
Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss

Jung Hyun Lee1*, Jihun Yun1*, Sung Ju Hwang1,2, Eunho Yang1,2

1Korea Advanced Institute of Science and Technology (KAIST), 2AITRICS
{onliwad101, arcprime, sjhwang, eunhoy}@kaist.ac.kr

Abstract

Network quantization, which aims to reduce the bit-
lengths of the network weights and activations, has emerged
for their deployments to resource-limited devices. Although
recent studies have successfully discretized a full-precision
network, they still incur large quantization errors after train-
ing, thus giving rise to a significant performance gap be-
tween a full-precision network and its quantized counter-
part. In this work, we propose a novel quantization method
for neural networks, Cluster-Promoting Quantization (CPQ)
that finds the optimal quantization grids while naturally en-
couraging the underlying full-precision weights to gather
around those quantization grids cohesively during training.
This property of CPQ is thanks to our two main ingredi-
ents that enable differentiable quantization: i) the use of the
categorical distribution designed by a specific probabilistic
parametrization in the forward pass and ii) our proposed
multi-class straight-through estimator (STE) in the backward
pass. Since our second component, multi-class STE, is in-
trinsically biased, we additionally propose a new bit-drop
technique, DropBits, that revises the standard dropout reg-
ularization to randomly drop bits instead of neurons. As a
natural extension of DropBits, we further introduce the way
of learning heterogeneous quantization levels to find proper
bit-length for each layer by imposing an additional regular-
ization on DropBits. We experimentally validate our method
on various benchmark datasets and network architectures,
and also support a new hypothesis for quantization: learn-
ing heterogeneous quantization levels outperforms the case
using the same but fixed quantization levels from scratch.

*Equal contribution

1. Introduction

Deep neural networks have achieved great success in
various computer vision applications. However, the state-of-
the-art neural network architectures including ResNet [12]
generally require too much computation and memory to be
deployed to resource-limited devices. Therefore, researchers
have explored diverse approaches to compress them to re-
duce memory usage and computation cost.

Among them, network quantization aims to reduce the
bit-width of network parameters while maintaining competi-
tive performance of a full-precision counterpart. One of the
simplest methods is to round a weight or an activation of
a network x to x̂ = α⌊ x

α + 1
2⌋ where α controls the grid

interval size. However, this naı̈ve approach incurs severe
performance degradation mainly due to the quantization loss.
Given that if the underlying full-precision weights x are clus-
tered well around the optimal quantization grids, the perfor-
mance difference between before and after the quantization
can be marginal so that the performance of full-precision net-
work can be preserved even with the quantized parameters.
Hence, we focus on jointly finding the optimal quantization
grids and clustering the underlying full-precision weights x
around those quantization grids cohesively.

Some recent studies in fact have experimentally con-
firmed that their methods can partially give a clustering effect
in the quantization process. VNQ [2] clusters the underly-
ing full-precision weights x around quantization grids using
multi-spike-and-slab prior, but it is restricted only to ternary
precision. RQ [19] experimentally shows some clustering
effects around several modes in low bit-width, but it does
not equip any algorithm that explicitly encourages clustering
around quantization grids. As a result, both methods incur
a considerable performance gap between a full-precision
network and its quantized counterpart.

In order to preserve the performance of a full-precision

5370



network in low bit-width, we propose the Cluster-Promoting
Quantization (CPQ) that not only finds the optimal quantiza-
tion grids but also encourages the underlying full-precision
weights x to gather around those quantization grids cohe-
sively in low bit-length regimes. Although CPQ does not
have any explicit regularization or loss for clustering, the
combination of the following two key components results
in better clustering effect (and thus final performance) both
theoretically and experimentally: i) choosing the mode of the
categorical distribution parametrized by a particular proba-
bilistic approach in the forward pass and ii) taking advantage
of our multi-class straight-through estimator (STE) in the
backward pass.

As our multi-class STE is biased like the original STE for
the binary case [3], we present a novel bit-drop technique
named DropBits to reduce the bias of the multi-class STE
in CPQ. Motivated from Dropout [27], DropBits drops bits
rather than neurons/filters to train low-bit neural networks
under CPQ framework.

In addition, DropBits allows heterogeneous quantization,
which learns different bit-width per parameter/channel/layer
by dropping redundant bits. DropBits with learnable bit-
drop rates adaptively finds out the optimal bit-width for each
group of parameters, possibly further reducing the overall
bits. In contrast to recent studies [30, 29] in heterogeneous
quantization that exhibit almost all layers have at least 4-bit,
up to 10-bit, our method yields much more resource-efficient
low-bit neural networks with at most 4 bits for all layers.

With trainable bit-widths, we also articulate a new hy-
pothesis for quantization where one can find the learned
bit-width network (termed a ‘quantized sub-network’) which
can perform better than the network with the same but fixed
bit-widths from scratch.

Our contribution is threefold:

• We propose a new quantization method, Cluster-
Promoting Quantization (CPQ) that not only finds the
optimal quantization grids but also encourages the un-
derlying full-precision weights to congregate around
those quantization grids cohesively in low bit-width
regimes by the combination of a particular probabilistic
parametrization for discretization and our multi-class
straight-through estimator. We further present a novel
bit-drop technique coined DropBits to reduce the bias
of the multi-class straight-through estimator in CPQ.

