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Abstract

Deep neural networks (DNNs) are known to perform
well when deployed to test distributions that shares high
similarity with the training distribution. Feeding DNNs with
new data sequentially that were unseen in the training dis-
tribution has two major challenges — fast adaptation to new
tasks and catastrophic forgetting of old tasks. Such difficul-
ties paved way for the on-going research on few-shot learn-
ing and continual learning. To tackle these problems, we
introduce Attentive Independent Mechanisms (AIM). We in-
corporate the idea of learning using fast and slow weights
in conjunction with the decoupling of the feature extraction
and higher-order conceptual learning of a DNN. AIM is de-
signed for higher-order conceptual learning, modeled by a
mixture of experts that compete to learn independent con-
cepts to solve a new task. AIM is a modular component that
can be inserted into existing deep learning frameworks. We
demonstrate its capability for few-shot learning by adding it
to SIB and trained on MiniImageNet and CIFAR-FS, show-
ing significant improvement. AIM is also applied to ANML
and OML trained on Omniglot, CIFAR-100 and MiniIma-
geNet to demonstrate its capability in continual learning.
Code made publicly available at https://github.
com/huang50213/AIM-Fewshot-Continual.

1. Introduction
Humans have the ability to learn new concepts continu-

ally while retaining previously learned concepts [11]. While
learning new concepts, prior concepts that were learned are
leveraged to form new connections in the brain [4, 52].
The plasticity of the human brain plays an important role
on the forming of novel neuronal connections for learn-
ing new concepts. Current deep learning methods are in-
efficient in remembering old concepts after being fed with
new concepts, also widely know as catastrophic forgetting
[34, 23]. Deep neural networks (DNNs) trained in an end-
to-end fashion also has difficulty in learning new tasks in
a sample efficient manner [12]. It is conjectured that the

cause of catastrophic forgetting and inefficiency in learn-
ing new tasks is from the stability-plasticity dilemma [2].
Stability is required so that previously learned informa-
tion can be retained through the limitation of abrupt weight
changes. Plasticity on the other hand encourages large
weight changes, resulting in the fast acquisition of new con-
cepts with the trade-off of forgetting old concepts.

It is believed that by scaling up the currently available
architecture, DNNs are able to generalize better [7, 41, 10].
Tremendous effort is placed into neural architecture search
(NAS) [28, 54, 49, 39, 32] with the hypothesis that improve-
ments on a structural level introduce inductive bias that im-
proves the generalizability of a neural network. As most of
the prior arts are evaluated on benchmark datasets that are
distributed similarly to the training set that it is trained on,
the evaluation results are not a good measure of the gener-
alization. We argue that the ability to adapt, acquire new
knowledge and recall previously learned information plays
an important role in reaching true generalization. The im-
portance of learning to learn, i.e. meta-learning, has shone
the spotlight on two major research direction that we will
focus on — few-shot learning and continual learning. In
few-shot learning [12, 37, 45, 14], the goal is to learn novel
concepts with as few samples as possible, i.e. evaluating the
capability of adapting to new tasks. Whereas in continual
learning, the ability to learn an increasing amount of con-
cepts while not forgetting old ones is evaluated.

Following OML [22], we separate the feature extraction
part and the decision making part of the network, defined in
OML as representation learning network (RLN) and predic-
tion learning network (PLN) respectively. The fast and slow
learning in OML is performed on an architecture level, i.e.
RLN is updated in the outer loop (slow weights) and PLN is
updated in the inner loop (fast weights). Such approach has
proven to be helpful in learning sparse representation that
are beneficial for fast adaptation and prevention of catas-
trophic forgetting. We take one step further by introducing
sparsity on an architectural level, accomplished through the
introduction of Attentive Independent Mechanisms (AIM).
AIM is composed of a set of mechanisms that competitively

9455



attend to the input representation, having mechanisms that
are closely related to the input representation being acti-
vated during inference. AIM can be understood as a mixture
of experts competing to explain an incoming representation,
hence only the mechanisms that best explain the input repre-
sentation will be updated, leading to a sparse representation
or modeling on an architectural level. Having sparse mod-
eling on an architectural level for higher-order representa-
tions has its benefits, as only the experts or mechanisms that
best explain a task will be involved in the learning process,
helping in the acceleration of learning new concepts and the
mitigation of catastrophic forgetting. To demonstrate the
potential of AIM as a fundamental building block for fast
learning without forgetting, we demonstrate its strength on
few-shot classification [12, 43, 53] and continual learning
[5, 22, 23] benchmarks.

Our contributions are as follows: (1) In Section 3, we
give a detailed description and formulation of AIM — a
novel module that can be used for few-shot and contin-
ual learning. (2) We apply AIM on few-shot learning and
continual learning tasks in Section 4.1 and Section 4.2 re-
spectively. Qualitative and quantitative results are shown
for both learning tasks, giving readers an insight on the
importance of having AIM in the context of few-shot and
continual learning. For few-shot classification, experiments
are performed on CIFAR-FS and MiniImageNet whereas
for continual learning, experiments are performed on Om-
niglot, CIFAR-100 and MiniImageNet. Substantial im-
provement in accuracy over prior arts are shown.

