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Abstract

Estimating the motion of the camera together with the 3D
structure of the scene from a monocular vision system is a
complex task that often relies on the so-called scene rigidity
assumption. When observing a dynamic environment, this
assumption is violated which leads to an ambiguity between
the ego-motion of the camera and the motion of the objects.
To solve this problem, we present a self-supervised learn-
ing framework for 3D object motion field estimation from
monocular videos. Our contributions are two-fold. First, we
propose a two-stage projection pipeline to explicitly disen-
tangle the camera ego-motion and the object motions with
dynamics attention module, called DAM. Specifically, we
design an integrated motion model that estimates the mo-
tion of the camera and object in the first and second warp-
ing stages, respectively, controlled by the attention module
through a shared motion encoder. Second, we propose an
object motion field estimation through contrastive sample
consensus, called CSAC, taking advantage of weak semantic
prior (bounding box from an object detector) and geomet-
ric constraints (each object respects the rigid body motion
model). Experiments on KITTI, Cityscapes, and Waymo
Open Dataset demonstrate the relevance of our approach
and show that our method outperforms state-of-the-art al-
gorithms for the tasks of self-supervised monocular depth
estimation, object motion segmentation, monocular scene
flow estimation, and visual odometry.

1. Introduction
The simultaneous estimation of the camera motion and

scene geometry is a fundamental research topic in 3D com-
puter vision. Traditionally, this problem is tackled by feature-
based methods [33], or direct approaches [14] that min-
imizes the photometric inconsistency among warped ad-
jacent frames. A pioneering work based on deep neural
network (DNN) [44] uses the photometric error map as a
self-supervisory signal to jointly train a depth and a motion
network. Inspired by this baseline structure, self-supervised
depth, and motion learning framework has been widely stud-
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Figure 1. We introduce a unified motion modeling with our dynam-
ics attention module (DAM) and a novel motion learning technique
via contrastive sample consensus (CSAC). The last row shows
synthesized views from the predicted depth and motion field. Com-
pared to the baseline, our model learns the object motion fields in a
more semantically plausible way, which enhances the distinction
between the object and the background area.

ied [44, 30, 40, 32, 41] with an additional self-supervisory
signal such as geometric consistency [32], optical flow [36],
segmentation map [43], edge and normal map [41]. These
photo-consistency-based optimization methods assume a
static scene or require to mask out moving objects to disre-
gard non-rigid motions. Such works aim at predicting the
depth and ego-motion from a camera but are not suitable for
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dynamic scenes.
Recently, learning the objects’ motion together with the

camera’s ego-motion and the depth has gain interest for dy-
namic scene understanding [6, 26, 19, 7, 8, 25, 12, 4, 23, 28].
We can distinguish mostly two types of approaches, namely
the stereo-based and the monocular-based techniques. The
stereo-based techniques [6, 26] take advantage of this sen-
sor to disentangle the motion of static background and that
of moving objects in the scene. For monocular systems,
the ambiguity between the depth, ego-motion, and objects’
motion becomes more intricate due to the unavailability of
metric depth for each frame. Therefore, Monocular-based
systems [7, 25, 28] rely on instance segmentation labels to
reduce this ambiguity. Despite compelling results, the need
for highly expensive human-labeled data constitute an impor-
tant limitation for their deployment and reduce the interest of
the self-supervised depth and motion prediction framework.

To reduce the data dependency problem and to offer
more versatility, we propose a novel self-supervised learn-
ing framework for depth, camera motion, and object motion
field estimation using weak semantic prior (i.e., 2D object
bounding boxes) as illustrated in Fig. 1. A major benefit
of the proposed pipeline is that it helps to reduce the am-
biguity between the camera’s ego-motion and the objects’
motion with cheaper data labels. The distinctive points of
our approach are summarized as follows:

⋄ We design a dynamics attention module that enables
to train motion features dynamically when estimating
the motion of a camera and objects through a two-stage
projection. We highlight that motion features can be
efficiently extracted by disentangling dynamic objects
and static backgrounds through the simple mechanism of
attention modules within the shared motion encoder.

⋄ We propose a contrastive sample consensus for semanti-
cally plausible object motion field learning. Considering
the rigid body characteristics of dynamic objects, we de-
sign a learning technique that effectively improves the
capability to distinguish object’s motion boundary.

