
DeepPRO: Deep Partial Point Cloud Registration of Objects

Donghoon Lee Onur C. Hamsici Steven Feng Prachee Sharma Thorsten Gernoth
Apple

{donghoonlee,ohamsici,shuo_feng,prachee_sharma,tgernoth}@apple.com

Abstract

We consider the problem of online and real-time registra-
tion of partial point clouds obtained from an unseen real-
world rigid object without knowing its 3D model. The point
cloud is partial as it is obtained by a depth sensor capturing
only the visible part of the object from a certain viewpoint. It
introduces two main challenges: 1) two partial point clouds
do not fully overlap and 2) keypoints tend to be less reliable
when the visible part of the object does not have salient local
structures. To address these issues, we propose DeepPRO, a
keypoint-free and an end-to-end trainable deep neural net-
work. Its core idea is inspired by how humans align two
point clouds: we can imagine how two point clouds will look
like after the registration based on their shape. To realize
the idea, DeepPRO has inputs of two partial point clouds
and directly predicts the point-wise location of the aligned
point cloud. By preserving the ordering of points during
the prediction, we enjoy dense correspondences between
input and predicted point clouds when inferring rigid trans-
form parameters. We conduct extensive experiments on the
real-world Linemod and synthetic ModelNet40 datasets. In
addition, we collect and evaluate on the PRO1k dataset, a
large-scale version of Linemod meant to test generalization
to real-world scans. Results show that DeepPRO achieves
the best accuracy against thirteen strong baseline methods,
e.g., 2.2mm ADD on the Linemod dataset, while running 50
fps on mobile devices.

1. Introduction
In this work, we are interested in developing an online

and a real-time point cloud registration algorithm for unseen
real-world objects. In other words, as we move a depth sen-
sor or an object, we aim to find 3D rotation and translation
parameters between the depth sensor and object based on the
captured point cloud at the current and previous frames. Es-
timated parameters by the registration algorithm is essential
for a number of applications such as tracking and reconstruc-
tion of the 3D object. We list key challenges for this problem
that are not fully addressed in existing literature.

First, we observe a part of an object from a certain view-
point at a time. Without knowing 3D model of unseen ob-
jects, the only input are two partial point clouds. Since input
partial point clouds do not fully overlap with each other, un-
like previous works [32, 39, 28], we cannot make one-to-one
correspondence assumption between input points or point
clusters. In addition, recent works on object point cloud
registration rely on 3D CAD models in the ModelNet40
dataset [35] as shown in Table 1. Due to a big domain gap
between real-world partial point clouds and synthetic 3D
CAD models as shown in Figure 1, [2, 32, 33, 38] use differ-
ent heuristic approaches to simulate the partial observation,
e.g., pick a random point and gather its neighbors from the
full point cloud. However, such methods do not properly
model complex self-occlusions, object materials and sensor
noises of real data. In our experiments, state-of-the-art mod-
els trained on the synthetic dataset do not generalize well on
real-world data as shown in Figure 4 and Table 2.

Second, it is often difficult to extract meaningful number
of precise keypoints for object point clouds. For outdoor-
scale [12, 19] or indoor-scale [40] point clouds, it is relatively
easy to extract keypoints as they have rich local structures
and salient geometries [18, 9, 8]. However, for small objects,
its partial point cloud might not always contain a number of
distinguishable local structures for keypoints. In addition,
irregular sensor noises around different object materials and
depth edges exacerbate the reliability of keypoints. We em-
pirically demonstrate that existing keypoint-based methods
that work well on outdoor or indoor point clouds become
less accurate on object point clouds in Table 2.

Third, the registration algorithm should be efficient and
effective for a small baseline. We can focus on the small
baseline since modern depth sensing devices typically cap-
ture at 30 fps or faster. Hence, the pose difference between
two consecutive frames would be small. To achieve real-time
performance, it is encouraged to avoid expensive multi-step
iterative approaches such as the classical iterative closest
point (ICP) [5] and its variants for global optimization [37].
However, these expensive methods are often adopted in of-
fline point cloud registration systems [41, 1, 29] or used as
an ad-hoc post-processing [32, 6] to improve the accuracy.

5683



(a) Synthetic data with full 3D model.

(b) Real-world observation.

Figure 1: Here we show the difficulties of the point cloud registration for real-world objects. (a) Existing learning-based works
rely on the synthetic CAD model of the object which can render point clouds without self-occlusion. (b) Our work focuses on
real-world data. Captured partial point clouds only cover a part of the object. In addition, they have self-occlusion and irregular
sensor noises (noises are better visible with a digital zoom). Shared content also gets smaller as the viewpoint changes.

Table 1: Existing learning-based point cloud registration
methods on different input scales and data sources.

Input scale Synthetic data Real data

Outdoor, indoor - [4, 6, 7, 8, 13, 18, 39]

Object [2, 15, 27, 32, 33, 38, 39] Our interest

To address above issues, we first use a real-world dataset
rather than augmenting synthetic data. We extensively eval-
uate 13 point cloud registration methods on the real-world
Linemod dataset [14]. In addition, we collect and evaluate
on a large-scale dataset, called PRO1k in this paper. Second,
we propose a keypoint-free algorithm called Deep Partial
point cloud Registration of Objects (DeepPRO). The algo-
rithm predicts the registered location of each point in one
point cloud in the other point cloud’s coordinate using a
point cloud generation network in a way that the predicted
points preserve the ordering of the original point cloud. It
establishes dense correspondences between points in two co-
ordinates which allow us to effectively infer rigid transform
parameters. Third, we train DeepPRO with point cloud pairs
in the small baseline and estimate its runtime on a mobile
device to make sure it works in real-time for our use case.