• Extending DropBits technique, we propose a more
resource-efficient heterogeneous quantization algo-
rithm to curtail redundant bit-widths across groups

of weights and/or activations (e.g. across layers) and
verify that our method is able to find out ‘quantized
sub-networks’.

• We conduct extensive experiments on several bench-
mark datasets to demonstrate the effectiveness of our
method. We accomplish new state-of-the-art results
for ResNet-18 and MobileNetV2 on the ImageNet
dataset when all layers are uniformly quantized.

2. Related Work

BinaryConnect [6] first attempted to binarize weights
to ±1 by employing deterministic or stochastic operation.
To obtain better performance, various studies [23, 17, 2,
25] have been conducted in binarization and ternarization.
Although these works effectively decrease the model size
and raise the accuracy, they are limited to quantizing weights
with activations remaining in full-precision. To take full
advantage of quantization at run-time, it is necessary to
quantize activations as well.

Researchers have recently focused more on simultane-
ously quantizing both weights and activations [34, 31, 4, 32,
11, 15, 8]. XNOR-Net [23] exploits the efficiency of XNOR
and bit-counting operations. QIL [15] also quantizes weights
and activations by introducing parametrized learnable quan-
tizers that can be trained jointly with weight parameters. [8]
recently presented a simple technique to approximate the
gradients with respect to the grid interval size to improve
QIL. Nevertheless, these methods do not quantize the first or
last layer, which leaves a room to improve power-efficiency.

For ease of deployment in practice, it is inevitable to
quantize weights and activations of all layers, which is the
most challenging. [2] proposed multi-spike-and-slab prior
to allow multiple modes at quantization grids, but it is lim-
ited to ternary precision. [19] proposed to use the Gumbel-
Softmax trick [14, 21], but it does not cluster weights around
quantization grids well. [13] presented efficient fixed-point
implementations by formulating the grid interval size to the
power of two, but they quantized the first and last layer to at
least 8-bit. [33] proposed to quantize the grid interval size
and network parameters in batch normalization for the de-
ployment of quantized models on low-bit integer hardware,
but it requires a specific accelerator only for this approach.

As another line of work, [10] proposed a heterogeneous
binarization given pre-defined bit-distribution. HAWQ [7]
determines the bit-width for each block heuristically based
on the top eigenvalue of Hessian. Unfortunately, both of
them do not learn optimal bit-widths for heterogeneity. To-
ward this, [30] and [29] proposed a layer-wise heterogeneous

5371



quantization by exploiting reinforcement learning and learn-
ing dynamic range of quantizers, respectively. However,
their results exhibit that almost all layers have up to 10-bit
(at least 4-bit), which would be suboptimal. [18] presented a
channel-wise heterogeneous quantization by exploiting hier-
archical reinforcement learning, but channel-wise precision
limits the structure of accelerators, thereby restricting the
applicability of the model.

3. Cluster-Promoting Quantization

In this section, we first summarize the notations used in
this paper and then present an overview of our method.

The variable x denotes a weight or an activation of
a full-precision network and x̂ indicates the quantized
value of x. Here, we consider the following quantiza-
tion grids for x: For a weight x, Ĝ := [g0, . . . , g2b−1] =

α[−2b−1, . . . , 0, . . . , 2b−1−1] where b is the given bit-width
and α > 0 is a learnable parameter that controls the interval
of quantization grids. For an activation x, quantization grids
in Ĝ start from zero since the output of ReLU is always non-
negative. Lastly, [n] denotes the set {0, 1, · · · , n− 1} for a
positive integer n.

Our main goal is to design a quantization algorithm that
both finds the optimal α and clusters the underlying full-
precision weights x around quantization grids Ĝ cohesively
in low bit-width regimes. As a neural network is over-
parametrized, there may exist a parameter such that the
underlying full-precision weights x crowd around some dis-
crete values without performance degradation. Toward this,
we propose the Cluster-Promoting Quantization (CPQ) that
not only finds the optimal α but also helps the underlying full-
precision weights x congregate around quantization grids Ĝ
cohesively. The proposed CPQ consists of two components:
(i) a certain probabilistic parametrization for discretization
(Section 3.1) and (ii) our multi-class STE (Section 3.2). Sur-
prisingly, CPQ does not require any penalty or loss for clus-
tering thanks to the combination of these two components as
shown in Proposition 1 introduced in Section 3.2.

3.1. Probabilistic Parametrization for Quantization

To permit gradient-based optimization, we assume that
x is perturbed by noise ϵ as x̃ = x + ϵ. The variable ϵ

represents random noise for variational optimization [28]
that can follow any distribution with zero mean and stan-
dard deviation σ. Here, let ϵ follow the logistic distribu-
tion p(ϵ) = Logistic(0, σ) so that p(x̃) is governed by
Logistic(x, σ). Under such p(x̃), the unnormalized prob-
ability of x̃ being quantized to each quantization grid gi can

be easily computed in a closed form as below:

πi = Sigmoid
(gi + α

2 − x

σ

)
− Sigmoid

(gi − α
2 − x

σ

)
,

(1)

where the cumulative distribution function of the logistic
distribution is a sigmoid function. Note that under (1), x,
α, and σ are trainable parameters. Given unnormalized
categorical probabilities π = {πi}2

b−1
i=0 for quantization

grids Ĝ = {gi}2
b−1

i=0 , depending on how to design where x is
quantized according to π, an algorithmic detail is determined.
For instance, [19] employed the Gumbel-Softmax trick [14,
21] based on π. In this paper, we adopt such a probabilistic
parametrization (1) from [19] for our method.