⋄ We show that the proposed scheme achieves favorable
results in motion segmentation, monocular depth and
scene flow estimation, and visual odometry on the KITTI,
Cityscapes, Waymo Open Dataset.

2. Related Works
2.1. Joint Training of Depth and Motion from

Monocular Videos

Zhou et al. [44] first propose a self-supervised depth and
motion framework minimizing the photometric consistency
across a monocular video. Following this publication, many
improvements have been proposed [40, 32, 17, 41, 1, 10,

36, 20, 39]. Wang et al. [40] incorporate a second-order
gradient descent-based pose refinement module, into end-to-
end training. Yang et al. [41] introduce joint optimization
of depth and motion with normal and edge information to
force additional geometric loss while preserving the edges.
Mahjoiurian et al. [32] enforce the geometric consistency
across reconstructed 3D points as well as the photometric
consistency. Bian et al. [1] and Chen et al. [10] also impose
the depth consistency loss by comparing multiple predicted
depth, but they further estimate dynamic objects’ mask [1]
or camera intrinsics [10]. Godard et al. [18] propose a min-
imum reprojection loss to handle occlusion robustly and a
multi-scale sampling method to reduce artifacts. Ranjan
et al. [36] introduce coordinated training frameworks com-
posed of multiple neural networks for depth, camera motion,
optical flow, and motion segmentation. Guizilini et al. [20]
introduce a detail-preserving representation by learning rep-
resentations that maximally propagate dense appearance and
geometric information through 3D convolutions. Vasilje-
vic et al. [39] represent the depth with differentiable pixel-
wise projection rays for learning with uncalibrated single
viewpoint cameras. Recently, researches have been actively
conducted to improve the performance of depth estimation
in association with the semantic segmentation task. For in-
stance, Klingner et al. [25] leverage semantic segmentation
guidance to adaptively mask out the photometric inconsis-
tency in dynamic scenes. Alternatively, Chen et al. [9] and
Guizilini et al. [21] improve the performance of monocular
depth estimation while enhancing semantic understanding
by extracting features that are commonly related to seman-
tics and geometry. They show that implicit feature learning
through semantic prior knowledge can play an important
role in 3D geometric perception.

2.2. Disentangling Camera and Object Motion

Disentangling local object motion from the global camera
ego-motion is a key to improve the robustness of both depth
and motion estimation in dynamic situations. Due to the mo-
tion ambiguity inherent to monocular-based techniques, most
existing studies rely on stereo camera setup [6, 26]. This kind
of system is advantageous in this context since metric scale
depth (for each individual frame) coupled with semantic in-
formation (e.g., 2D objects’ bounding boxes [6] or segmenta-
tion labels [26]) offers privileged information to disentangle
the ambiguity between the static background and the moving
objects. While stereo-vision systems simplify the problem,
solving this disentanglement using monocular cameras ap-
pears to be significantly more complex [19, 7, 25, 12, 28, 4].
Some of the works [7, 28] leverage instance segmenta-
tion map to estimate the motion field of individual objects.
Casser et al. [7, 8] especially focus on designing a geometric
structure in the learning process by modeling the scene and
objects. Lee et al. [28, 27] focus on a geometrically correct
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Figure 2. Schematic overview of our self-supervised two-stage motion disentanglement. First, we forward-warp I1 with the estimated
camera motion and the depth map to synthesize Îego

2 . This ego-warped image is stacked with next frame, I2, and fed to the second stage
projection to estimate the residual motion field. Finally, we generate a total composite motion field with the predicted ego-motion and
residual motion field, and inverse-warp I1 to synthesize Îtot

2 . The final synthesis is leveraged to optimize the networks as a self-supervisory
signal. Our motion encoder is shared to estimate the ego-motion and the residual motion field. Each motion requires features extracted
on the background and object area, respectively. This selective feature focusing is controlled by the proposed dynamics attention module
(DAM). While learning the motion field, we propose contrastive sample consensus (CSAC) to solve the issue of local motion variation.
Details of DAM and CSAC are elaborated in Sec. 3.2 and Sec. 3.3.

two-stage warping process that improves both photometric
and geometric projection consistency in dynamic situations.
Recent works attempt to disentangle the motion of objects
with weaker semantic prior knowledge (e.g., from pixel-level
to box-level prior). Brazil et al. [4] learn a 3D object bound-
ing box with their orientation and 3D confidence from a
monocular video. Gordon et al. [19] introduce a motion
field representation with bounding box information to train
depth, ego-motion, and dynamic motion from uncalibrated
cameras. Li et al. [29] extend the motion field representa-
tion with a motion sparsity loss without additional semantic
prior knowledge. Gao et al. [15] propose attentional motion
networks to adaptively focus on each object and background
feature without semantic priors.