Experimental results on two real-world and one syn-
thetic object databases show that DeepPRO works favorably
against existing methods. For example, for unseen objects,
we achieve 1.19◦ error in rotation, 1.46 cm error in transla-
tion, and 0.22 cm 3D distance error on the Linemod dataset.
In addition, DeepPRO shows faster than 50 fps runtime on
mobile devices without any optimization techniques such as
network quantization or pruning.

2. Related Work

Geometric registration and pose estimation are gaining
more attention with 1) the growing application in robotics,
autonomous driving, and augmented reality and 2) widely
available sensors from Lidar on autonomous vehicles to
RGB-D sensor on mobile devices. Therefore, the problem
setup and objectives are diverse across different applications.
In this paper, we focus on reviewing existing works relevant
to registering small spatial scale partial point clouds.

ICP [5] is a classical method in geometric registration,
which iteratively extracts matching points between two point
clouds and moves one point cloud closer to the other based
on estimated rotation and translation parameters until con-
vergence. In general, ICP works well when a reliable initial-
ization of point clouds is available. To alleviate this issue,
Go-ICP [37] setups a branch-and-bound framework with the
higher order of computation cost. FGR [42] initializes the
correspondence with FPFH feature [26] which are sensitive
to occlusions and partial point clouds. These methods are
generic so particular knowledge on objects are not required.

In recent years, as shown in Table 1, data-driven ap-
proaches are emerging for registering point clouds based
on the development of point cloud encoders such as Point-
Net [25], DGCNN [34], KPConv [30], or FCGF [7]. They
typically encode two point clouds using the Siamese-style
network and compare the output features to find the rota-
tion and translation between them. We briefly review recent
object-scale point cloud registration methods.

Deep closest point (DCP) [32] approximates the com-
binatorial matching in ICP based on the attention module
in Transformer [31] and a probabilistic matching of feature
vectors. A differentiable SVD head is incorporated into the
network to estimate the transform parameters. PointNetLK

5684



Figure 2: Key differences between the existing method and proposed algorithm. Existing keypoint-based approaches aim to
find correspondences between two input point clouds X1 and X2. On the other hand, the proposed algorithm predicts P21, the
registered location of each point in X2 in X1’s coordinate. It lets us to build keypoint-free dense correspondences.

[2] uses the idea of the Lucas-Kanade algorithm [21]. Its for-
mulation is based on the Jacobian of globally pooled feature
vectors and the framework is unrolled to recurrent neural
network for training. PRNet [33] is a keypoint based method
which aims to predict a sharp mapping between keypoints
using Gumbel-Softmax [16, 22]. The temperature parameter,
which controls the shape of the softmax probability distribu-
tion, is automatically determined based on the actor-critic
method [23]. A feature-metric registration proposed in [15]
minimizes the difference of encoded features of two point
clouds for training the network.

3. Approach
The core idea of DeepPRO is shown in Figure 2. The goal

is to find rotation and translation parameters, R21 and t21,
which align the partial point cloud X2 ∈ R3×N observed at
view 2 with X1 ∈ R3×N observed at view 1, i.e., R21X2 +
t21, without any prior knowledge on the rigid object1. Unlike
the mainstream keypoint-based methods, DeepPRO predicts
P21 which describes how X2 will look like if it is registered
with X1 in X1’s coordinate. Hence X2 and P21 inherit
dense correspondences between two different coordinates
which facilitates the point cloud registration.

We build a deep convolutional neural network and train it
with the ground truth transform label as shown in Figure 3. It
consists of four parts: a shared encoder, a conditional point
cloud generation network, a transform estimation network,
and a do-and-undo of the random rotation layer. Following
the convention in literature [2, 32, 33, 38], we assume a
known object region so that we can randomly sample N
points from the object. From our experiments, DeepPRO
works well for different number of N as shown in Table 5.

3.1. Network Architecture

Shared Encoder. We use a point cloud encoder which
maps the input point cloud X1 to the per-point local feature
f l1 ∈ Rd×N and global feature fg1 ∈ Rd×1. The same en-
coder is applied to X2 with shared parameters to get f l2 and
fg2 . In this work, we utilize DGCNN [34] architecture while

1For convenience, we explain transform from view 2 to 1 while the
same logic can be applied to the other direction.

it can be substituted with other point cloud encoders as long
as one can get local and global features. Before we feed
the point cloud to the encoder, both point clouds are zero-
centered and normalized to a [−0.5, 0.5]3 cube by dividing
with a common scale factor. The scaling factor is determined
by the maximum value of zero-centered point clouds. We
store the mean of each point cloud, µ(X1) and µ(X2), and
the scale factor s to de-normalize the point cloud later.

Conditional Point Cloud Generation Network. This
module takes fg1 , fg2 , and f l2 as input and outputs the pre-
dicted location of each point in X2 at viewpoint 1, i.e. P21.
The global features are replicated and concatenated with the
local features to form an input as shown in Figure 3. The
network can be described as a generator which reconstructs
X2 using fg2 and f l2 while conditioning on fg1 to put it at the
viewpoint 1, as P21. Note that, both P21 and f l2 have the
same ordering of points as in X2 since we use 1×1 convolu-
tions on per point encoding which do not change the ordering
of points. This embeds dense correspondences between X2

and P21 which will be useful for the transform estimation
network to estimate rigid transform parameters. We use the
hyperbolic tangent activation function after the last layer’s
output to contain predicted locations within [−1, 1]3 cube.
Then, we de-normalize the generated point cloud based on
the previously stored normalization parameters µ(X1) and s
to bring it to viewpoint 1, i.e., we obtain P21.