2. Related Work
Meta-learning revolves on the idea of learning to learn,

hoping that through the observation of training iterations
on a few tasks, we are able to generalize to unseen tasks
with only a few or zero samples. Meta-learning is usually
composed of a support set and a query set. The support
set is used for fast adaptation and the query set is used to
evaluate the adapted model and to meta-learn the adaptation
procedure. Model-based meta-learning methods include the
work by [35] that uses a meta-learner based on a LSTM [18]
which includes all previously seen samples, i.e. all support
samples of a task are considered during the class predic-
tion of query samples through an attentive mechanism. An-
other similar work by [44] augments LSTM with an external
memory bank. [36] incorporates fast and slow weights for
few-shot classification.

Metric-based meta-learning methods include Siamese
Network proposed by [24] which predicts whether two im-
ages originate from the same class. [50] proposed Matching
Networks that uses cosine distance in an attention kernel to
measure the similarity of images in its embedding space.
[45] later found that using Euclidean distance as a metric
instead of cosine distance improves performance. A gener-

alization of all the mentioned work is done by modeling the
metric using a graph neural network proposed by [13].

Optimization-based meta-learning includes [42] that
proposed using a LSTM meta-learner which provides gra-
dient to a convolutional network-based fast learner. [12, 37]
proposed an inner and outer-loop optimization method hav-
ing fast adaptation in the inner-loop and an outer-loop up-
date that backpropagates through the inner-loop updates.
[53] used the concept of inner and outer loop-update by hav-
ing the context parameters (embeddings of tasks) updated
in the inner-loop. LEO [43] has its classifier weights gener-
ated by a low-dimensional latent embedding updated in the
inner-loop. [15] proposed a similar approach where classifi-
cation weights are generated using feature vectors that cor-
responds to the support set. SIB [20] performs transductive
inference using synthetic gradient [21] on the feature aver-
aging variant classifier proposed by [15]. Transductive in-
ference was first introduced to the context of few-shot clas-
sification by [33], having a graph constructed for the sup-
port set and the query set, with labels propagated within the
graph. As the architecture proposed by [33] is restrictive,
[19] proposed a more general approach that uses a cross at-
tention module that models semantic relevance between the
support and query set.

In continual learning, the objective is to mitigate catas-
trophic forgetting [23]. Earlier works are based on regular-
ization method, with [17] proposing the use of fast and slow
training weights, borrowing the idea of plasticity and stabil-
ity for network training. This idea is then adopted by OML
[22] to learn representations that are useful for future learn-
ing and helps in mitigating catastrophic forgetting. Simi-
larly, fast and slow learning is applied to ANML [5], having
a neuromodulatory network modeled using slow weights.
[1] uses task-specific gate module and prediction head to
reduce competitive effect between classes. A criterion is
designed in [3] to store most-interfered samples in a fixed-
sized rehearsal memory.

3. Method
As Attentive Independent Mechanisms (AIM) is used to

model higher order information, we place it right after a
feature extractor, defined as z = fψ(x). fψ(·) is a series
of convolutional layers parameterized by ψ, x is an input
sample and z is its corresponding representation. AIM is a
module that is parameterized by W and is defined as AW.
The representation from AIM is then fed to a linear layer
ϕ for the task of classification. An illustration of AIM as a
module is shown in Figure 1. We also show an illustration
on the application of AIM to existing meta-learning frame-
works used for few-shot learning and continual learning in
Figure 2. We first describe the implementation of AIM as
module in Section 3.1 followed by its integration to SIB
[20] for few-shot learning in Section 3.2 and to OML [22]
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Figure 1: AIM is inserted right after the feature extractor fψ and before the output classifier ϕ. Only mechanisms closely
related to the input representation are active (green boxes) and updated during the training phase (blue dashed lines).

and ANML [5] for continual learning in Section 3.3.

3.1. Attentive Independent Mechanisms

The goal of AIM is to learn a sparse set of mech-
anisms, i.e. mixture of experts, to decouple the model-
ing of higher order information from the feature extrac-
tion pipeline. These mechanisms compete and attend to
the input representation in a top-down fashion using cross-
attention [30, 29]. Through the strict selection of mecha-
nisms, a sparse set of mechanisms will be selected for every
task, inducing an architectural bias that helps in fast adapta-
tion to new tasks and mitigating catastrophic forgetting. The
structure of AIM is composed of a set of independent mech-
anisms, each parameterized by its own set of parameters.
Each mechanism acts as an independent expert that collab-
orate with other experts to solve a particular task. AIM can
be viewed as a static version of RIMs [16], i.e. temporal
modeling of hidden states using LSTM [18] found in RIMs
is removed. For RIMs, the model is fed with a continuous
stream of inputs, making dynamical modeling using LSTM
intuitive. For AIM, the assumption of having continuous
stream of inputs does not hold as the practice of few-shot
classification and continual learning have i.i.d. data being
fed into the model during training and inference. Departing
from RIMs, the objective of AIM is to show that through
a mixture of experts, new concepts can be easily learned
with minimal catastrophic forgetting. We hypothesize that
by having a set of independent mechanisms, a sparse set
of factorized representations or concepts can be extracted
from the input representation. Such concepts have proper-
ties that are tasks-invariant which can be helpful in learning
new tasks. The learning of concepts in AIM can also be un-
derstood as the amortized version of memory based models
that stores samples either in the form of images or repre-
sentations [44], which scales with the size of tasks in the
system without limitation. AIM on the other hand performs
implicit modeling of samples, analogous to the amortized
modeling using a DNN instead of using a non-parametric
method that stores samples from the training set for infer-
ence [8].