3. Methodology

We introduce a two-stage pipeline for joint depth and
motion learning. Our main objective is to disentangle the
camera’s and objects’ motion in a self-supervised manner. In
this section, we present the two projection stages composing
our system, and the networks: DepthNet, and MotionNet
with a shared encoder and two branch decoders. Further, we
detail our dynamics attention module and contrastive sample
consensus for modeling camera and object motions with the
semantic guidance.

3.1. Two-Stage Motion Disentanglement

The overall schematic framework of the proposed method
is illustrated in Fig. 2. The self-supervision of our archi-

tecture is achieved by warping the source frame I1 to its
adjacent target frame Î2, where I ∈ R3×H×W is an RGB im-
age sampled from a monocular video. The residual error
resulting from this warping is used as a training signal.
Stage 1 – depth and ego-motion: We first predict each
source and target view’s depth map (D1, D2) via our Depth-
Net Dθ : R3×H×W → R1×H×W with trainable parameters θ .
By concatenating two sequential images and depth maps
(I1, D1, I2, D2) as an input, our proposed motion encoder
Mω : R8×H×W → Rck×hk×wk with trainable parameters ω

extracts bottleneck motion features. Using the last layer’s
bottleneck feature as an input for the ego-motion decoder
Eφ : Rck×hk×wk → R6 with trainable parameters φ , we esti-
mate the six-dimensional (three translations and Euler an-
gles) relative transformation vector Tego

1→2 as a forward cam-
era ego-motion. We then synthesize the ego-warped image
Îego

2 and its depth map D̂ego
2 as outputs of the first stage as

{Îego
2 , D̂ego

2 }= F f wd(I1,D1,Tego
1→2,K), (1)

where F f wd is a forward projection function proposed in
[28], and K ∈ R3×3 is a given camera intrinsic matrix. We
postulate that this ego-warped image and its projected depth
are structurally aligned to the target view except for occluded
and disoccluded regions if there are no moving objects.
Stage 2 – residual motion field: In the second projection
stage, we residually predict a motion translation field. Since
we synthesize the target view with the predicted camera mo-
tion, we conjecture that the misaligned regions are caused
from local object motions. Using this clue, we model
the object motion as a residual motion field Tres using
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our motion encoder and a residual motion field decoder
Oψ : Rck×hk×wk → R3×H×W with trainable parameters ψ .
Specifically, we concatenate the outputs from the first pro-
jection stage and target frame’s image and depth (Îego

2 , D̂ego
2 ,

I2, D2) as an input for the motion encoder. We again feed
this to our motion encoder, and its output features are fed to
the residual motion field decoder. This local object motion
is represented only with a 3D translation field to reduce the
rotation ambiguity from the camera. Finally, we compose
the total motion field Ttot ∈R6×H×W from the predicted ego-
motion1 and residual motion field through pixel-wise matrix
multiplication. Given this total motion field, source image,
and target depth map, we synthesize the final target image
and its depth map as

{Îtot
2 , D̂tot

2 }= Finv(I1,D2,Ttot
2→1,K), (2)

where Finv is our pixel-wise inverse projection function. We
optimize the whole frameworks by minimizing the photomet-
ric and geometric errors between {I2,D2} and {Îtot

2 , D̂tot
2 }.

The loss functions will be discussed in Sec. 3.4.