Transform Estimation Network. Given two point clouds
X2 and P21 with dense correspondences, we estimate ro-
tation and translation parameters. For a rigid transform,
an SVD-based closed form solution [10] is widely used.
However, we empirically found that putting SVD into the
network makes end-to-end training unstable. Therefore, we
build the transform estimation network to estimate param-
eters. Thanks to dense correspondences, we can simply
concatenate X2 and P21 and feed it to the network which
predicts the rotation in the form of quaternion. We parame-
terize the rotation axis n = (nx, ny, nz) and rotation angle θ

of a quaternion vector as q =
(
cos(πσ(θ)2 ), sin(πσ(θ)2 ) n

‖n‖

)
where σ is the sigmoid function to represent the rotation R21

5685



Figure 3: Overall flow of DeepPRO. A shared encoder outputs local and global features for each partial point cloud. Then, we
predict the registered point-wise location of Xi in Xj’s coordinate, i.e., Pij , using the shared point cloud generation network.
As Pij and Xi have the same ordering of points, we have dense correspondences between two coordinates. Therefore, we
can concatenate Pij and Xi and feed it to the transform estimation network to get (Rij , tij). Random rotation is applied to
augment data during training. For inference, we only execute boxes colored in blue. Red arrows show loss computation.

on the positive real hemisphere and ‖n‖ =
√
n2x + n2y + n2z .

Then, the estimated translation is calculated as t21 =
µ(P21) − R21µ(X2). Using the predicted R21 and t21,
we can actually move X2 to viewpoint 1, i.e., X21 =
R21X1 + t21. We normalize X2 and P21 based on the
same normalization method used in the point cloud encoder.

Random Rotation Layer. The output of conditional point
cloud generation is rotation and translation invariant since
the alignment of X1 and X2 depends only on their shape.
Therefore, during training, we exploit the transform invariant
property by adding the random rotation layer as shown in
Figure 3. The translation invariant part is handled during
point cloud normalization, i.e., subtracting the mean. We
undo this random rotation after the network predicts P21 so
that R21 and t21 can be estimated with the original orien-
tations of the input. For simplicity, we slightly abuse the
notation P21 as the predicted point clouds after undoing
the random rotation for the rest of the paper. In practice,
we found that the network can be effectively trained with a

limited perturbation, e.g., ±5◦, in the random rotation layer.

3.2. Objective Function

The proposed network is trained with the following ob-
jective function to transform X2 to view 1:

L21 = LR,t(R21, t21,R
∗
21, t

∗
21) + L3D(P21,X21,X

∗
21),

(1)
where LR,t regulates the error in the rotation and translation
parameter space and L3D describes the distance in the 3D
space. In addition, X∗21 is X2 transformed by ground truth
rotation and translation parameters R∗21 and t∗21.

Rotation and Translation Loss. We minimize
‖(E∗21)−1E21 − I‖ where E = [R|t] ∈ R4×4 is an
extrinsic matrix and I is the identity matrix. For the type of
the norm, we tested L1, L2, and LS (shrinkage loss [20]).
We use LS norm for regression losses in this paper, as we
empirically achieve better results than for other norms.

5686



Distance Loss in 3D Space. We consider two terms for
the distance loss between point clouds as follows:∑
p21∈P21,x21∈X21,x∗

21∈X∗
21

1

N
(‖p21−x∗21‖+ ‖x21−x∗21‖),

(2)
where N is the number of points. The first term is designed
to predict correct P21. Note that we can directly calculate
p21 − x∗21 without finding point-to-point matching as they
already have dense correspondences as discussed in Sec-
tion 3.1. The second term is the average distance of model
points (ADD) [14] which measures the 3D distance between
the ground truth and registered point clouds. It helps LR,t to
minimize the error of transform parameters.

Final Loss. The final loss considers bi-directional trans-
form and a cyclic loss as follows:

L = L21 + L12 + Lcyc, (3)

where L12 is defined similarly with L21 and Lcyc guides the
network to have the inverse relationship between (R21, t21)
and (R12, t12). It is defined as follows:

Lcyc = ‖X1−(R21X12+t21)‖+‖X2−(R12X21+t12)‖.
(4)

All loss functions and networks are end-to-end trainable.

4. Experimental Results
Due to space limit, we describe implementation details,

baseline methods discussions, training stability, and more
failure case analysis in the supplementary material.

Datasets. While outdoor and indoor point cloud regis-
tration methods are evaluated on real-world benchmark
databases, such as KITTI [12], ETH [24], and 3DMatch
[40], learning-based object-scale registration methods [32,
33, 27, 2, 15] are limited to a non-realistic synthetic Mod-
elNet40 [35] dataset. To alleviate this problem, we train
and test our algorithm on the real-world Linemod [14] and
PRO1k dataset as well as synthetic ModelNet40 dataset.