Following RIMs, AIM has a null vector ∅ that is con-

catenated with the input representation z, giving us ẑ =
[zT , ∅T ]T . The mechanisms then attend to the incoming la-
tent representation ẑ as:

z̃ = ẑ

(
M∑

m=1

wm(ẑ)WM
m

)
, (1)

which could be understood as the passing of input represen-
tation ẑ through the weighted-summation of the mechanism
weights, WM

m . The summation of the outputs of the mech-
anisms makes the extension to arbitrary number of mech-
anisms trivial when compared to the concatenation of out-
puts used in RIMs. Concatenation is also infeasible when
the output dimension of WM

m is large, resulting in a wide
input dimension for the upcoming layer. The summation
of mechanisms also has the property of permutation invari-
ance, reducing the complexity of the output classifier ϕ.

To encourage sparsity, we enforce the mechanisms to
compete with each other to attend to the incoming repre-
sentation. This is done by having only the weights of mech-
anisms that are closely related to the input representation to
be selected, i.e. only top K mechanisms out of a total of
M mechanisms are selected for the downstream prediction
tasks. The strict selection of mechanisms forces the mecha-
nisms to compete with each other to attend to the incoming
signal, modeling the biased competition theory of selective
attention [9]. The selection of mechanisms is given as:

wm(ẑ) =

{
w̃m(ẑ), if m ∈ topK (w̃1(ẑ), . . . , w̃M (ẑ)) ,

0, otherwise.
(2)

The indices corresponding to the top K values from a set
is returned by the topK(·) operator. The weights used
to weight the importance of the selected mechanisms are
composed of the softmax of the normalized inner-product,
⟨·, ·⟩, between the mechanisms’ hidden state hm and the
input representation z that are first mapped to a lower-
dimensional embedding by the query weight WQ

m and key
weight WK of output dimension d respectively, given as:

w̃m(ẑ) = softmax

( ⟨hmWQ
m , ẑWK⟩√
d

)
. (3)
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Note that softmax is applied locally for each mechanism,
i.e. the transformation of the attention values corresponding
to z and ∅ into a probabilistic one. The value that corre-
sponds to the input (not null) dimension from (3) is used for
the top K comparison in (2).

Intervention during training. The training of AIM can
be understood as an intervention procedure with the model
selecting a few mechanisms to be included during the for-
ward pass phase of training. Mechanisms that perform well
on the training data are rewarded by having gradient up-
date directed to the activated mechanisms, with the sen-
sitivity to novel inputs reflected on hm. As one can pre-
dict, there is a possibility of the occurrence of mechanism-
overfitting, where only a fixed set of mechanisms are active
for all training tasks, losing the original motivation of hav-
ing a sparse set of mechanisms acting as experts on different
tasks. Mechanism-overfitting is also equivalent to having a
DNN with multiple residual paths, resembling a single layer
of Inception [48], diverting from our original goal of build-
ing models that are invariant across tasks.

To prevent the collapsing towards having only a few ac-
tive mechanisms for all tasks, the trick is to enable the ex-
ploration of different amount of mechanisms during train-
ing, instead of locking down to the top K mechanisms.
Stochasticity is introduced into the selection process by
sampling top K + l (also known as stochastic sampling
count) instead of top K mechanisms. We then perform uni-
form sampling without replacement of K mechanisms from
the top K+l mechanisms, where the original sampling con-
dition of (2) can now be written as:

wm(ẑ) =





w̃m(ẑ), if m ∈ {K ⊆ S | |K| = K},
s.t. S = topK+l (w̃1(ẑ), . . . , w̃M (ẑ))

0, otherwise.
(4)

Here, | · | is the cardinality operator to ensure that the sam-
pled subset K is of size K and is sampled without replace-
ment. Such intervention is analogous to stochastic inter-
vention [25] and dropout [46] which adds stochasticity to
the training of AIM, preventing the locking down to a few
mechanisms that are attended to upon initialization.