3.2. Dynamics Attention Module

Since the camera motion and the residual motion field
estimation are two complementary tasks, we postulate that
using a shared encoder for these two tasks would improve
their efficiency and the motion feature representation. To
maximize this effect, we propose dynamics attention mod-
ule (DAM) as described in Fig. 3. The encoding part of
our unified motion networks is based on the ResNet-18 [22]
structure. As an input for the networks, we concatenate
two consecutive images and depth maps, which has eight
channels in total. Motion features are learned while passing
through each residual layer of the encoder. In this process,
we attach DAM after the residual layers (ResLayer-2, -3, and
-4) to selectively extract the ego-motion and residual motion
features. We design DAM by referring to the generic self-
attention structure that is transformed after context modeling
introduced in GCNet [5]. To be specific, we first squeeze the
channel dimension with two 1×1 conv layers and generate a
spatial attention map via softmax along the spatial dimension.
This spatial attention is multiplied to the input feature, which
represents a global attention pooling for context embedding.
Then, with the reduction ratio set to r = 4, the pooled feature
is transformed with a bottleneck of two 1×1 conv layers. Fi-
nally, the transformed feature is added to the input feature in
element-wise for feature fusion. This self-attention module
is applied to each ego-motion and residual motion feature. If
the motion feature is extracted to predict the camera motion,
the ego-motion attention module is activated, and if estimat-
ing the residual motion field, we operate the residual motion
1Since the final warping is inverse direction, the direction of ego-motion
also should be inverted, which is estimated by feeding a reverse-ordered
input (I2, D2, I1, D1) to the ego-motion networks.
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Figure 3. Overall structure of unified motion networks with dy-
namics attention module (DAM). Our motion networks consist of
a shared motion encoder with an attention module for each residual
layer (ResLayer), and two motion prediction branches: ego-motion
decoder and residual motion (res-motion) field decoder. DAM has
two self-attention modules to adaptively focus on background and
local dynamic objects.

(a) (b) (c) (d)

Figure 4. Qualitative results of attention maps. (a) Input target
images from Waymo Open Dataset. (b) Aggregated residual motion
attentions on ResLayer-2 and -3 (mid-level). (c) and (d) residual
motion and ego-motion attentions on ResLayer-4 (high-level, visu-
ally overlaid on the input image).

attention module. Since the ego-motion and residual motion
are in complementary relation, DAM enables selective mo-
tion focusing for each motion decoding as demonstrated in
Fig. 4. The ego-motion decoder is designed with four conv
layers to process the output feature of the last encoding layer.
The residual motion field decoder is composed of six de-
coding blocks (DecBlock). Each decoding block aggregates
output features of the bottom block and the encoding layer.
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Figure 5. Left: 3D point cloud visualization of I1 and D1. Middle:
a motion variation issue occurs on view synthesis (I1→ I2) with the
baseline training. The networks try to minimize the photometric
errors on headlight of the bus, while motions on homogeneous
regions are not activated well. Right: Training the motion field
with contrastive sample consensus (CSAC) to regularize the motion
vectors for every pixel on the moving object. Yellow line indicates
boundary of the object.

3.3. Contrastive Sample Consensus

Motion variation issue While learning the residual motion
field, our motion networks are trained to minimize the local
errors triggered by an individual object motion. However,
due to the limitation of self-supervisory optimization by
photometric consistency, motion fluctuation2 occurs during
training. As shown in Fig. 5, the discriminative regions, e.g.,
headlights, tend to be inferred with high motion response,
while the homogeneous regions, e.g., windows, have rel-
atively small motion. To mitigate this issue, we propose
contrastive sample consensus (CSAC) to boost the motion
consistency.
Motion regularization via CSAC Given a semantic prior
as a 2D object box and its geometric prior (depth), we design
a differentiable regularization module combining traditional
random sampling and recent deep learning techniques. This
regularization relies on two assumptions:

Assumption 1 (geometric prior) Each 2D detection box
contains a potentially movable object, and it belongs to
the foreground region.

Assumption 2 (semantic prior) The motion vectors in
each box are distributed into two groups (background: small,
object: large), and those belonging to the object group
should converge to a single motion vector considering its
rigidity under a short time period.

From these assumptions, we train the motions from the
foreground and background by motion-repulsive embedding
as introduced in Algorithm 1. In this algorithm, first we es-
timate the initial foreground mask from our predicted depth
map on the detection box using [34] on the depth values (line
3). From this initial binary segmentation mask, we iteratively
2Previous works [19, 29] have alleviated this issue by applying motion
smoothness term. This is fair, but only nearby motion vectors are reg-
ularized. On the other hands, our regularization method plays with the
distribution of motion vectors. Considering the rigidity of the moving
objects, e.g., mostly vehicles on traffic roads, we postulate that boosting
consistency over a set of whole motion vectors for each object is more
helpful to learn semantically plausible object motion field.