3.2. Multi-Class Straight-Through Estimator

Given a probabilistic model for quantization like (1), we
define a new straight-through estimator (STE) as follows:

Forward: y = one hot[argmax
i

πi] (2)

Backward:
∂L

∂πimax

=
∂L

∂yimax

and
∂L
∂πi

= 0 for ∀ i ̸= imax,

(3)

where yi is the i-th entry of the one-hot vector y and L is the
cross entropy between the true label and the prediction made
by a quantized neural network by the forward pass (2). We
dub (2) and (3) the ‘multi-class STE’. That is, in the forward
pass, we directly select the mode (or the most likely grid) of
the categorical distribution parametrized by the probabilis-
tic model. On the other hand, in the backward pass, it is
required to handle the non-differentiable argmax operator
in computing imax. To allow gradient-based optimization,
we enable backpropagation through a non-differentiable cat-
egorical sample by backpropagating only through the path
corresponding to imax.

Note that the proposed multi-class STE can be thought
of as a natural extension of binary case [3], but this work is
the first in-depth study on multi-class STE in terms of net-
work quantization. Although [14] proposed slightly different
heuristic estimator, ST GS, that uses the Gumbel-softmax
trick with another straight-through estimator to bypass the
non-differentiability of discrete random variables, ST GS
does not have any justification in the context of network
quantization. On the other hand, our multi-class STE the-
oretically and empirically demonstrates the superiority of
clustering by the following proposition, when πi is com-
puted as in (1), even without any regularization or loss for
clustering.

5372



0 5000 10000 15000 20000 25000 30000
Iteration

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

W
ei

gh
t V

al
ue

Trajectory of x

Figure 1. Trajectories of five random weights in the second layer
when training LeNet-5 on MNIST in 3-bit. The x-axis indicates the
number of training iterations, and the y-axis represents the value
of weight. The horizontal dashed lines (gray) denote quantization
grids after training.

0.2 0.1 0.0 0.1 0.20

2000

4000

6000

8000 Layer 2

0.4 0.2 0.0 0.2 0.40

20000

40000

Layer 3

Figure 2. Weight distributions for 3-bit quantized LeNet-5 by our
method, CPQ. The x-axis and y-axis indicate weight values and
their frequencies, respectively. The vertical dashed lines denote
quantization grids.

Proposition 1. Let L be a loss function calculated from
a quantized neural network using (1) and (2). Under the
assumption that | ∂L

∂yimax
| is bounded, the gradient of L with

respect to full precision variable x from (3), ∂L
∂x , converges

to zero as a weight x approaches its nearest quantization
grid gimax .

By Proposition 1, once x is trained to become near gimax , x
can be kept to stay around gimax as seen in Figure 1, thus
making it possible to cluster the underlying full-precision
weights around quantization grids cohesively as seen in Fig-
ure 2. As our multi-class STE with (1) can be qualitatively
distinct from other unjustified estimators from this perspec-
tive, we call the combination of (1) and the multi-class STE
‘Cluster-Promoting Quantization (CPQ)’. The overall proce-
dure of CPQ is described in Algorithm 1.

One might wonder that the almost zero gradient near
quantization grids may make a network untrainable, which

would not be a gradient-based learning. Although ∂L
∂x is

almost zero when x is close to gimax , α is still trained to find
the better grid points. After α is updated, if the gap between
x and α is widened , then x is trained accordingly. Hence,
a network will continue to train until it finds the optimal α.
Such a training procedure is illustrated in Figure 3.

In addition to Proposition 1, our multi-class STE has an-
other strength: it makes the variance of gradients become
indeed zero, which has to do with what [19] highlighted to
train a network with low bit-widths successfully. As our
multi-class STE always chooses the mode of the categorical
distribution paramterized by a probabilistic model (i.e., there
is no randomness in the forward pass (2)) and the gradient
of L with respect to the individual categorical probabilities
is exactly zero everywhere except for the coordinate corre-
sponding to the mode in the backward pass (3), the variance
of our gradient estimator becomes zero.

4. DropBits and Its Extension to Heteroge-
neous Quantization

We propose a novel bit-drop technique named DropBits
to reduce the bias of the multi-class STE (Section 4.1). We
also impose an extra regularization on DropBits to permit
heterogeneous quantization (Section 4.2) and put forward a
new hypothesis for quantization (Section 4.3).

4.1. DropBits

Although our multi-class STE enjoys zero variance of
gradients, it is biased to the mode as the binary one in [3].
To reduce the bias of STE, [5] propose the slope anneal-
ing trick, but this strategy is only applicable to the binary
case. To address this limitation, we propose a novel bit-drop
method, DropBits, to decrease the bias of our multi-class
STE. Inspired by dropping neurons in Dropout [27], we drop
an arbitrary number of grid points at random every iteration,
where in effect the probability of being quantized to dropped
grid points becomes zero.