Training and evaluation of AIM. Weight updates in
AIM is similar to a typical layer in DNNs, i.e. gradients
are backpropagated from the final loss function. A dis-
tinct difference from a conventional module in DNNs is that
only the mechanisms activated during a forward pass are up-
dated, resulting in a sparse set of weight updates. As AIM is
designed to model higher order concepts, it is placed in the
higher level of a DNN and has fast weights that are updated
in the inner-loop of a meta-learning pipeline. The role of

Algorithm 1 Meta-Training: Training of AIM

Require: N sequential tasks T ; step size νin, νout, ϵ; inner
iterations T ; modules fψ,AW,ϕ,θ (SIB only)

1: while not done do
2: {Strain,Stest} ∼ T ▷ SIB: i.i.d.; continual: sequential
3: for t← 1, T do
4: Update fast weights using Strain ▷ step size: νin

SIB:AW OML:AW,ϕ ANML: fψP ,AW,ϕ
5: end for
6: Update ϕ using transductive inference ▷ step size:ϵ
7: Update slow weights using Stest ▷ step size: νout

SIB: θ OML: fψ ANML: fψNM

8: end while

Algorithm 2 Meta-Testing: Evaluation of AIM

Require: N sequential unseen tasks T ; step size νin, ϵ; in-
ner iterations T ; modules fψ,AW,ϕ,θ (SIB only)
S ′train = {}; S ′test = {} ▷ initialize empty set

1: for n← 1, N do
2: {Strain,Stest} ∼ Tn ▷ SIB: i.i.d.; continual: sequential
3: S ′

train,S ′
test = {S ′

train,Strain}, {S ′
test,Stest} ▷ store trajectory

4: for t← 1, T do
5: Update fast weights using Strain ▷ step size: νin

SIB:AW OML:AW,ϕ ANML: fψP ,AW,ϕ
6: end for
7: Update ϕ using transductive inference ▷ step size:ϵ
8: Evaluate on Stest
9: end for

10: Evaluate on S ′train ▷ end of meta-test training trajectory
11: Evaluate on S ′test ▷ eval on entire meta-test testing set

AIM as a module is shown in Figure 1. The procedure for
the meta-training of AIM for both few-shot learning and
continual learning is shown in Algorithm 1, whereas the
meta-testing counterpart is shown in Algorithm 2. The algo-
rithms shown are applicable for both few-shot and continual
learning with the distinction between both highlighted with
different colors — few-shot learning using SIB in green and
continual learning using OML and ANML in blue. Step
sizes for the inner-loop and outer-loop are defined as ν in

and νout respectively. Step size for synthetic gradient update
used for SIB is defined as ϵ. For few-shot learning, the fast
adaptation of AIM is evaluated using the meta-testing test
set of the sampled task, i.e. Stest in the outer-loop. For con-
tinual learning, evaluation is performed after the completion
of meta-training, and is tested on the entire meta-test train
set S ′train and meta-test test set S ′test.

3.2. Few-Shot Learning Using SIB

SIB is composed of two works: synthetic gradient mod-
eling [21] and a feature averaging classifier [15]. In [21],

9458



Attentive
Independent
Mechanisms

Frozen Fast Weights

Slow Weights

(a) Synthetic Information Bottleneck (SIB) [20]

Attentive
Independent
Mechanisms

Fast WeightsSlow Weights

(b) Online aware Meta-Learning (OML) [22]

Attentive
Independent
Mechanisms

Fast Weights

Slow Weights

(c) A Neuromodulated Meta-Learning Algorithm (ANML) [5]

Figure 2: Applying AIM on both few-shot learning ((a)
SIB) and continual learning ((b) OML and (c) ANML)
frameworks. For all frameworks, AIM (yellow) is placed di-
rectly after the feature extractor, fψ(·). With different learn-
ing scheme (fast and slow) used in meta-learning, weights
or modules that correspond to fast update are highlighted in
red, slow update are in blue and frozen weights are in green.

the idea is to use a synthetic gradient model, S, that is meta-
learned to generate gradient when labeled data is absent for
transductive inference, i.e. update of weights without gradi-
ents propagated from a loss that is dependent on label. In
[15], a classifier is defined as the cosine similarity between
feature representations z̃ and classification weight vectors
ϕ. ϕ is generated using an external classification weight
generator Gθ(·) parameterized by θ followed by iterative
update by the synthetic gradient model S. Feature vectors
of P training samples of a novel category Z̄ = {z̄(i)}Pi=1 are
fed as input to generate a new set of weights for classifica-
tion, ϕ′ = Gθ(Z̄). In SIB, feature averaging based weight
inference is used, i.e. the classification weight vector is ob-
tained as ϕ′ = θ⊙wavg, where⊙ is the Hadamard product
and wavg = 1

P

∑P
i=1 z̄

(i) (z̄ is the ℓ2-normalized version
of z̃). The classification weight vector ϕ′ is then updated
iteratively using the synthetic gradient model in SIB, given
as ϕ = S(ϕ′). Both the synthetic gradient model and the
weights of the weight generator θ are meta-learned, i.e. up-
dated in the outer-loop. To encourage sparse modeling of

higher order concepts in the network, AIM is inserted right
after the feature extractor fψ(·) and before the output linear
classifier ϕ that is generated using Gθ(Z̄) and S, or,

y = ϕ (AW (fψ(x))) , where ϕ = S
(
Gθ
(
fψ(X̄)

))
.