Algorithm 1 Regularization scheme of residual motion field
Input: Set of motion vector V = {v1, ...,vn}, Set of pre-

dicted depth D = {d1, ...,dn} for every n-pixel in a de-
tected box

Output: CSAC loss Lcsac for a detected box
1: function REGULARIZER(V,D)
2: Lcsac← 0 ▷ initialize CSAC loss for this detected box
3: M f ← FGMASK(D) ▷ mk ∈M f is 1 if foreground (fg)
4: V f ←{vk|vk ∈ V∧mk = 1} ▷ fg motion set
5: Vb←{vk|vk ∈ V∧mk = 0} ▷ bg motion set
6: for V←{V f ,Vb} do ▷ for both fg and bg iterations
7: Smax← 0 ▷ initialize inlier score
8: for i← 1 to N do ▷ CPU
9: vh← ⟨random hypothesis from V⟩

10: S← CALCSCORE(vh,V) ▷ for every vk ∈ V

11: Si← ∑S
12: if Smax < Si then
13: Smax← Si
14: v̄← REFINEVEC(S,V) ▷ motion refinement
15: end if
16: end for
17: Lcsac← Lcsac +CALCPENALTY(v̄,V) ▷ GPU
18: end for
19: return Lcsac
20: end function

estimate the representative motion for the foreground and
background through a random sampling technique. During
the iteration, we measure the L1-norm between the hypoth-
esis vh and query vectors vq for each translation axis, and
calculate the inlier scores (line 10) as

S = ∑
vq∈V

Finlier

(∣∣∣∣vh− vq

vh

∣∣∣∣
1

)
, (3)

where Finlier is designed as

Finlier(x) = 1−σ(α · (x−β )), (4)

which is a soft inlier counting with a sigmoid function σ ,
proposed by [2, 3]. In our case, α and β are set to 30.0
and 0.2 respectively based on cross-validation. Then, we
measure the iteration score Si by simply aggregating the
inlier scores to find the best hypothesis (line 11). The motion
refinement is operated by multiplying the query vectors and
inlier scores as weights (line 14). Note that these iterations
are processed by the CPU since we do not require gradients
for motion estimation. Once we get the refined motion vector
v̄, we calculate the contrastive penalty loss (line 17), imposed
for each foreground and background as

L f
csac = ∑

vq∈V f

{1−Finlier(max(0,(|v̄ f |− |vq|)/|v̄ f |))},

Lb
csac = ∑

vq∈Vb

{1−Finlier(max(0,(|vq|− |v̄b|)/|v̄b|))},
(5)
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Figure 6. Left: Schematic of the distributions of foreground and
background motions. We penalize small foreground motions and
large background motions via CSAC, which eventually increases
motion gap between the foreground and background. Right: Vi-
sualization of object motion inliers. As the learning progresses
(1k→ 10k iterations), the boundary of motion becomes clearer.

where |v̄ f | and |v̄b| are the magnitudes of refined foreground
and background motions respectively. This operation is pro-
cessed by the GPU to perform the gradient propagation. In
this equation, we penalize the foreground motions smaller
than |v̄ f |, and background motions larger than |v̄b|, in or-
der to enhance motion contrast between the foreground and
background, and this also meets our Assumption 2. Fig. 6
illustrates the importance of our motion contrast enhance-
ment process to learn more accurate motion boundaries. Our
final residual motion field regularization loss Lmr is the sum-
mation of L f

csac and Lb
csac (per-box losses), and normalized

to perform per-pixel loss for each mini-batch.

3.4. Training Scheme

Multi-phase joint training The proposed learning system
is composed of complicated submodules. Although it is
possible to gradually converge through end-to-end training,
we propose a multi-phase learning technique for efficient
and fast convergence. We summarize the training scheme in
Table 1. Assigned tasks for each phase are jointly trained. In
phase-1, since the residual motion branch is inactivated, we
set the residual motion to be zero.
Self-supervised objective Our complete objective function
is composed of phase-1 loss Lp1 and phase-2 loss Lp2 de-
fined as

Lp1 = λpLp +λgLg +λsLs +λhLh,

Lp2 = λmrLmr +λmsLms +λmpLmp +λmcLmc,
(6)

where loss weights are grouped as Λp1 = {λp,λg,λs,λh}
and Λp2 = {λmr,λms,λmp,λmc}, and each sub-loss is sum-
marized as follows:

Lp and Lg: Photometric and geometric consistency losses
defined in [1, 15]. Occluded and disoccluded regions are