The Linemod dataset is a well-known benchmark for 6-
DOF object pose estimation. We gather the camera pose and
object point cloud based on 2D masks of eleven asymmetric
objects. Then, we build an input pair (X1, X2) and calculate
their ground truth label (R∗21, t∗21) using the camera pose.
We collect pairs that at least have 512 object points and view-
point difference within 10◦ and 10 cm. We focused on the
small baseline since viewpoint changes between neighboring
frames are expected to be small for real-time applications.
For more details of the Linemod dataset, we refer to [14].

For PRO1k, we choose 1,000 real-world objects that are
diverse in size, category (electronics, hardware tools, boxes,

Figure 4: Visualization of point cloud registration results.
Best viewed with digital zoom.

foods, kitchenware, sculptures, decorations, toys, etc.), tex-
ture and shape. Then, we follow a similar protocol, e.g.,
maintain similar distance and angle to the object, as the
Linemod dataset to collect data. With this large dataset, we
are interested in demonstrating if DeepPRO can scale up and
generalize on unseen real-world data.

ModelNet40 is a widely used synthetic dataset in learning-
based object point cloud registration field. It has 12,311
CAD models of 40 object categories. Although it is not
our primary interest to evaluate on the unrealistic synthetic
dataset, we can make head-to-head comparisons to existing
works for large baseline point cloud registration. In our
experiments, we follow the protocol in [33] to prepare partial
point clouds and unseen test data.

Comparison to Existing Methods. We compare Deep-
PRO against thirteen strong baselines from classical methods
[17, 5, 37, 42, 36, 11] to recent learning-based approaches
[32, 4, 2, 33, 38, 6] as shown in Table 22. We train learning-
based approaches using the code released by authors while
we found that some methods [32, 33] are unstable to train
on real-world dataset as similarly observed in [6]. For those,
we use pretrained model on ModelNet40 for evaluation.

The first thing that catches our attention from Table 2 is
that classical methods interestingly show better results com-
pared to recent learning based approaches. For example, ICP,
FGR and GMMreg achieve the rotation error around 2.5◦

which is better than most of other learning based methods. It
is because existing learning based algorithms have either an
assumption which does not comply with real observations or
low generalization ability on object-scale partial and noisy
point clouds. Qualitative results in Figure 4 and 5 visualize
results for 2D projections of 3D point clouds.

We scale up experiments using the PRO1k dataset as
shown in Table 3. Results show that DeepPRO can be ef-
fectively trained on the large-scale dataset and generalize
to unseen objects. Regarding runtime, the most comparable
Go-ICP [37] takes about 20 seconds to run on a desktop
computer. In contrast, DeepPRO runs faster than 50 fps on a
mobile device without any network quantization or pruning.

2Recent DeepGMR [39] method is not included in our comparison since
it inherently does not deal with partially overlapped point cloud pairs.

5687



Table 2: Error of various point cloud registration methods on the Linemod dataset. ADD is defined in (2).

Object Ape Vise Cam Can Cat Driller Duck Puncher Iron Lamp Phone Average

Diameter (cm) 10.2 24.7 17.2 20.1 15.4 26.1 10.9 14.5 27.8 28.3 21.2 19.7
Number of pairs 2,094 2,081 2,037 2,002 2,048 1,991 2,134 2,120 1,792 2,012 1,966 2,025

R
ot

at
io

n
(◦

)

DCP v1 [32] 36.89 47.49 43.02 42.50 35.88 39.48 41.68 44.05 42.44 51.71 40.46 42.33
DCP v2 [32] 56.99 70.76 61.24 66.74 59.66 48.01 64.36 67.64 70.02 72.50 65.31 63.93
D3Feat [4] 25.86 53.15 42.69 37.11 44.29 51.68 24.87 39.31 34.97 46.46 62.73 41.10

PointNetLK [2] 11.14 19.28 7.52 17.54 9.84 22.61 7.72 11.07 10.10 14.76 10.61 12.93
PRNet [33] 7.37 7.02 8.51 6.58 6.12 7.08 7.59 7.03 5.24 5.74 5.64 6.72

TEASER++ [36] 6.13 4.91 5.68 4.53 4.36 5.54 4.94 9.13 5.52 5.84 4.11 5.52
JRMPC [11] 2.96 1.24 2.35 2.01 1.70 1.41 4.30 3.74 3.84 2.15 1.43 2.47

DGR [6] 2.85 2.11 3.11 2.47 2.28 2.54 2.84 3.60 3.21 2.42 2.71 2.74
RPM-Net [38] 2.97 1.56 2.14 2.24 2.29 1.81 2.75 2.50 1.81 1.65 1.97 2.15
GMMreg [17] 2.42 2.07 2.21 2.28 2.10 2.50 2.43 2.61 2.51 2.43 2.38 2.36

ICP [5] 2.14 2.35 2.02 2.11 2.14 2.25 2.06 2.15 2.03 2.45 1.90 2.15
FGR [42] 2.49 2.85 2.32 2.57 2.37 2.68 2.71 2.41 2.62 3.02 2.36 2.58

Go-ICP [37] 2.24 1.36 1.61 1.46 1.66 1.70 2.22 1.69 1.66 1.32 1.60 1.68
DeepPRO 1.28 1.31 1.25 1.16 1.19 1.23 1.25 1.40 1.01 1.09 0.97 1.19

Tr
an

sl
at

io
n

(c
m

)

DCP v1 [32] 22.86 36.21 23.20 32.46 23.36 29.45 23.99 35.12 39.10 45.04 34.74 31.41
DCP v2 [32] 36.79 54.95 35.17 51.40 37.91 32.64 35.01 55.03 60.58 58.43 51.56 46.32
D3Feat [4] 20.65 43.75 38.81 36.34 39.47 47.97 21.82 30.89 31.85 41.50 58.94 37.45