(5)

Training. Following the training pipeline in SIB [20], the
weights of the feature extractor ψ are frozen to simplify the
training procedure. The weights of the AIM, W, and the
output linear classifier, ϕ, are updated as fast weights, i.e.
inner-loop. Only the weights of the classification weight
generator θ are updated as slow weight, i.e. outer-loop. The
application of AIM to SIB is shown in Figure 2a.

3.3. Continual Learning: Learning Fast and Slow

It is shown in the task of continual learning that learning
fast and slow from the context of meta-learning is helpful
for the mitigation of catastrophic forgetting [22, 5]. OML
[22] and ANML [5] are example frameworks for contin-
ual learning that uses this methodology, showing promising
results. To validate our claim on the importance of incorpo-
rating sparse modeling on an architectural level for the mit-
igation of catastrophic forgetting, we insert AIM into both
OML and ANML and observe the resulting performance.

OML. The entire architecture is split into two parts
— representation learning network (RLN) and prediction
learning network (PLN). RLN uses slow weights and PLN
uses fast weights. Following our notations, RLN is the fea-
ture extractor in our work, fψ , and PLN is the classifier (not
limited to a single layer), ϕ, in our work. AIM is inserted
after the RLN and before the PLN, or,

y = ϕ (AW(fψ(x))) . (6)

AIM is trained jointly with PLN, i.e. they have fast weights.
The application of AIM to OML is shown in Figure 2b.

ANML. Two set of feature extractors are used in ANML
— a neuromodulatory network, fψNM , and a prediction net-
work, ϕ · fψP . The role of the neuromodulatory network is
to modulate the latent representation of the prediction net-
work, i.e. the output of fψP in Figure 2c. The output of the
neuromodulatory network is element-wise multiplied with
the outout of fψP before passing to the final classifier, or
y = ϕ

(
fψNM(x)⊙ fψP(x)

)
. Only the neuromodulatory

network has slow weights and the entire prediction network
has fast weights. Similar to SIB and OML, AIM is inserted
right after the feature extractor and uses fast weights,

y = ϕ
(
AW

(
fψNM(x)⊙ fψP(x)

))
. (7)
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4. Experiments
4.1. Few-Shot Learning

Datasets. For all datasets, class splits are disjoint. Mini-
ImageNet [50] contains a total of 100 classes which are split
into 64 training, 16 validation and 20 testing classes; images
are of size 84 × 84. CIFAR-FS [6] is created by dividing
CIFAR-100 into 64 training, 16 validation and 20 testing
classes; images are of size 32 × 32. For few-shot classifi-
cation, each task (episode) consists of a train set and a test
set. For each task, k classes are sampled from the class pool
mentioned. For each class, n examples are drawn and are
relabeled as k disjoint classes forming the train set. For the
test set, 15k samples are used. We show results of k = 5
for both n = 1 and n = 5.

Network architecture. We follow the setup in [20, 15,
40, 14] by using a 4-layer convolutional network with 64
feature channels (Conv-4-64) or a WideResNet (WRN-28-
10) [51] as our feature extractor, fψ . fψ is pretrained in a
typical end-to-end supervised learning fashion, i.e. the en-
tire training set is used for batch update. Our classifier is
adopted directly from [20, 15] having ϕ = G′

θ(Z̄). For
transductive inference [20], the synthetic gradient network
is modeled by a MLP of 3 layers and hidden size 8k. Clas-
sification is done by using the cosine-similarity based clas-
sifier found in [20, 15]. For AIM, all weights are linear
layers. The hidden state hm of the mechanisms are of di-
mension 256. The key and query weights (WK and WQ

m)
maps the input and hidden state to a dimension of 128 to
perform distance measurement. For the output dimension
of the mechanism weights, WM

m , we picked 400 for CIFAR-
FS trained on Conv-4-64 and 800 for the rest; this decision
is based on the dimension of the flattened feature map at the
output of the feature extractor (not cherry-picked).

Training details. We use M = 32 mechanisms with top
K = 8 mechanisms selected during inference with induced
stochasticity by having l = 2 during training. SGD is used a
batch size of 1 for 50,000 steps with learning rate ϵ = 10−3

for SIB’s classifier synthetic update, νout = 5 × 10−3 for
outer-loop update and νin = 3 × 10−3 for inner-loop up-
date. The feature extractor is frozen during training. 1,000
tasks are sampled from the validation set for hyperparam-
eter selection at each training epoch. All experiments are
run on a single GTX1080Ti using PyTorch. A complete run
of Conv-4-64 on CIFAR-FS and WRN-28-10 on MiniIma-
geNet takes less than 2 hours and 5 hours respectively.

4.1.1 Qualitative Study: Activation of AIM

We show heatmaps that illustrate mechanisms activated for
different classes from the validation set in Figure 3. The
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(a) SIB + AIM using Conv-4-64 on CIFAR-FS, 1-shot.
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(b) OML + AIM on CIFAR-100.

