segmentation performance
has a direct impact on the prediction of primitive axes,
residual loss, and coverage.

Effect of Point Cloud Resolution. To assess the perfor-
mance of our method on different resolutions, we exper-
imented with two additional resolutions, 16k and 64k, as
shown in Table 4. The comparison between the results of
SPFN and our CPFN shows that higher resolutions benefit
more from our two-level prediction architecture.

7463

Table 3. Performance of the local SPFNs trained with patches sampled from primitives with varying scales, η ∈ {1%, 2%, 3%, 4%, 5%},
tested at patch level.

Method Seg. (Mean
IoU) (%) ↑

Primitive
Type (%) ↑

Point
Normal (◦) ↓

Primitive
Axis (◦) ↓

{Sk} Residual
Mean ± Std. ↓

{Sk} Coverage (%) ↑ P Coverage (%) ↑
ϵ = 0.01 ϵ = 0.02 ϵ = 0.01 ϵ = 0.02

Local SPFN (η = 1%) 74.39 93.12 6.92 1.87 0.097 ± 0.063 56.96 65.26 87.70 93.20
Local SPFN (η = 2%) 80.91 95.77 6.12 1.37 0.079 ± 0.052 64.87 72.06 90.65 94.54
Local SPFN (η = 3%) 81.53 96.23 6.06 1.33 0.087 ± 0.057 63.50 70.48 90.90 94.78
Local SPFN (η = 4%) 81.42 96.32 6.01 1.35 0.086 ± 0.058 63.72 70.70 90.99 94.87
Local SPFN (η = 5%) 81.60 96.07 6.04 1.29 0.089 ± 0.059 62.77 69.86 90.53 94.58

Table 4. Quantitative comparison of SPFN [20] and CPFN with
different resolutions of the point clouds.

Res. 16k 64k 128k

Method SPFN CPFN SPFN CPFN SPFN CPFN

Mean IoU (%) 65.86 74.77 66.25 78.29 66.30 79.64

Generalization. To evaluate the generalization power of
CPFN, we test how it performs on shapes that are acquired
from different datasets than it was trained on. As shown
in Figure 5, while the use of local patches improves the
generalization capability of CPFN, as the shapes become
significantly different than those seen during training, the
performance degrades.

Figure 5. Generalization test results with ABC dataset. From top
to bottom, inputs, SPFN [20] results, and CPFN results (in red box
areas). Both networks are trained with TraceParts dataset.

4.4. Ablation Study
We motivate the different design choices of our method

with a detailed ablation study. We first assess the effect of
using additional contextual information as input to our local
SPFN. Specifically, we provide both object level global fea-
tures lo and patch level local features lgi , both extracted by
the global SPFN, as additional input to the local features ex-
tracted from the local SPFN li (See Section 3.2). As shown
in Table 1, the use of global features lo has a positive im-
pact on the patch segmentation accuracy (+0.60% mIoU,
see row 9). More importantly, global features help to re-
duce the error in predicting primitive parameters that de-
pend on global context such as primitive axis (44.63% im-
provement). This is further reflected by an improved {Sk}
residual by 37.74% and a boost in {Sk} coverage (+9.88%
at ϵ = 0.01). The local features from the global SPFN lgi

have a similar positive impact (see row 10). When both fea-
tures are used in combination, we see a more significant im-
provement: an increase of +1.94% in segmentation mIoU,
an increase of +1.33% in type prediction accuracy, a reduc-
tion of −53.09% in prediction of primitive axis error, and
an increase of +12.09% in {Sk} coverage at ϵ = 0.01.

We also test our CPFN without using the global SPFN
predictions in the merging process (row 11). To cover the
entire shape, here we train our local SPFN without the
patch selection network (Section 3.4) but randomly sample
patches over the entire input point cloud. Compared to our
full CPFN pipeline (with η = 5%), the overall mIoU drops
by 5.51% with this alternative pipeline. We further evaluate
CPFN without using the patch selection network (i.e., pro-
cess all sampled patches by the local SPFN) but still using
the global SPFN in the merging step (row 12). The segmen-
tation mIoU slightly decreases compared to the full CPFN
baseline (−1.09%). Lastly, we also evaluate the impact of
the possible errors introduced by the patch selection net-
work (row 14). With ground truth patch selection provided
at test time, we see only a marginal improvement (an im-
provement of +1.30% in segmentation mIoU) showing that
our method is not very sensitive to patch selection errors.