PointNetLK [2] 11.15 21.38 8.09 18.55 11.15 26.38 7.45 12.28 12.88 16.97 12.23 14.41
PRNet [33] 8.44 7.46 9.79 7.83 7.68 7.84 8.55 8.41 6.33 5.94 6.89 7.74

TEASER++ [36] 6.21 4.97 5.97 4.50 4.62 5.21 5.20 8.75 5.89 5.71 4.41 5.59
JRMPC [11] 2.89 1.32 2.36 2.14 1.99 1.51 3.35 3.19 3.73 2.63 1.69 2.44

DGR [6] 2.93 2.19 3.25 2.68 2.53 2.73 2.94 3.84 3.26 2.52 2.76 2.88
RPM-Net [38] 3.11 1.74 2.49 2.43 2.74 2.21 3.06 2.86 2.03 1.81 2.12 2.42
GMMreg [17] 5.53 4.32 4.78 4.28 4.45 4.94 4.86 5.22 5.44 4.70 5.20 4.88

ICP [5] 2.53 2.89 2.67 2.60 2.71 2.94 2.61 2.52 2.41 2.99 2.38 2.66
FGR [42] 3.21 4.40 3.64 3.92 3.48 4.57 3.37 3.32 3.73 4.22 3.35 3.75

Go-ICP [37] 2.14 1.54 1.82 1.61 1.90 1.80 2.27 1.83 1.62 1.40 1.69 1.78
DeepPRO 1.48 1.61 1.61 1.45 1.47 1.58 1.48 1.64 1.22 1.31 1.20 1.46

A
D

D
(c
m

)

DCP v1 [32] 1.52 3.96 2.94 3.26 2.03 3.69 1.93 2.76 3.55 4.47 3.02 3.01
DCP v2 [32] 2.22 5.39 4.06 4.75 3.08 4.39 2.83 4.04 5.14 5.83 4.43 4.20
D3Feat [4] 3.70 5.58 4.72 4.67 4.49 7.49 2.85 3.83 5.17 5.83 5.45 4.89

PointNetLK [2] 0.91 4.01 1.07 3.08 1.32 5.12 0.73 1.32 1.89 2.44 1.77 2.15
PRNet [33] 0.49 0.89 0.88 0.81 0.52 1.21 0.57 0.68 0.81 0.85 0.67 0.76

TEASER++ [36] 0.33 0.52 0.52 0.47 0.33 0.64 0.36 0.64 0.64 0.75 0.46 0.52
JRMPC [11] 0.67 0.41 0.77 0.65 0.62 0.75 0.75 0.73 0.84 1.04 0.54 0.71

DGR [6] 0.25 0.33 0.40 0.36 0.26 0.49 0.30 0.39 0.52 0.43 0.39 0.37
RPM-Net [38] 0.20 0.27 0.28 0.30 0.22 0.35 0.25 0.26 0.34 0.31 0.28 0.28
GMMreg [17] 0.32 0.52 0.36 0.37 0.31 0.47 0.30 0.39 0.42 0.68 0.36 0.41

ICP [5] 2.32 2.35 2.86 2.36 2.55 2.53 2.34 2.68 2.52 2.83 2.55 2.54
FGR [42] 0.97 2.03 1.46 1.74 1.24 2.44 1.02 1.12 1.52 1.78 1.47 1.53

Go-ICP [37] 0.17 0.20 0.24 0.22 0.17 0.31 0.21 0.21 0.26 0.25 0.23 0.22
DeepPRO 0.14 0.25 0.23 0.22 0.17 0.32 0.17 0.21 0.28 0.27 0.21 0.22

Table 3: Average error on the PRO1k dataset.

Rotation (◦) Translation (cm) ADD (cm)

ICP [5] 3.19 2.40 1.08
Go-ICP [37] 3.20 2.84 0.84

GMMreg [17] 2.98 3.51 0.83
FGR [42] 2.64 2.10 0.82
DeepPRO 1.07 0.93 0.41

Synthetic Data and Large Baseline. Table 4 shows re-
sults of large baseline experiments on the ModelNet40
dataset. For fair comparison, we borrow results from [33]

and use the same metric for evaluation. For DeepPRO, we
use the same network architecture and hyper-parameters
that we used for real data. Results show that DeepPRO
consistently outperforms state-of-the-art methods. It also
demonstrates that our approach is effective for both real and
synthetic data from small to large baseline registration.

Ablation Study. To validate the effectiveness of each com-
ponent in our algorithm, we carry out ablation studies as
shown in Table 5. We first construct a naive deep network
which bypasses the point cloud generation block. It uses
the same encoder as DeepPRO, feeds concatenated global

5688



(a) 3D point clouds X1,X2,X3,X4 are projected onto corresponding frames. Colorbar shows depth in cm.

(b) We first use ground truth pose to get Xi1 = R∗
i1Xi + t∗i1. Then, we visualize reprojected Xi1i = R1iXi1 + t1i onto corresponding

frames where R1i and t1i are predicted by DeepPRO. The colorbar indicates the distance between Xi and Xi1i in cm.

(c) Reprojected point clouds obtained with FGR pose.

Figure 5: Reprojection error for pairs with pose differences of (10.00◦, 29 cm), (11.24◦, 18 cm) and (12.59◦, 27 cm). While
DeepPRO is only trained with pairs in (10◦, 10 cm) pose difference, results show the generalization to a wider range.