Figure 3: With 1 indicating an active mechanism and 0 in-
dicating an inhibited mechanism and having top K mecha-
nisms selected for every inference, the average of the acti-
vation for the same class across the entire validation set is
taken here. The active mechanisms can be categorized into
two sets: 1. fixed set of shared active mechanisms; 2. sparse
set of mechanisms with class-dependent activations.

heatmap is plotted by averaging the mechanisms’ activity
for each class over the entire validation set, with 1 and 0
indicating active and inhibited mechanism respectively. We
can observe that there’s a set of mechanisms that are shared
among tasks and another set that are distributed sparsely.
The sharing of mechanisms can be understood as different
classes sharing similar concepts. The sparse allocation of
mechanisms over different classes show that there are fea-
tures that are invariant for certain classes only, improving
resiliency to covariate shift among distributions.

4.1.2 Quantitative Study

Stochastic sampling count. To show the importance of
inducing stochasticity in the mechanism selection process
for inference, we perform an empirical study by varying the
stochastic sampling count, K + l. We fix K = 8 and vary
l from 0 to 24. As we can see from Figure 4a, the accuracy
obtained by varying l have different maximum for different
datasets, models and number of shots. For most cases, the
peak accuracy usually occurs at small value of l and slowly
deteriorates as more stochasticity is introduced.
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Table 1: Average classification accuracies with 95% confidence intervals on the test-set of MiniImageNet and CIFAR-FS.
2000 episodes are sampled for MiniImageNet and CIFAR-FS using Conv-4-64 and WRN-28-10 as the feature extractor.

Method Backbone Transductive MiniImageNet, 5-Way CIFAR-FS, 5-Way
1-shot 5-shot 1-shot 5-shot

Matching Net [50] Conv-4-64 44.2% 57% - -
MAML [12] Conv-4-64 48.7 ± 1.8% 63.1 ± 0.9% 58.9 ± 1.9% 71.5 ± 1.0%
Prototypical Net [45] Conv-4-64 49.4 ± 0.8% 68.2 ± 0.7% 55.5 ± 0.7% 72.0 ± 0.6%
Relation Net [47] Conv-4-64 50.4 ± 0.8% 65.3 ± 0.7% 55.0 ± 1.0% 69.3 ± 0.8%
TPN [33] Conv-4-64 ✓ 55.5% 69.9% - -
Gidaris et al. [14] Conv-4-64 54.8 ± 0.4% 71.9 ± 0.3% 63.5 ± 0.3% 79.8 ± 0.2%
SIB [20] Conv-4-64 ✓ 58.0 ± 0.6% 70.7 ± 0.4% 68.7 ± 0.6% 77.7 ± 0.4%
SIB + Linear layer Conv-4-64 ✓ 60.07 ± 0.59% 73.70 ± 0.38% 68.75 ± 0.62% 79.99 ± 0.39%
AIM (ours) Conv-4-64 ✓ 61.90 ± 0.57% 74.55 ± 0.38% 71.09 ± 0.62% 80.48 ± 0.40%

TADAM [38] ResNet-12 58.5 ± 0.3% 76.7 ± 0.3% - -
SNAIL [44] ResNet-12 55.7 ± 1.0% 68.9 ± 0.9% - -
CTM [31] ResNet-18 ✓ 64.1 ± 0.8% 80.5 ± 0.1% - -
LEO [43] WRN-28-10 61.8 ± 0.1% 77.6 ± 0.1% - -
Gidaris et al. [14] WRN-28-10 62.9 ± 0.5% 79.9 ± 0.3% 73.6 ± 0.3% 86.1 ± 0.2%
SIB [20] WRN-28-10 ✓ 70.0 ± 0.6% 79.2 ± 0.4% 80.0 ± 0.6% 85.3 ± 0.4%
SIB + Linear layer WRN-28-10 ✓ 67.38 ± 0.54% 80.54 ± 0.34% 78.02 ± 0.55% 79.91 ± 0.38%
AIM (ours) WRN-28-10 ✓ 71.22 ± 0.57% 82.25 ± 0.34% 80.20 ± 0.55% 87.34 ± 0.36%
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Figure 4: Illustrates the accuracy obtained by varying (a)
stochastic sampling count (K = 8 and l is manipulated) and
(b) active mechanisms count (l = 0 and K is manipulated).
The zero mean-ed accuracy is shown to better demonstrate
the change in accuracy across different model-dataset pairs.
| · | is the cardinality operator.

Number of active mechanisms. An interesting question
would be how maybe active mechanisms are required to
reap the benefits of sparse activations. Empirical study is
performed as shown in Figure 4b, showing the accuracy ob-
tained by varying the number of active mechanisms K from
1 to 32. The results show that accuracy is low when K is
small and saturates for larger values of K. This shows that
a limited set of active mechanisms is sufficient. Sparsity in
representation can still be met when the number of active
mechanisms is large, but it will be cost inefficient during
both training and inference.