However, the design policy that each grid point has its
own binary mask would make the number of masks increase
exponentially with bit-width. Taking into consideration ap-
propriate noise levels with a less aggressive design, the fol-
lowing two examples are available: (a) endpoints in the grids
share the same binary mask, and (b) the grid points in the
same bit-level share the same binary mask (see Figure 4).
Hereafter, we consider (b) bitwise-sharing masks for groups
of grid points, unless otherwise specified.

Now, we introduce how to formulate binary masks. Un-
like Dropout implementation through dividing activations

5373



𝜶

𝜕ℒ

𝜕𝑥
≈ 0

𝜕ℒ

𝜕𝛼
> 0

𝒙

෥𝜶

𝒙

𝜶 is still 
trainable by 

𝝏𝓛

𝝏𝜶
> 𝟎

1. Parameters 𝒙 near grid points 2. Grid interval 𝜶 is trained to ෥𝜶 3. Parameter 𝒙 is learned as ෥𝒙 with new ෥𝜶

෥𝒙

෥𝜶

Now, 𝒙
becomes 
trainable 

Figure 3. Training procedure when weights are close to quantization grids.

Algorithm 1 Cluster-Promoting Quantization (CPQ)
1: Input: Training data D, network parameters {Wl, bl}Ll=1,

layer-wise grid interval parameters and the standard deviations
of a logistic distribution in the l-th layer {αl, σl}Ll=1.

2: Output: A low bit-width model with quantized network pa-
rameters {Ŵl, b̂l}Ll=1 after deployment procedure.

3: Initialize: Bit-width b and parameters {Wl, bl, αl, σl}Ll=1.
Initialize layer-wise grid Ĝl := [gl,0, gl,1, · · · , gl,2b−1] =

αl[−2b−1, · · · , 2b−1 − 1] for l ∈ {1, · · · , L}.
4: procedure TRAINING

5: // Forward pass
6: for l = 1, · · · , L do
7: x← Each entry of Wl or bl
8: Il = Ĝl − α/2 ▷ Shift the grid by −α/2
9: F = Sigmoid

(
Il−x
σl

)
▷ Compute CDFs

10: πi = F [i+ 1]− F [i] for i ∈ [2b − 1] ▷ Eq. (1)
11: y = one hot[argmaxi πi] ▷ Eq. (2)
12: x̂ = y ⊙ Ĝl ▷ Quantization
13: Activation can be quantized in the same way
14: end for
15: // Backward pass
16: for l = L, · · · , 1 do
17: Compute gradients ( ∂L

∂Wl
, ∂L
∂bl

, ∂L
∂αl

, ∂L
∂σl

) ▷ Eq. (3)
18: Update parameters (Wl, bl, αl, σl)

19: end for
20: end procedure
21: procedure DEPLOYMENT

22: for l = 1, · · · , L do
23: Ŵl = min(max(αl · Round(Wl/αl), gl,0), gl,2b−1)

24: b̂l = min(max(αl · Round(bl/αl), gl,0), gl,2b−1)

25: end for
26: end procedure

by 1− p (here, p is a dropout probability), we employ an ex-
plicit binary mask Z whose probability Π can be optimized
jointly with model parameters. The Bernoulli random vari-
able being non-differentiable, we relax a binary mask via the
hard concrete distribution [20]. While the binary concrete
distribution [21] has its support (0, 1), the hard concrete dis-

𝜋0
𝜋1

𝜋7

𝒁𝟐𝜋1 𝒁𝟑𝜋7𝒁𝟑𝜋0

⋯

⋯෥𝝅𝟎 ෥𝝅𝟏 ෥𝝅𝟕

𝒁𝟏
𝒁𝟐
𝒁𝟑

𝑔0 𝑔1 𝑔7⋯𝑔2 No Mask

(a) Endpoints-sharing mask

⋯෥𝝅𝟎 ෥𝝅𝟏 ෥𝝅𝟕

𝜋0
𝜋1

𝜋7

⋯

𝒁𝟐𝜋1 𝒁𝟐𝜋7𝒁𝟐𝜋0

𝑔0 𝑔1 𝑔7⋯𝑔2 𝑔6

𝒁𝟐 𝒁𝟐𝒁𝟏

No Mask

(b) Bitwise-sharing mask

Figure 4. Designs of two masks for 3-bit

tribution stretches it slightly at both ends, thus concentrating
more mass on exact 0 and 1. Assuming disjoint masks, we
describe the construction of a binary mask Zk for the k-th
bit-level using the hard concrete distribution as follows.

Uk ∼ Uniform(0, 1), (4)

Sk = Sigmoid
((

logUk−log (1− Uk) + log
Πk

1−Πk

)
/τ ′

)
S̄k = Sk(ζ − γ) + γ and Zk = min(max(S̄k, 0), 1)

where τ ′ is a temperature for the hard concrete distributions
with γ < 0 and ζ > 0 reflecting stretching level. For
i = 2b−1 − 1, 2b−1 and 2b−1 + 1, we do not sample from
the above procedure but fix Z = 1 to prohibit all the binary
masks from becoming zero (see ‘No Mask’ in Figure 4).