Table 4: Large baseline results of unseen partial point clouds with Gaussian noise on the sythetic ModelNet40 dataset.

Model MSE(R)↓ RMSE(R)↓ MAE(R)↓ R2(R)↑ MSE(t)↓ RMSE(t)↓ MAE(t)↓ R2(t)↑

ICP [5] 1229.670 35.067 25.564 -6.252 0.0860 0.294 0.250 -0.045
Go-ICP [37] 150.320 12.261 2.845 0.112 0.0008 0.028 0.029 0.991

FGR [42] 764.671 27.653 13.794 -3.491 0.0048 0.070 0.039 0.941
PointNetLK [2] 397.575 19.939 9.076 -1.343 0.0032 0.057 0.032 0.960

DCP v2 [32] 47.378 6.883 4.534 0.718 0.0008 0.028 0.021 0.991
PRNet [33] 18.691 4.323 2.051 0.889 0.0003 0.017 0.012 0.995
DeepPRO 7.930 2.617 1.452 0.987 0.0002 0.013 0.007 0.998

features to fully-connected layers, and is trained to minimize
‖(E∗21)−1E21 − I‖. Results show that the naive deep net-
work can crudely learn registering two point clouds. Second,
we use conventional SVD-based pose estimation using the
dense correspondence between P12 and X1. The proposed
transform estimation network is more robust on noisy cor-
respondences than SVD. Next, we study the efficacy of the
random rotation layer, bidirectional training ((1) v.s. (3)),
and ADD loss (2). It shows that each design choice in Deep-
PRO is effective. We also replace the DGCNN encoder with
the PointNet and re-train the network with the same hyper-
parameters. Results show that DeepPRO is not sensitive to
the choice of point cloud encoders. In addition, we show
that DeepPRO can be trained well with the predicted object

mask using [3]. Finally, we train DeepPRO with less num-
ber of points sampled from the point cloud. The accuracy
degrades gracefully as the number of input points decreases.
For example, with the half of the input points, the ADD error
is increased only 0.04 cm.

Failure Cases. We visualize the distribution of training
data and test errors for different range of rotations and trans-
lations in Figure 6. It shows that the average prediction error
in each bin is mostly high when the input pair has a large ro-
tation and a small translation differences, e.g., a user stands
still and rotates the depth sensor. As shown in Figure 6(a),
this type of data samples are limited in the Linemod dataset
since a person circles around an object while capturing data.

5689



Table 5: Ablation study of the proposed algorithm regarding rotation, translation, and ADD errors.

Object Ape Vise Cam Can Cat Driller Duck Punch Iron Lamp Phone Average

R
ot

at
io

n
(◦

)

Naive deep net 2.46 2.31 1.99 2.06 2.09 2.18 2.36 1.96 1.91 2.10 1.92 2.12
SVD 2.05 1.91 2.11 1.83 1.95 1.74 2.04 2.31 2.03 1.70 1.70 1.94

w/o random rotation 1.73 1.33 1.50 1.51 1.36 1.44 1.58 1.83 1.32 1.38 1.12 1.46
w/o bidirectional path 1.37 1.41 1.51 1.41 1.29 1.26 1.43 1.68 1.36 1.32 1.12 1.38

w/o ADD loss 1.42 1.38 1.34 1.41 1.30 1.19 1.49 1.62 1.23 1.07 1.11 1.32
PointNet encoder 1.32 1.31 1.51 1.29 1.31 1.33 1.41 1.42 1.58 1.32 1.15 1.36

Predicted mask [3] 1.31 1.50 1.45 1.34 1.39 1.22 1.34 1.48 1.08 1.21 1.22 1.32
Less points N=128 1.44 1.48 1.60 1.55 1.46 1.23 1.42 1.57 1.21 1.29 1.16 1.40
Less points N=256 1.41 1.29 1.36 1.51 1.22 1.05 1.37 1.40 1.08 1.11 1.06 1.26
Full model N=512 1.28 1.31 1.25 1.16 1.19 1.23 1.25 1.40 1.01 1.09 0.97 1.19

Tr
an

s.
(c
m

)

Naive deep net 2.34 2.27 1.75 2.11 2.09 2.15 2.38 1.72 1.70 1.79 1.65 2.00
SVD 2.30 2.20 2.44 2.13 2.29 2.11 2.29 2.62 2.29 1.94 1.96 2.24

w/o random rotation 2.04 1.74 1.89 1.86 1.77 1.89 1.88 2.11 1.59 1.68 1.44 1.81
w/o bidirectional path 1.61 1.79 1.88 1.75 1.65 1.69 1.73 1.95 1.62 1.62 1.46 1.70

w/o ADD loss 1.69 1.79 1.73 1.80 1.69 1.61 1.78 1.89 1.47 1.35 1.44 1.66
PointNet encoder 1.55 1.62 1.92 1.64 1.64 1.71 1.69 1.67 1.83 1.56 1.45 1.66

Predicted mask [3] 1.56 1.87 1.83 1.65 1.71 1.62 1.62 1.75 1.33 1.50 1.54 1.63
Less points N=128 1.71 1.84 1.97 1.89 1.79 1.63 1.71 1.77 1.44 1.54 1.40 1.70
Less points N=256 1.70 1.60 1.75 1.87 1.49 1.37 1.64 1.59 1.30 1.36 1.28 1.54
Full model N=512 1.48 1.61 1.61 1.45 1.47 1.58 1.48 1.64 1.22 1.31 1.20 1.46