5. Conclusion
We presented CPFN, a cascaded primitive fitting net-

work that focuses on fitting primitives to high-resolution
point clouds obtained by scanning. Our approach consists
of a cascade of global fitting network that operates on a
downsampled version of the input point cloud as well as
a local fitting network that processes local patches on the
high resolution point cloud. We present a novel merging
formulation that ensembles global and local predictions that
outperform state-of-the-art fitting results, especially in re-
gions of fine-scale details. In future work, we would like
to explore developing a fully end-to-end trainable pipeline
for all of the patch selection, patch-based prediction, and
merging steps.

Acknowledgements. The ANSI mechanical component CAD
models are originally provided by TraceParts and curated by Li et

al. [20]. M. Sung acknowledges the support by the National Re-
search Foundation (NRF) grant funded by the Korea government (MSIT)
(2021R1F1A1045604).

7464

References
[1] American National Standards Institute (ANSI). 5
[2] Thomas O. Binford. Visual perception by computer. In IEEE

Conference on Systems and Control, 1971. 1
[3] J. Chen, B. Lei, Q. Song, H. Ying, D. Z. Chen, and J. Wu. A

hierarchical graph network for 3d object detection on point
clouds. In CVPR, 2020. 3

[4] S. Chen, S. Niu, T. Lan, and B. Liu. Pct: Large-scale 3d point
cloud representations via graph inception networks with ap-
plications to autonomous driving. In ICIP, 2019. 3

[5] Z. Chen, A. Tagliasacchi, and H. Zhang. BSP-Net: Generat-
ing compact meshes via binary space partitioning. In CVPR,
2020. 2

[6] B. Deng, K. Genova, S. Yazdani, S. Bouaziz, G. Hinton, and
A. Tagliasacchi. CvxNet: Learnable convex decomposition.
In CVPR, 2020. 2

[7] Martin A. Fischler and Robert C. Bolles. Random sample
consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 1981. 1

[8] Matheus Gadelha, Giorgio Gori, Duygu Ceylan, Radomir
Mech, Nathan Carr, Tamy Boubekeur, Rui Wang, and
Subhransu Maji. Learning generative models of shape han-
dles. In CVPR, 2020. 2

[9] K. Genova, F. Cole, A. Sud, A. Sarna, and T. Funkhouser.
Local deep implicit functions for 3d shape. In CVPR, 2020.
2

[10] K. Genova, F. Cole, D. Vlasic, A. Sarna, W. Freeman, and T.
Funkhouser. Learning shape templates with structured im-
plicit functions. In ICCV, 2020. 2

[11] Benjamin Graham, Martin Engelcke, and Laurens van der
Maaten. 3D semantic segmentation with submanifold sparse
convolutional networks. In CVPR, 2018. 3

[12] L. Han, T. Zheng, L. Xu, and L. Fang. OccuSeg: Occupancy-
aware 3d instance segmentation. In CVPR, 2020. 3

[13] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N.
Trigoni, and A. Markham. RandLA-Net: Efficient seman-
tic segmentation of large-scale point clouds. In CVPR, 2020.
3

[14] L. Jiang, H. Zhao, S. Shi, S. Liu, C. W. Fu, and J. Jia. Point-
Group: Dual-set point grouping for 3d instance segmenta-
tion. In CVPR, 2020. 3

[15] Adrien Kaiser, Jose Alonso Ybanez Zepeda, and Tamy
Boubekeur. A survey of simple geometric primitives de-
tection methods for captured 3D data. Computer Graphics
Forum, 2018. 2

[16] Kacper Kania, Maciej Zięba, and Tomasz Kajdanowicz.
UCSG-Net – unsupervised discovering of constructive solid
geometry tree, 2020. arXiv:2006.09102. 2