Phase
Joint tasks Training

parameters Losses
Depth Ego- Res-

1st ✓ ✓ – {θ , ω , φ} Lp1

2nd – ✓ ✓ {ω , φ , ψ} Lp1 +Lp2

3rd ✓ ✓ ✓ {θ , ω , φ , ψ} Lp1 +Lp2

Table 1. Multi-phase joint training scheme between the three tasks:
depth, ego-motion (ego-), and residual motion (res-) estimation.

masked out by geometric inconsistency map [28]. We re-
place their global and object-wise motion transformation to
our pixel-wise motion representation.
Ls: Generic edge-aware depth smoothness term, which is

standardized in CC [36].
Lh: Object scale constraint loss with height prior, intro-

duced in Struct2Depth [7]. We use box height as the prior.
Lmr: Proposed motion field regularization loss via CSAC.
Lms: We newly propose a reparametrized edge-aware mo-

tion smoothness loss. Compared to the motion-repulsive em-
bedding by our motion contrastive learning, we add motion-
attractive embedding to merge the near motion vectors lo-
cally. To prevent blurry inference near object boundary, we
reparametrize the gradient of the edges with τ as

Lms = ∑(∇Tres · e−∇D/τ)2, (7)

where we set τ = 0.1 in our training.
Lmp and Lmc: Motion sparsity and consistency losses,

which are introduced in [19, 29].

4. Experiments
In this section, we validate our proposed methods: DAM

and CSAC. We report and analyze experimental results for
the tasks of monocular depth and scene flow estimation,
motion segmentation, and visual odometry. For the sake
of fairness, all competing techniques are purely monocu-
lar, moreover, we rule out the impact of different network
architectures, e.g., PackNet [20] and DispNet [44].

4.1. Implementation Details

Networks We design DepthNet with ResNet18-based Ima-
geNet [37] pretrained encoder and decoder structure. The de-
coder has the same structure as Monodepth2 [18], and its out-
put is a single-scale inverse depth map with a sigmoid activa-
tion. For MotionNet, we use ImageNet pretrained ResNet18
encoder with DAM followed by two motion branches: ego-
motion decoder with three convolutional layers, and residual
motion field decoder proposed by Gordon et al. [19]. Each
block of the motion field decoder refines the motion feature
from the previous block concatenated with its symmetrically
corresponding output feature from the encoding block.
Training Our system is implemented in PyTorch [35] and
trained using the ADAM optimizer [24] with the initial learn-
ing rate of 10−4, β1 = 0.9, and β2 = 0.999 on 2×Nvidia
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Model # Params. AbsRel SqRel δ1.25

Separated encoders 33.45 M 0.119 0.985 86.2
Shared encoder with DAM 22.77 M 0.116 0.894 86.9

Table 2. Ablation study on shared motion encoder with DAM.
Numbers are reported after phase-3. Using a single motion encoder
yields better performance on monocular depth estimation with
fewer parameters.

Models DAM CSAC
phase-1 phase-3

all obj all obj
A1 – – 0.126 0.202 0.120 0.199
A2 – ✓ 0.113 0.190
A3 ✓ – 0.121 0.196 0.116 0.191
A4 ✓ ✓ 0.109 0.182

Table 3. Ablation study on DAM and CSAC. We measure AbsRel
errors after phase-1 and phase-3 on both all and obj areas.

RTX 2080 GPUs. We set the mini-batch size to 4 and each
epoch is trained with 1,000 randomly sampled sequences
following the augmentation policy of SC-SfM [1]. We train
phase-1 and phase-2 for 10 epochs respectively. The loss
weights, Λp1 and Λp2 , are tuned differently depending on the
dataset and training phase. We describe this in detail in the
supplement. To be brief, we empirically found that every
objective shows stable convergence when the magnitude of
each weighted per-pixel loss (λL) is 0.05 times the weighted
photometric loss (λpLp).
Dataset Our system is trained and validated in KITTI [16],
Cityscapes [11], and Waymo Open Dataset [38]. For KITTI
and Cityscapes, we utilize the VIS annotations [28] for test-
ing motion segmentation, and detection prior in CSAC train-
ing with a random margin up to 10% for generating detection
box. The input resolution is set to 832×256 for KITTI and
Cityscapes, and 480×320 for Waymo Open Dataset.