With the value of each mask generated from the above pro-
cedure, the probability of being quantized to any grid point
is re-calculated by multiplying πi’s by their corresponding
binary masks Zk’s (e.g. π̃0 = Z2 · π0 in Figure 4 (b)) and
then normalizing them (to sum to 1). As seen in Figure 5, the
sampling distribution of CPQ is biased to the mode, −3α.
For an appropriate value of Πk, the sampling distribution of
CPQ + DropBits can more resemble the original categorical
distribution than that of CPQ by adjusting πi’s to π̃i’s based
on Zk’s via DropBits, which means that DropBits is able to
reduce the bias of the multi-class straight-through estimator
in CPQ effectively. Not only that, DropBits does not re-

5374



4 3 2 0 2 3
Values

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Original Distribution

(a) Categorical distribution

4 3 2 0 2 3
Values

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

SRQ

(b) CPQ

4 3 2 0 2 3
Values

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

SRQ + DropBits

(c) CPQ + DropBits

Figure 5. The illustration of the effect of DropBits on CPQ. For a certain weight, (a) the categorical distribution indicates πi/Σ
7
j=0πj for

each grid (i = 0, · · · , 7), (b) the distribution of CPQ is a sampling distribution after taking the argmax of πi, and (c) the distribution of
CPQ + DropBits is a sampling distribution after taking the argmax of π̃i. Here, Πk’s are initialized to 0.7 for clear understanding.

𝑥
𝑔0 𝑔1 𝑔2 𝑔2𝑏−1⋯

𝜋0 𝜋1
𝜋2 𝜋2𝑏−1

⋯

𝝅𝒊

𝒈𝒊

Compute the probability
𝑝 ෤𝑥 = 𝐿 𝑥, 𝜎

𝑔0 𝑔2𝑏−1𝑔1 𝑔2 ⋯
𝐼 =

𝑥 𝜶

: forward pass
: backward pass

𝑾𝒍: the 
weight of
𝒍-th layer

For each entry 𝒙 of the 
weight 𝑾𝒍

Compute the probability
𝝅𝒊 of falling on 

each grid point 𝒈𝒊

Backprop via
Straight-Through 

Estimator

𝑥

For DropBits, compute ෥𝝅𝒊 with binary mask

𝝅𝒊𝒎𝒂𝒙

𝒈𝒊𝒎𝒂𝒙

Choose the grid point
with

highest probability 𝝅𝒊𝒎𝒂𝒙

with argmax

𝜋0
𝜋1

𝜋7

⋯
෥𝝅𝟎 ෥𝝅𝟏 ෥𝝅𝟕

𝒁𝟐𝜋1 𝒁𝟐𝜋7𝒁𝟐𝜋0

𝑔0 𝑔1 𝑔7⋯𝑔2 𝑔6

𝒁𝟐 𝒁𝟐𝒁𝟏

In case of DropBits regularization 
(3-bit Example)

⋯ ⋯

෢𝑾𝒍: 
quantized 

weight

Figure 6. Illustration of Cluster-Promoting Quantization (CPQ) framework with DropBits technique.

quire any hand-crafted scheduling at all due to the learnable
characteristic of Πk, whereas such scheduling is vital for
Gumbel-Softmax [14, 21] and slope annealing trick [5].

Although quantization grids for weights are symmetric
with respect to zero, those for activations start from zero,
which makes it difficult to exploit symmetrically-designed
DropBits for activations. Therefore, DropBits is applied
only for weights in our experiments. Assuming that Zk’s are
shared across all weights of each layer, the overall procedure
is described in Figure 6. The overall algorithm of CPQ +
DropBits is deferred to Appendix due to space limit.

4.2. Learning Bit-width towards Resource-
Efficiency

As noted in Section 1 and 2, recent studies on hetero-
geneous quantization use at least 4-bit, up to 10-bit, which
leaves much room for saving energy and memory. Towards
more resource-efficient method, we introduce an additional
regularization on DropBits to drop redundant bits.

As the mask design in Figure 4-(b) reflects the actual
bit-level and the probability of each binary mask in Drop-
Bits is learnable, we can penalize the case where we use
higher bit-levels via a sparsity encouraging regularizer like
ℓ1. As [20] proposed a relaxed ℓ0 regularization using
the hard concrete binary mask, we adopt this continuous
version of ℓ0 as a sparsity inducing regularizer. Follow-

ing (4), we define the smoothed ℓ0-norm as R(Z; Π) =

Sigmoid(log Π
1−Π − τ ′ log −γ

ζ ). One caveat here is that we
do not have to regularize masks for low bit-level if a higher
bit-level is still alive (in this case such a high bit-level is still
necessary for quantization). We thus design a regularization
in such a specific way as only to permit the probability of a
binary mask at the current highest bit-level to approach zero.
More concretely, for bit-level binary masks {Zk}b−1

k=1 as in
Figure 4-(b) and the corresponding probabilities {Πk}b−1

k=1,
our regularization term to learn the bit-width is

R
(
{Zk}b−1

k=1, {Πk}b−1
k=1

)
=

b−1∑
k=1

I(Zk > 0)
( b−1∏

j=k+1

I(Zj = 0)
)
R(Zk; Πk). (5)

Note that {Zk}b−1
k=1 is assigned to each group (e.g. all

weights or activations in a layer or channel for instance).
Hence, every weight in a group shares the same sparsity
pattern (and bit-width as a result), and learned bit-widths
across groups are allowed to be heterogeneous.