A
D

D
(c
m

)

Naive deep net 1.40 1.17 1.17 1.14 1.12 1.32 1.28 1.15 1.12 1.16 1.15 1.20
SVD 0.17 0.27 0.27 0.25 0.19 0.33 0.20 0.24 0.34 0.30 0.24 0.25

w/o random rotation 0.18 0.32 0.27 0.28 0.20 0.40 0.20 0.25 0.34 0.32 0.24 0.27
w/o bidirectional path 0.16 0.33 0.28 0.29 0.20 0.39 0.21 0.27 0.35 0.32 0.27 0.28

w/o ADD loss 0.17 0.32 0.27 0.29 0.21 0.38 0.21 0.25 0.34 0.30 0.25 0.27
PointNet encoder 0.15 0.26 0.26 0.24 0.18 0.34 0.18 0.23 0.22 0.30 0.22 0.23

Predicted mask [3] 0.18 0.38 0.28 0.30 0.22 0.39 0.24 0.24 0.33 0.34 0.29 0.29
Less points N=128 0.20 0.38 0.33 0.38 0.26 0.41 0.23 0.29 0.35 0.37 0.31 0.32
Less points N=256 0.17 0.29 0.25 0.32 0.20 0.33 0.20 0.23 0.29 0.30 0.25 0.26
Full model N=512 0.14 0.25 0.23 0.22 0.17 0.32 0.17 0.21 0.28 0.27 0.21 0.22

(a) Number of training data (b) Rotation error (◦) (c) Translation error (cm) (d) ADD (cm)

Figure 6: Number of training data and test error distributions in the Linemod dataset for different rotation and translation bins.

In addition, we sort test pairs based on ADD error and reason
out top 15 cases in the supplementary material. Results show
that the error is large when the object is deformed or the
point cloud mistakenly includes points from other objects or
far away background.

5. Conclusion

We foray into the online and real-time registration of real-
world object point clouds using deep networks while other
learning-based methods focus on a synthetic database. We
empirically show that, due to partial and noisy depth mea-

surements, models trained on synthetic data and keypoint-
based approaches do not generalize well on real objects. To
circumvent the issue, we propose DeepPRO which gener-
ates dense correspondences based on input shape without
keypoints. Experiments on two real-world (Linemod and
PRO1k we collected) and one synthetic (ModelNet40) object
databases show that DeepPRO is more accurate than existing
methods and is fast (50 fps on a mobile device). For future
work, we are interested in colored point clouds, dealing with
inaccurate depth from transparent or reflective materials, and
consistent multi-frame registration of the object point cloud.

5690



References
[1] Khalil Al-Manasir and Clive S Fraser. Registration of terres-

trial laser scanner data using imagery. The Photogrammetric
Record, 21(115):255–268, 2006. 1

[2] Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivatsan,
and Simon Lucey. PointNetLK: Robust & efficient point
cloud registration using PointNet. In IEEE Conference on
Computer Vision and Pattern Recognition, 2019. 1, 2, 3, 5, 6,
7

[3] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.
SegNet: A deep convolutional encoder-decoder architecture
for image segmentation. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 39(12):2481–2495, 2017. 7,
8

[4] Xuyang Bai, Zixin Luo, Lei Zhou, Hongbo Fu, Long Quan,
and Chiew-Lan Tai. D3Feat: Joint learning of dense detection
and description of 3D local features. In IEEE Conference on
Computer Vision and Pattern Recognition, 2020. 2, 5, 6

[5] Paul J. Besl and Neil D. MacKay. A method for registration
of 3-D shapes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 14(2), 1992. 1, 2, 5, 6, 7

[6] Christopher Choy, Wei Dong, and Vladlen Koltun. Deep
global registration. In IEEE Conference on Computer Vision
and Pattern Recognition, 2020. 1, 2, 5, 6

[7] Christopher Choy, Jaesik Park, and Vladlen Koltun. Fully
convolutional geometric features. In IEEE International Con-
ference on Computer Vision, 2019. 2

[8] Haowen Deng, Tolga Birdal, and Slobodan Ilic. PPFNet:
Global context aware local features for robust 3D point match-
ing. In IEEE Conference on Computer Vision and Pattern
Recognition, 2018. 1, 2

[9] Li Ding and Chen Feng. DeepMapping: Unsupervised map
estimation from multiple point clouds. In IEEE Conference
on Computer Vision and Pattern Recognition, 2019. 1

[10] David W. Eggert, Adele Lorusso, and Robert B. Fisher. Esti-
mating 3-D rigid body transformations: a comparison of four
major algorithms. Machine vision and applications, 9(5-6),
1997. 3

[11] Georgios Dimitrios Evangelidis and Radu Horaud. Joint
alignment of multiple point sets with batch and incremental
expectation-maximization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(6):1397–1410, 2017.
5, 6

[12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? The KITTI vision benchmark
suite. In IEEE Conference on Computer Vision and Pattern
Recognition, 2012. 1, 5

[13] Zan Gojcic, Caifa Zhou, Jan Dirk Wegner, and Wieser An-
dreas. The perfect match: 3D point cloud matching with
smoothed densities. In IEEE Conference on Computer Vision
and Pattern Recognition, 2019. 2

[14] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Ste-
fan Holzer, Gary Bradski, Kurt Konolige, and Nassir Navab.
Model based training, detection and pose estimation of
texture-less 3D objects in heavily cluttered scenes. In Asian
Conference on Computer Vision, 2012. 2, 5