[17] H. W. Kuhn. The hungarian method for the assignment prob-
lem. Naval Research Logistics Quarterly, 1955. 2, 4

[18] David H. Laidlaw, W. Benjamin Trumbore, and John F.
Hughes. Constructive solid geometry for polyhedral objects.
In SIGGRAPH, 1986. 1

[19] L. Landrieu and M. Simonovsky. Large-scale point cloud
semantic segmentation with superpoint graphs. In CVPR,
2018. 3

[20] Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi,
and Leonidas Guibas. Supervised fitting of geometric prim-
itives to 3D point clouds. In CVPR, 2019. 1, 2, 3, 4, 5, 6, 7,
8

[21] Yangyan Li, Xiaokun Wu, Yiorgos Chrysanthou, Andrei
Sharf, Daniel Cohen-Or, and Niloy J. Mitra. GlobFit: Con-
sistently fitting primitives by discovering global relations. In
SIGGRAPH, 2011. 1

[22] Cheng Lin, Tingxiang Fan, Wenping Wang, and Matthias
Nießner. Modeling 3D shapes by reinforcement learning.
In ECCV, 2020. 2

[23] D. Marr and H. K. Nishihara. Representation and recogni-
tion of the spatial organization of three-dimensional shapes.
Proceedings of the Royal Society of London B: Biological
Sciences, 1978. 1

[24] Sven Oesau, Yannick Verdie, Clément Jamin, Pierre Alliez,
Florent Lafarge, and Simon Giraudot. Point set shape detec-
tion. In CGAL User and Reference Manual. CGAL Editorial
Board, 4.13 edition, 2018. 1, 7

[25] D. Paschalidou, A. O. Ulusoy, and A. Geiger. Superquadrics
revisited: Learning 3d shape parsing beyond cuboids. In
CVPR, 2019. 2

[26] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and
Leonidas J. Guibas. PointNet: Deep learning on point sets
for 3D classification and segmentation. In CVPR, 2017. 2

[27] Charles Ruizhongtai Qi, Ly Yi, Hao Su, and Leonidas J.
Guibas. PointNet++: Deep hierarchical feature learning on
point sets in a metric space. In NIPS, 2017. 1, 2

[28] Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab,
and Federico Tombari. Fully-convolutional point networks
for large-scale point clouds. In ECCV, 2018. 3

[29] G. Riegler, A. O. Ulusoy, and A. Geiger. OctNet: Learning
deep 3d representations at high resolutions. In CVPR, 2017.
3

[30] TraceParts S.A.S. Traceparts. 5
[31] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Effi-

cient RANSAC for point-cloud shape detection. Computer
Graphics Forum, 2007. 1, 6, 7

[32] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos
Kalogerakis, and Subhransu Maji. CSGNet: Neural shape
parser for constructive solid geometry. In CVPR, 2018. 2

[33] Gopal Sharma, Difan Liu, Evangelos Kalogerakis,
Subhransu Maji, Siddhartha Chaudhuri, and Radomír
Měch. ParSeNet: A parametric surface fitting network for
3d point clouds. In ECCV, 2020. 2

[34] D. Smirnov, M. Fisher, V. G. Kim, R. Zhang, and J.
Solomon. Deep parametric shape predictions using distance
fields. In CVPR, 2020. 2

[35] Chunyu Sun, Qianfang Zou, Xin Tong, and Yang Liu. Learn-
ing adaptive hierarchical cuboid abstractions of 3D shape
collections. In SIGGRAPH Asia, 2019. 2

[36] M. Tatarchenko, J. Park, V. Koltun, and Q. Zhou. Tangent
convolutions for dense prediction in 3d. In CVPR, 2018. 3

[37] Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A.
Efros, and Jitendra Malik. Learning shape abstractions by
assembling volumetric primitives. In CVPR, 2017. 2

7465

[38] Q. Xu, X. Sun, C. Y. Wu, P. Wang, and U. Neumann. Grid-
GCN for fast and scalable point cloud learning. In CVPR,
2020. 3

[39] Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and
Derek Hoiem. 3D-PRNN: Generating shape primitives with
recurrent neural networks. In ICCV, 2017. 2

7466