Assuming the l-th layer shares binary masks Zl :=

{Zl
k}

b−1
k=1 associated with probabilities Πl := {Πl

k}
b−1
k=1,

our final objective function for a L-layer neural network
becomes L(θ,α,σ,Z,Π) + λ

∑L
l=1 R(Zl,Πl), where

α = {αl}Ll=1 and σ = {σl}Ll=1 represent the layer-wise
grid interval parameters and standard deviations of logis-

5375



Table 1. Test error (%) for LeNet-5 on MNIST and VGG-7 on
CIFAR-10. “Ann.” stands for annealing the temperature of the
Gumbel-Softmax trick in RQ.

Dataset
# Bits
W./A.

RQ
RQ +
Ann.2

CPQ
CPQ +

DropBits

4/4 0.58 0.62 0.59 0.53

MNIST 3/3 0.69 0.74 0.67 0.58

2/2 0.76 − 0.72 0.63

4/4 8.43 8.47 7.15 6.85

CIFAR-10 3/3 9.56 10.78 7.08 6.94

2/2 11.75 − 7.68 7.51

0 50 100 150 200 250 300
Epochs

20

30

40

50

60

70

80

90

100

Tr
ai

ni
ng

 A
cc

ur
ac

y 
(%

)

Learning Curve

   

270 280 290 300
98
99

100

  

CPQ
RQ
RQ w/ Annealing

Figure 7. Learning curves of VGG-7 quantized by RQ, RQ with
annealing τ , and CPQ in 3-bit.

tic distributions, Z = {Zl}Ll=1, Π = {Πl}Ll=1, and λ is a
regularization parameter. In inference phase, we just drop
unnecessary bits based on the values of Π.

4.3. New Hypothesis for Quantization

[9] articulated the ‘lottery ticket hypothesis’, stating that
one can find some sparse sub-networks, ‘winning tickets’,
from randomly-initialized, dense neural networks that are
easier to train than sparse networks resulting from pruning.
In this section, we define a new hypothesis for quantization
with slightly different (opposite in some sense) perspective
from the original one.

Notation. a ≻bit b and a =bit b denote that a has strictly
higher bit-width than b for at least one of all groups (e.g.
channels or layers), and a has the same bit-precision as b

across all groups, respectively.
Definition. For a network f(x; θ) with randomly-

initialized parameters θ, let f(x; θ′) be a quantized network
from f(x; θ) such that θ ≻bit θ

′. If the accuracy of f(x; θ′)
is higher than that of f(x; θ′′) where f(x; θ′′) is trained from
scratch with fixed bit-widths such that θ′ =bit θ

′′, f(x; θ′)
is referred to as a quantized sub-network of f(x; θ).

2We cannot reproduce the results of RQ in 2-bit, so we experiment only
on 3-bit and 4-bit RQ

Table 2. Top-1/Top-5 error (%) with ResNet-18 and MobileNetV2
on the ImageNet dataset.

Method
# Bits
W./A.

ResNet-18
Top-1/Top-5

MobileNetV2
Top-1/Top-5

Full-precision 32/32 30.24/10.92 28.12/9.71

RQ [19] 4/4 38.48/16.01 −/−

RQ ST [19] 4/4 37.54 / 15.22 − / −

QIL3 [15] 4/4 31.05/11.23 32.77/12.51

LLSQF [33] 4/4 30.60/11.28 32.63/12.01

3/3 33.33/12.58 −/−

TQT [13, 29] 4/4 30.49/− 32.21/−

CPQ + 4/4 30.37/10.96 30.83/11.26

DropBits 3/3 32.79/12.57 35.71/14.36

This hypothesis implies learning bit-width would be supe-
rior to pre-defined bit-width. To the best of our knowledge,
our study is the first attempt to delve into this hypothesis.

5. Experiments

As popular deep learning libraries such as TensorFlow
[1] and PyTorch from v1.3 [22] already provide their own
8-bit quantization functionalities, we focus on low bit-width
regimes (2∼4-bit). In contrast to some other quantization
papers, our method uniformly quantizes weights and activa-
tions of all layers containing both the first and last layers. We
first show that CPQ and DropBits have its own contribution,
none of which is negligible. Then, we evaluate CPQ + Drop-
Bits on a large-scale dataset with deep networks. Finally, we
demonstrate our heterogeneous quantization method yields
promising results even if all layers have at most 4-bit and
validate a new hypothesis for quantization in Section 4.3.