4.2. Ablation Study

To quantify the impact of our motion encoding using
DAM and the motion regularization via CSAC, we propose
various ablation studies. In this experiment, the training
(90%) and validation (10%) sets are randomly split from
KITTI raw monocular videos. We repeat the training 5 times
and average the performance of monocular depth estimation.
First, we perform an ablation to verify our motivation on
sharing the motion encoder for MotionNet, while estimating
the camera and object motion at the same time. As shown in
Table 2, we achieve better performance with fewer number of
trainable parameters, compared to the model with separated
encoders. We, thus, conclude that our invertible attention
mechanism enhances the capability of motion disentangling,
which produces a better motion feature representation. Sec-
ond, we proceed ablation integrated with both DAM and
CSAC. In this case, we measure AbsRel error on both entire
(all) and object (obj) regions. As demonstrated in Table 3, we
conduct four ablations (A1∼A4) according to our proposed
models. We observe that in phase-1, feature extraction with

Method Semantic
prior

D1 D2

bg fg all bg fg all
DF-Net [45] – – – 46.5 – – 61.5
GeoNet [42] – – – 49.5 – – 58.2
CC [36] – 35.0 42.7 36.2 – – –
SC-SfM [1] – 36.0 46.5 37.5 – – –
EPC++ (mono) [31] – 30.7 34.4 32.7 18.4 84.6 65.6
Insta-DM [28] instance 26.8 30.4 27.4 28.9 32.3 29.4
Ours (DAM+CSAC) box 28.6 32.5 29.8 30.5 35.7 32.6

Table 4. Evaluation on the KITTI Scene Flow 2015 training
set. We validate the disparity compared to recent monocular-based
training methods. Bold: Best, Underbar: Second best.

Before reg. After reg. Li et al. [29] CC [36]
KITTI-VIS 0.483 0.813 0.689 0.571

Cityscapes-VIS 0.416 0.785 0.620 –

Table 5. Results (mean IoU) of object (vehicle class) segmenta-
tion with a given box prior. The results show that CSAC regular-
ization improve the performance on semantic perception task.

DAM (A3 and A4) has a marginal improvement on depth
estimation. After training MotionNet with residual motion
field (phase-2), we notice a significant improvement while
refining the depth in phase-3. In addition, regularization
through CSAC further improves the depth estimation on the
object area by providing a rigid body constraint. We con-
clude that our modules play an important role in enhancing
the performance of joint depth and motion estimation.

4.3. Monocular Scene Flow Estimation

To validate our pixel-wise motion and depth estimation
simultaneously, we assessed our monocular scene flow esti-
mation on the KITTI Scene Flow 2015 training set, as shown
in Table 4. We compare our method with existing monocular-
based training methods. Compared to the methods not using
semantic priors, we achieve more than 57.8% accuracy gain
for estimating the disparity of objects on the target image
(D2-fg). Despite using weaker priors, we obtain competitive
results against techniques relying on strong semantic prior,
such as, Insta-DM [28].

4.4. Motion Segmentation

We demonstrate object motion segmentation on KITTI
Scene Flow 2015 training set and Cityscapes with VIS an-
notation [28]. This is enabled by leveraging inlier scores
(threshold of 0.5) of the best hypothesis, as designed in
Eq. (4). Table 5 demonstrates that our regularization with
contrastive learning based on the geometric prior signifi-
cantly improves the performance of semantic perception
task. We demonstrate qualitative results in Fig. 7.

4.5. Monocular Depth Estimation and Visual
Odometry

Finally, we provide comparisons to state-of-the-arts [18,
29, 7, 19, 25] of self-supervised monocular depth and
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(a) Input monocular (𝐈1 and 𝐈2) (b) Depth and residual motion field (c) A and B (d) Li et al. [29] (e) Ours, 5 epoch (f) Ours, 20 epoch

A B

81.447.5 62.1

85.641.8 72.3

Figure 7. Qualitative results of our depth and residual motion field on Cityscapes test set. Each scene shows (a) consecutive input
images with a box prior, (b) our networks outputs, (c) object images with GT mask, (d) motion inliers of the previous method [29] and ours
after training (e) 5 and (f) 20 epoch. The inlier maps are normalized in the same scale, and we indicate their mean IoU from the GT.