Benchmark evaluation. As AIM is introduced as an ad-
ditional component that’s integrated into SIB [20], the gain
in accuracy shows the importance of having a mixture of
experts for fast adaptation. We also show the results for
SIB with a linear layer (parameters equal the total param-

eters found in the AIM module) added before the classifier
(SIB + Linear) to show that the gain in accuracy from AIM
is not solely from the increase in parameters. From Table
1, we can see that AIM outperforms all existing few-shot
classification methods by a noticeable margin. As only a
single layer of AIM is explored, the coupling between AIM
as found in RIMs [16] is not considered here. We believe
that further improvements can be attained if layers of AIM
are stacked, with coupling between them considered.

4.2. Continual Learning

Datasets. Omniglot [27] has over 1,623 characters from
50 diferent alphabets, where each character has 20 hand-
written images of size 28 × 28. The dataset is split into
963 classes for meta-training and 660 classes for meta-
testing. In each trajectory, 15 images are used for training
and 5 images for testing in both meta-training and meta-
testing. CIFAR-100 [26] is composed of 60,000 images of
size 32×32 distributed uniformly over 100 classes, i.e. 500
train images and 100 test images for each class. 70 classes
are used for meta-training and 30 classes are used for meta-
testing. MiniImageNet [50] has 64 training classes and 20
testing classes with images of size 84 × 84. Each class has
600 images with 540 for training and 60 for testing. 30
training images are sampled for each class. In each trajec-
tory of CIFAR-100 and MiniImageNet, we sample 30 train
images for training all test images for testing for both meta-
training and meta-testing.

Network architecture. We adopt the model from OML
[22] and ANML [5] with a slight modification for our ex-
periments. For OML, the feature extractor fψ is a 6-layer
convolutional network with 112 channels and the classifier
ϕ is a single linear layer with AIM AW in between fψ and
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Figure 5: Evaluation of continual learning methods using dataset of various scales. Meta-test testing (training) trajectories
are shown in solid (dashed) lines. All curves are averaged over 10 runs with standard deviation shown.

ϕ. For ANML, both neuromodulatory network fψNM and
prediction network fψP have a 3-layer convolutional net-
work and ϕ is a single linear layer with AIM placed after
fψNM and fψP . fψNM has 112 channels while fψP has 256
channels. For CIFAR-100 and MiniImageNet, an additional
linear layer is placed before AIM for dimension reduction.
The hidden state hm ∈ R128. WK ∈ Rdim(ẑ)×128 and
WQ
m ∈ R128×128 maps theirs corresponding inputs to R128.

Training details. We use M = 64 mechanisms in our
system and top K = 10 mechanisms are selected during
inference with induced stochasticity by having l = 2 dur-
ing training. We follow the 1st-order MAML strategy in
[22, 5]. We use a batch size of 1 for 20,000 steps with step
size of νout = 1 × 10−3 for the outer-loop (slow weights)
and νin = 1 × 10−2 for the inner-loop (fast weights). A
complete meta-training of AIM using OML or ANML on
Omniglot, CIFAR-100 and MiniImageNet takes less than 2
hours, 3 hours and 6 hours respectively.

4.2.1 Qualitative Study: Activation of AIM

Following the settings in few-shot learning, activations of
AIM when applied to OML are shown in Figure 2b. The ac-
tivations are similar to what we observed in few-shot learn-
ing, i.e. a set of common mechanisms for all classes and
another set for mechanisms that are sparsely activated.

4.2.2 Quantitative Study

To evaluate the capability of AIM to continually learn new
concepts and mitigating catastrophic forgetting, we show
the results of meta-test training and testing in Figure 5. To
demonstrate that the accuracy gain using AIM is not due
to the increase in parameters, baseline is plotted and is de-
fined as the swapping of AIM with a linear layer contain-
ing the same amount of parameters as AIM added to OML.

Samples of new classes are continuously fed without re-
placement, and samples of old classes are not stored. Prior
works use the results from meta-test training as a measure of
forgetting and meta-test testing to measure both forgetting
and generalization error. We argue that memorizing features
that doesn’t transfer well to the testing set is not a good mea-
sure of forgetting. Results show that through the application
of AIM, the difference between train and test accuracy is
marginal, i.e. small generalization error, demonstrating that
AIM is not only useful for the adaptation to new knowledge
and mitigation of catastrophic forgetting, it also plays an
important role in the learning of concepts that are general-
izable to the test set. Consistent improvement in accuracy is
observed when AIM is applied to existing continual learn-
ing frameworks. The only exception is the application of
AIM to ANML trained on Omniglot, which could be reme-
died through a better selection of hyperparamters.

5. Conclusion
We have shown that AIM as a mixture of experts is an

important building block for modeling higher-order con-
cepts, translating to the capability of fast adaptation and
mitigation of catastrophic forgetting. Through the sparse
modeling of higher-order concepts, substantial improve-
ment over prior arts can be seen for both few-shot and con-
tinual learning. It would be interesting to see the exten-
sion of AIM to multiple layers for hierarchical modeling of
higher-order concepts.

Acknowledgement
This project is supported by MOST under code 107-

2221-E-009 -125 -MY3. Eugene Lee is partially supported
by Novatek Ph.D. Fellowship Award. The authors are grate-
ful for the suggestions provided by Dr. Eugene Wong from
University of California in Berkeley and Dr. Jian-Ming Ho
from Academia Sinica of Taiwan.