5.1. Ablation Studies

To validate the efficacy of CPQ and DropBits, we succes-
sively apply each piece of our method to LeNet-5 [16] on
MNIST and VGG-7 [26] on CIFAR-10. Table 1 shows that
CPQ outperforms RQ in most cases. One might wonder that
the performance of RQ can be improved by an annealing
schedule of the temperature in the Gumbel-Softmax trick.
Unfortunately, RQ with an annealing schedule suffers from
high variance of gradients due to low temperatures at the end
of training as shown in Figure 7, thus giving rise to worse
performance than RQ as shown in Table 1. Finally, it can be
clearly identified that DropBits consistently improves CPQ
by decreasing the bias of our multi-class STE in CPQ.

3Our own implementation with all layers quantized by using pretrained
models available from PyTorch

5376



Table 3. Test error (%) for quantized sub-networks using LeNet-5 on MNIST, VGG-7 on CIFAR-10,and ResNet-18 on ImageNet. Here, an
underline means the learned bit-width and “T” stands for ternary precision.

Model
Initial
# Bits
W/A

Test
Error

Trained
W. Bits

per layer

Test
Error

(Fixed)

Test
Error
(Reg.)

4/4 0.53 4/4/3/4 0.55 0.52

LeNet-5 3/3 0.58 3/2/3/3 0.65 0.55

2/2 0.63 2/2/2/T 0.68 0.59

4/4 6.77 4/4/4/4/4/3/3/4 6.74 6.65

VGG-7 3/3 6.82 3/3/3/3/3/2/3/3 6.81 6.77

2/2 7.49 2/2/2/2/2/2/2/T 7.43 7.36

ResNet-18
4/4

3/3

33.20

37.80

4/3/3/3/3/3/3/3/3/3/3/3/3/3/3/4/4/3/4/4/4

3/3/2/3/2/3/3/3/3/3/3/3/2/3/3/3/3/3/3/3/3

34.58

41.01

34.30

40.30

5.2. ResNet-18 and MobileNetV2 on ImageNet

To verify the effectiveness of our algorithm on the Im-
ageNet dataset, we quantize the ResNet-18 [12] and Mo-
bileNetV2 [24] architectures initialized with each pre-trained
full-precision network available from the official PyTorch
repository. In Table 2, our method is only compared to the
state-of-the-art algorithms that quantize both weights and
activations of all layers for fair comparisons. The extensive
comparison against recent works that remain the first or last
layer in the full-precision is given in Appendix.

Table 2 illustrates how much better our model performs
than the latest quantization methods. In ResNet-18, CPQ +
DropBits outdoes RQ, QIL, LLSQF, and TQT, even achiev-
ing the top-1 and top-5 errors in 4-bit nearly close to those of
the full-precision network. In MobileNetV2, CPQ + Drop-
Bits with 4-bit surpasses all existing studies by more than one
percentage point. Moreover, we quantize MobileNetV2 to
3-bit, obtaining competitive performance, which is remark-
able due to the fact that none of previous works successfully
quantizes MobileNetV2 to 3-bit.

5.3. Finding Quantized Sub-networks

In this experiment, we validate a new hypothesis for quan-
tization by training the probabilities of binary masks using
the regularizer in Section 4.2 to learn the bit-width of each
layer. For brevity, only weights are heterogeneously quan-
tized, and the bit-width for activations remains fixed.

In Table 3, the fourth column represents the bit-width
per layer learned by our regularizer, and the fifth and last
columns indicate the test error when fixing the bit-width
of each layer same as trained bit-widths (fourth column)
from scratch and when using our regularization approach,
respectively. Table 3 shows that a learned structure by our
heterogeneous quantization method (last column) is superior
to the fixed structure with learned bit-widths from scratch

(fifth column) for all cases. It might be doubtful whether
our regularizer is able to recognize which layer is really re-
dundant or not. This may be indirectly substantiated by the
observation that the fixed structure with trained bit-widths
from scratch (fifth column) outperforms the uniform quan-
tization (third column) on CIFAR-10. More experiments
on different values of the regularization parameter λ are
deferred to Appendix.

6. Conclusion

We proposed Cluster-Promoting Quantization (CPQ),
which not only finds the optimal quantization grids but also
encourages the underlying full-precision weights to cluster
around those quantization grids cohesively in low bit-width
regimes. To reduce the bias of the multi-class STE in CPQ,
we also proposed a novel bit-drop technique, DropBits. We
showed that both CPQ and DropBits possess its own value,
thereby leading CPQ + DropBits to achieve the state-of-
the-art performance for ResNet-18 and MobileNetV2 on
ImageNet. Furthermore, we took one step forward to con-
sider heterogeneous quantization by simply penalizing bi-
nary masks in DropBits, which enables us to find out quan-
tized sub-networks. As future work, we plan to extend our
heterogeneous quantization method to activations and its
application to other quantizers.

Acknowledgements
This work was supported by the National Research

Foundation of Korea (NRF) grants (2018R1A5A1059921,
2019R1C1C1009192) and Institute of Information & Com-
munications Technology Planning & Evaluation (IITP)
grants (No. 2017-0-01779, A machine learning and sta-
tistical inference framework for explainable artificial intelli-
gence, and No.2019-0-00075, Artificial Intelligence Gradu-
ate School Program(KAIST)) funded by the Korea govern-
ment(MSIT).