Method Semantic
prior Training Test Error metric ↓ Accuracy metric ↑

AbsRel SqRel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 [18] – K K 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Li et al. [29] – K K 0.130 0.950 5.138 0.209 0.843 0.948 0.978
Struct2Depth [7] instance K K 0.141 1.026 5.290 0.215 0.816 0.945 0.979
Gordon et al. [19] box K K 0.128 0.959 5.230 0.212 0.845 0.947 0.976
SGDepth [25] segment K K 0.113 0.835 4.693 0.191 0.879 0.961 0.981
Ours (DAM+CSAC) box K K 0.114 0.876 4.715 0.191 0.872 0.955 0.981
Gordon et al. [19] box C+K K 0.124 0.930 5.120 0.206 0.851 0.950 0.978
Ours (DAM+CSAC) box C+K K 0.111 0.805 4.708 0.187 0.875 0.962 0.981
Li et al. [29] – C C 0.119 1.290 6.980 0.190 0.846 0.952 0.982
Struct2Depth [8] instance C C 0.145 1.737 7.280 0.205 0.813 0.942 0.978
Gordon et al. [19] box C C 0.127 1.330 6.960 0.195 0.830 0.947 0.981
Ours (DAM+CSAC) box C C 0.116 1.213 6.695 0.186 0.852 0.951 0.982
Monodepth2 [18] – W W 0.168 1.738 7.947 0.230 – – –
Li et al. [29] – W W 0.162 1.711 7.833 0.223 – – –
Struct2Depth [7] instance W W 0.180 1.782 8.583 0.244 – – –
Ours (DAM+CSAC) box W W 0.148 1.686 7.420 0.210 – – –

Table 6. Monocular depth estimation results on the KITTI (K) Eigen test set, Cityscapes
(C) test set, and Waymo Open Dataset (W). Models pretrained on Cityscapes and fine-tuned
on KITTI are denoted by ‘C+K’. Due to the page limit, we only indicate our final model
(DAM+CSAC), and methods using strong semantic priors (e.g., video instance segmentation)
are ruled out. Full table is demonstrated in the supplement. For each partition, Bold: Best,
Underbar: Second best.

Method Seq. 09 Seq. 10
SfM-Learner [44] 0.021±0.017 0.020±0.015
GeoNet [42] 0.012±0.007 0.012±0.009
CC [36] 0.012±0.007 0.012±0.008
Struct2Depth [7] 0.011±0.006 0.011±0.010
GLNet [10] 0.011±0.006 0.011±0.009
SGDepth [25] 0.017±0.009 0.014±0.010
Ours (w/o DAM) 0.012±0.006 0.011±0.009
Ours (w/ DAM) 0.010±0.011 0.011±0.009

Table 7. Absolute trajectory error (ATE) on
KITTI-VO.

Method
Seq. 09 Seq. 10

terr rerr terr rerr

GeoNet [42] 39.4 14.3 29.0 8.6
SC-SfM [1] 11.2 3.4 10.1 5.0
Ours (w/o DAM) 9.7 3.4 9.9 4.8
Ours (w/ DAM) 8.9 3.3 9.5 4.7

Table 8. Relative translation terr (%) and
rotation rerr (◦/100m) errors on KITTI-VO.

ego-motion estimation based on monocular training. We
compare the depth estimation on KITTI Eigen split [13],
Cityscapes [11], and Waymo Open Dataset [38], and all the
compared methods are based on the ResNet18 backbone. As
shown in Table 6, our final model with DAM and CSAC out-
performs all published self-supervised methods with weak
semantic priors (up to box prior). Qualitative results are
demonstrated in the supplement.

We also demonstrate visual odometry on KITTI-VO in
Table 7 and Table 8. In these experiments, our model with
DAM outperforms state-of-the-arts using monocular self-
supervised training. We conclude that our attention module
favorably works in estimating the camera ego-motion.

5. Conclusion

We proposed a novel self-supervised learning framework
to estimate the motion field of a dynamic scene from a
monocular camera. First, our approach heavily relies on
a novel attention module dedicated to the disentanglement
of the camera ego-motion and the objects’ motions, which
has proven to be effective to improve the overall perfor-
mance of our network. Second, we designed an object mo-
tion field estimation through contrastive sample consensus.

With given geometric and semantic priors, we leverage a
motion-repulsive embedding near object motion boundaries
to estimate more accurate motion field. The effectiveness
of our system has been demonstrated on various driving
datasets. One remaining limitation is the rigid body assump-
tion of the moving objects. While our approach is suitable
for a traffic scene containing vehicles, it is not appropriate
for deformable objects such as pedestrians. Therefore, we
leave this problem as our future direction to improve the
applicability of the technique to more diverse scenarios.
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