9462



References
[1] Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone

Calderara, Rita Cucchiara, and Babak Ehteshami Bejnordi.
Conditional channel gated networks for task-aware contin-
ual learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3931–
3940, 2020.

[2] Wickliffe C Abraham and Anthony Robins. Memory
retention–the synaptic stability versus plasticity dilemma.
Trends in neurosciences, 28(2):73–78, 2005.

[3] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Lau-
rent Charlin, Massimo Caccia, Min Lin, and Lucas Page-
Caccia. Online continual learning with maximal interfered
retrieval. In Advances in Neural Information Processing Sys-
tems, pages 11849–11860, 2019.

[4] Andrew James Bauer and Marcel Adam Just. Monitoring the
growth of the neural representations of new animal concepts.
Human brain mapping, 36(8):3213–3226, 2015.

[5] Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman,
Kenneth O Stanley, Jeff Clune, and Nick Cheney. Learning
to continually learn. arXiv preprint arXiv:2002.09571, 2020.

[6] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and An-
drea Vedaldi. Meta-learning with differentiable closed-form
solvers. arXiv preprint arXiv:1805.08136, 2018.

[7] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

[8] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for
support vector machines. ACM transactions on intelligent
systems and technology (TIST), 2(3):1–27, 2011.

[9] Robert Desimone and John Duncan. Neural mechanisms of
selective visual attention. Annual review of neuroscience,
18(1):193–222, 1995.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.
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Pérez, and Matthieu Cord. Boosting few-shot visual learn-
ing with self-supervision. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 8059–8068,
2019.

[15] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot
visual learning without forgetting. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 4367–4375, 2018.

[16] Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun
Sodhani, Sergey Levine, Yoshua Bengio, and Bernhard
Schölkopf. Recurrent independent mechanisms. arXiv
preprint arXiv:1909.10893, 2019.

[17] Geoffrey E Hinton and David C Plaut. Using fast weights
to deblur old memories. In Proceedings of the ninth annual
conference of the Cognitive Science Society, pages 177–186,
1987.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[19] Ruibing Hou, Hong Chang, MA Bingpeng, Shiguang Shan,
and Xilin Chen. Cross attention network for few-shot clas-
sification. In Advances in Neural Information Processing
Systems, pages 4005–4016, 2019.

[20] Shell Xu Hu, Pablo Moreno, Yang Xiao, Xi Shen, Guillaume
Obozinski, Neil Lawrence, and Andreas Damianou. Empir-
ical bayes transductive meta-learning with synthetic gradi-
ents. In International Conference on Learning Representa-
tions (ICLR), 2020.

[21] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osin-
dero, Oriol Vinyals, Alex Graves, David Silver, and Koray
Kavukcuoglu. Decoupled neural interfaces using synthetic
gradients. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pages 1627–1635.
JMLR. org, 2017.

[22] Khurram Javed and Martha White. Meta-learning represen-
tations for continual learning. In Advances in Neural Infor-
mation Processing Systems, pages 1820–1830, 2019.

[23] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler
Hayes, and Christopher Kanan. Measuring catas-
trophic forgetting in neural networks. arXiv preprint
arXiv:1708.02072, 2017.

[24] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.
Siamese neural networks for one-shot image recognition. In
ICML deep learning workshop, volume 2. Lille, 2015.

[25] Kevin B Korb, Lucas R Hope, Ann E Nicholson, and Karl
Axnick. Varieties of causal intervention. In Pacific Rim In-
ternational Conference on Artificial Intelligence, pages 322–
331. Springer, 2004.

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[27] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B
Tenenbaum. Human-level concept learning through proba-
bilistic program induction. Science, 350(6266):1332–1338,
2015.

[28] Eugene Lee and Chen-Yi Lee. Neuralscale: Efficient scaling
of neurons for resource-constrained deep neural networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1478–1487, 2020.

[29] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Se-
ungjin Choi, and Yee Whye Teh. Set transformer: A frame-
work for attention-based permutation-invariant neural net-
works. In International Conference on Machine Learning,
pages 3744–3753. PMLR, 2019.

9463



[30] Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu, and Xi-
aodong He. Stacked cross attention for image-text matching.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 201–216, 2018.

[31] Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler,
and Xiaogang Wang. Finding task-relevant features for few-
shot learning by category traversal. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1–10, 2019.

[32] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 19–34, 2018.

[33] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho
Yang, Sung Ju Hwang, and Yi Yang. Learning to propagate
labels: Transductive propagation network for few-shot learn-
ing. arXiv preprint arXiv:1805.10002, 2018.

[34] Michael McCloskey and Neal J Cohen. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, vol-
ume 24, pages 109–165. Elsevier, 1989.

[35] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter
Abbeel. A simple neural attentive meta-learner. arXiv
preprint arXiv:1707.03141, 2017.

[36] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In
Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, pages 2554–2563. JMLR. org,
2017.

[37] Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

[38] Boris Oreshkin, Pau Rodrı́guez López, and Alexandre La-
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