5377



References
[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In USENIX Sym-
posium on Operating Systems Design and Implementation,
pages 265–283, 2016. 7

[2] Jan Achterhold, Jan Mathias Koehler, Anke Schmeink, and
Tim Genewein. Variational network quantization. In Inter-
national Conference on Learning Representations, 2018. 1,
2

[3] Yoshua Bengio, Nicholas Leonard, and Aaron Courville. Es-
timating or propagating gradients through stochastic neurons
for conditional computation. arXiv preprint arXiv:1308.3432,
2013. 2, 3, 4

[4] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. PACT: parameterized clipping activation for
quantized neural networks. CoRR, abs/1805.06085, 2018. 2

[5] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierar-
chical multiscale recurrent neural networks. In International
Conference on Learning Representations, 2016. 4, 6

[6] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David.
Binaryconnect: Training deep neural networks with binary
weights during propagations. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages 3123–3131.
Curran Associates, Inc., 2015. 2

[7] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Ma-
honey, and Kurt Keutzer. Hawq: Hessian aware quantization
of neural networks with mixed-precision. In The IEEE In-
ternational Conference on Computer Vision (ICCV), 2019.
2

[8] Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S. Modha.
Learned step size quantization. In International Conference
on Learning Representations, 2020. 2

[9] Jonathan Frankle and Michael Carbin. The lottery ticket
hypothesis: Finding sparse, trainable neural networks. In
International Conference on Learning Representations, 2019.
7

[10] Joshua Fromm, Shwetak Patel, and Matthai Philipose. Het-
erogeneous bitwidth binarization in convolutional neural net-
works. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 31, pages 4006–4015.
Curran Associates, Inc., 2018. 2

[11] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li,
Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differen-
tiable soft quantization: Bridging full-precision and low-bit
neural networks. In The IEEE International Conference on
Computer Vision (ICCV), 2019. 2

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770–778, 2016.
1, 8

[13] Sambhav R Jain, Albert Gural, Michael Wu, and Chris H
Dick. Trained quantization thresholds for accurate and effi-
cient fixed-point inference of deep neural networks. arXiv
preprint arXiv:1903.08066, 2019. 2, 7

[14] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparam-
eterization with gumbel-softmax. In International Conference
on Learning Representations, 2017. 2, 3, 6

[15] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-
Joon Han, Youngjun Kwak, Sung Ju Hwang, and Changkyu
Choi. Learning to quantize deep networks by optimizing
quantization intervals with task loss. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
4350–4359, 2019. 2, 7

[16] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
7

[17] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks.
In NIPS Workshop on EMDNN, 2016. 2

[18] Qian Lou, Feng Guo, Minje Kim, Lantao Liu, and Lei Jiang.
Autoq: Automated kernel-wise neural network quantization.
In International Conference on Learning Representations,
2020. 3

[19] Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efs-
tratios Gavves, and Max Welling. Relaxed quantization for
discretized neural networks. In International Conference on
Learning Representations, 2019. 1, 2, 3, 4, 7

[20] Christos Louizos, Max Welling, and Diederik P. Kingma.
Learning sparse neural networks through l0 regularization. In
International Conference on Learning Representations, 2018.
5, 6

[21] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The
concrete distribution: A continuous relaxation of discrete
random variables. In International Conference on Learning
Representations, 2017. 2, 3, 5, 6

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, pages
8024–8035, 2019. 7

[23] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In Bastian Leibe, Jiri
Matas, Nicu Sebe, and Max Welling, editors, Computer Vi-
sion – ECCV 2016, pages 525–542, Cham, 2016. Springer
International Publishing. 2

[24] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

5378



residuals and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
4510–4520, 2018. 8

[25] Oran Shayer, Dan Levi, and Ethan Fetaya. Learning discrete
weights using the local reparameterization trick. In Interna-
tional Conference on Learning Representations, 2018. 2

[26] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 7

[27] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15:1929–1958, 2014. 2, 4

[28] Joe Staines and David Barber. Variational optimization. arXiv
preprint arXiv:1212.4507, 2012. 3

[29] Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki
Yoshiyama, Javier Alonso Garcia, Stephen Tiedemann,
Thomas Kemp, and Akira Nakamura. Mixed precision dnns:
All you need is a good parametrization. In International
Conference on Learning Representations, 2020. 2, 7

[30] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.
Haq: Hardware-aware automated quantization with mixed
precision. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 8612–8620, 2019. 2

[31] Penghang Yin, Shuai Zhang, Jiancheng Lyu, Stanley Osher,
Yingyong Qi, and Jack Xin. Blended coarse gradient descent
for full quantization of deep neural networks. arXiv preprint
arXiv:1808.05240, 2018. 2

[32] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang
Hua. Lq-nets: Learned quantization for highly accurate and
compact deep neural networks. In European Conference on
Computer Vision (ECCV), 2018. 2

[33] Xiandong Zhao, Ying Wang, Xuyi Cai, Cheng Liu, and Lei
Zhang. Linear symmetric quantization of neural networks for
low-precision integer hardware. In International Conference
on Learning Representations, 2020. 2, 7

[34] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients. CoRR,
abs/1606.06160, 2016. 2

5379