[15] Xiaoshui Huang, Guofeng Mei, and Jian Zhang. Feature-
metric registration: A fast semi-supervised approach for ro-
bust point cloud registration without correspondences. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2020. 2, 3, 5

[16] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparam-
eterization with gumbel-softmax. In International Conference
on Learning Representations, 2017. 3

[17] Bing Jian and Baba C. Vemuri. Robust point set registration
using Gaussian mixture models. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 33(8):1633–1645,
2011. 5, 6

[18] Weixin Lu, Guowei Wan, Yao Zhou, Xiangyu Fu, Pengfei
Yuan, and Shiyu Song. DeepVCP: An end-to-end deep neural
network for point cloud registration. In IEEE International
Conference on Computer Vision, 2019. 1, 2

[19] Weixin Lu, Yao Zhou, Guowei Wan, Shenhua Hou, and Shiyu
Song. L3-Net: Towards learning based LiDAR localization
for autonomous driving. In IEEE Conference on Computer
Vision and Pattern Recognition, 2019. 1

[20] Xiankai Lu, Chao Ma, Bingbing Ni, Xiaokang Yang, Ian
Reid, and Ming-Hsuan Yang. Deep regression tracking with
shrinkage loss. In European Conference on Computer Vision,
2018. 4

[21] Bruce D. Lucas and Takeo Kanade. An iterative image reg-
istration technique with an application to stereo vision. In
International Joint Conference on Artificial Intelligence, 1981.
3

[22] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The
concrete distribution: A continuous relaxation of discrete
random variables. In International Conference on Learning
Representations, 2017. 3

[23] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International Conference on Ma-
chine Learning, 2016. 3

[24] François Pomerleau, Ming Liu, Francis Colas, and Roland
Siegwart. Challenging data sets for point cloud registration
algorithms. The International Journal of Robotics Research,
31(14), 2012. 5

[25] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
PointNet: Deep learning on point sets for 3d classification
and segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition, 2017. 2

[26] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast
point feature histograms (FPFH) for 3D registration. In IEEE
international Conference on Robotics and Automation, 2009.
2

[27] Vinit Sarode, Xueqian Li, Hunter Goforth, Yasuhiro Aoki,
Rangaprasad Arun Srivatsan, Simon Lucey, and Howie
Choset. PCRNet: Point cloud registration network using
PointNet encoding. arXiv preprint arXiv:1908.07906, 2019.
2, 5

[28] Weiwei Sun, Andrea Tagliasacchi, Boyang Deng, Sara Sabour,
Soroosh Yazdani, Geoffrey Hinton, and Kwang Moo Yi.
Canonical capsules: Unsupervised capsules in canonical pose.
arXiv preprint arXiv:2012.04718, 2021. 1

5691



[29] Pascal Willy Theiler, Jan Dirk Wegner, and Konrad Schindler.
Keypoint-based 4-points congruent sets–Automated marker-
less registration of laser scans. ISPRS journal of photogram-
metry and remote sensing, 96:149–163, 2014. 1

[30] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J.
Guibas. KPConv: Flexible and deformable convolution for
point clouds. In IEEE International Conference on Computer
Vision, 2019. 2

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, 2017. 2

[32] Yue Wang and Justin M Solomon. Deep closest point: Learn-
ing representations for point cloud registration. In IEEE
International Conference on Computer Vision, 2019. 1, 2, 3,
5, 6, 7

[33] Yue Wang and Justin M Solomon. PRNet: Self-supervised
learning for partial-to-partial registration. In Advances in
Neural Information Processing Systems, 2019. 1, 2, 3, 5, 6, 7

[34] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph CNN for learning on point clouds. ACM Transactions
on Graphics, 2019. 2, 3

[35] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D
ShapeNets: A deep representation for volumetric shapes. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2015. 1, 5

[36] Heng Yang, Jingnan Shi, and Luca Carlone. TEASER: Fast
and certifiable point cloud registration. IEEE Transactions on
Robotics, 37(2):314–333, 2020. 5, 6

[37] Jiaolong Yang, Hongdong Li, and Yunde Jia. Go-ICP: Solving
3D registration efficiently and globally optimally. In IEEE
International Conference on Computer Vision, 2013. 1, 2, 5,
6, 7

[38] Zi Jian Yew and Gim Hee Lee. RPM-Net: Robust point
matching using learned features. In IEEE Conference on
Computer Vision and Pattern Recognition, 2020. 1, 2, 3, 5, 6

[39] Wentao Yuan, Benjamin Eckart, Kihwan Kim, Varun Jampani,
Dieter Fox, and Jan Kautz. DeepGMR: Learning latent Gaus-
sian mixture models for registration. European Conference
on Computer Vision, 2020. 1, 2, 5

[40] Andy Zeng, Shuran Song, Matthias Nießner, Matthew Fisher,
Jianxiong Xiao, and Thomas Funkhouser. 3DMatch: Learn-
ing local geometric descriptors from RGB-D reconstructions.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2017. 1, 5

[41] Hongwei Zheng, Dietmar Saupe, Markus Roth, Andreas Böh-
ler, and Peter Opuchlik. Efficient 3D shape acquisition and
registration using hybrid scanning data. In International
Symposium on 3D Data Processing, Visualization and Trans-
mission, 2008. 1

[42] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global
registration. In European Conference on Computer Vision,
2016. 2, 5, 6, 7

5692


