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Abstract

We propose a novel loss weighting algorithm, called loss
scale balancing (LSB), for multi-task learning (MTL) of pix-
elwise vision tasks. An MTL model is trained to estimate
multiple pixelwise predictions using an overall loss, which
is a linear combination of individual task losses. The pro-
posed algorithm dynamically adjusts the linear weights to
learn all tasks effectively. Instead of controlling the trend
of each loss value directly, we balance the loss scale —
the product of the loss value and its weight — periodically.
In addition, by evaluating the difficulty of each task based
on the previous loss record, the proposed algorithm focuses
more on difficult tasks during training. Experimental re-
sults show that the proposed algorithm outperforms conven-
tional weighting algorithms for MTL of various pixelwise
tasks. Codes are available at https://github.com/jaehanlee-
mcl/LSB-MTL.

1. Introduction
Multi-task learning (MTL) is a machine learning tech-

nique to solve multiple learning tasks simultaneously while
exploiting commonalities and differences across tasks.
MTL can improve the learning efficiency and prediction ac-
curacy for related tasks using an integrated model, as com-
pared to separate models trained for the multiple tasks inde-
pendently. The effectiveness of MTL has been proven both
theoretically and experimentally [1–4, 11]. With the ad-
vances in deep learning, MTL has been employed in a wide
range of applications, such as computer vision [14, 19, 32],
natural language processing (NLP) [7, 10, 28], reinforce-
ment learning [12,17,35], and speech recognition [8,16,39].

In computer vision, MTL models using convolutional
neural networks (CNNs) have been proposed mainly. For
example, MTL models have been developed to jointly per-
form three pixelwise tasks of depth estimation, surface nor-
mal estimation, and semantic segmentation from an input
image [25, 46]. Also, the joint depth and motion estima-
tion from a video [6, 44] and the classification of an image
for multiple attributes [30, 37] have been studied. These re-

searches have advanced the learning of closely related tasks
using a single MTL model. Since a large part of the network
is shared between tasks, an MTL model is advantageous in
terms of complexity, inference time, and learning efficiency.

To develop an effective deep MTL algorithm, two fac-
tors should be considered: architecture and training scheme.
First, the architecture should be designed to learn both task-
across and task-specific representations by allocating net-
work parameters appropriately for shared and task-specific
purposes. Many architectures have been developed by con-
sidering various factors, such as the CNN capacity, data
type, and relationship between tasks [12, 29, 34]. Second,
a training scheme should discourage any bias toward a spe-
cific task [6,18,25]. Because an MTL model generates mul-
tiple estimates, the corresponding losses should be defined
and then combined to form an overall loss. Since each loss
has a different scale during training, the overall loss may
be dominated by a specific loss. Moreover, the losses may
vary in different directions or even fluctuate during training.
It is hence important to balance loss contributions and thus
enforce that MTL learns all tasks effectively.

In this paper, we propose a novel loss weighting al-
gorithm, called loss scale balancing (LSB), for MTL of
pixelwise computer vision tasks (e.g. depth estimation
and semantic segmentation), which can dynamically adjust
weights to learn all tasks effectively. Based on the obser-
vation that balancing the loss scale, which is the product of
a loss value and its weight, is more efficient than control-
ling the trend of each loss value directly, we adjust the loss
scales to be balanced periodically. Besides, by evaluating
the difficulty of each task using the previous loss record, the
proposed algorithm can focus more on difficult tasks. Ex-
perimental results demonstrate that the proposed algorithm
can successfully balance loss scales to improve the perfor-
mance of each task. The proposed LSB algorithm outper-
forms conventional weighting algorithms.

The main contributions of this paper are as follows:

• We propose balancing loss scales, instead of losses
themselves, to improve the performance of MTL of
pixelwise vision tasks.

• We further improve the performance by tuning loss
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scales through the assessment of task difficulties.

• It is shown experimentally that the proposed algorithm
outperforms conventional ones consistently, regardless
of MTL architecture, dataset, and encoder backbone.

2. Related Work
MTL architectures: A single MTL model should provide
an estimate for each of the multiple tasks by considering
both general and task-specific representations of input data.
Thus, an MTL architecture should be designed to allocate
limited parameters for shared and task-specific purposes ap-
propriately.

Figure 1 shows three typical MTL architectures, in com-
parison with single-task learning (STL). The simplest one
is to add multiple estimation layers at the end of an STL
network, as shown in Figure 1(b). Because of its simplicity
and efficiency in computation and memory space, the full-
sharing architecture has been widely employed for multi-
lingual recognition [16], pose estimation and action detec-
tion [13], facial landmark detection [47], multiple classi-
fication [37], as well as for pixelwise visions. However,
it may fail to learn task-specific representations effectively
because all hidden layers are shared across tasks.

Figure 1(c) is the multi-decoder architecture, composed
of a shared encoder and multiple task-specific decoders.
This architecture has been employed for computer vi-
sion [5, 18, 31] and NLP [7, 26] applications. Some models
adopt feature selection modules to transfer the representa-
tions from shared encoder output selectively to task-specific
decoders. Various techniques for selecting features for each
task have been developed: linear combination of intermedi-
ate features [9], multi-scale fusion [19], connection of lay-
ers at different depths [14], and attention modules [25].

Finally, the multi-column architecture is in Figure 1(d),
in which an encoder-decoder network is designed for each
task and modules for sharing features across the networks
are added. Thus, the encoder parameters are soft-shared
across tasks. The main issue in this architecture is how to
share features between tasks effectively; the linear com-
bination of features [29, 33], one-way transfer between
tasks [35], and distillation modules [43] have been tried.

In addition to the MTL architectures in Figure 1, sev-
eral others have been developed as well. In [12], previous
approaches were extended by exploiting multiple input and
output layers for different tasks and adopting many convo-
lutional paths connecting them. In [48], a single-encoder-
multi-decoder architecture was designed, but, similarly to
the multi-column approach, features were transferred be-
tween layers for different tasks.

MTL model training: When training an MTL model,
losses for different tasks interact intricately with one an-
other via backpropagation. The weighting of these losses

Shared parts Task-specific parts

(b) Full-sharing

𝐈

𝑇2 𝑇1𝑇3

(c) Multi-decoder

𝐈

𝑇2 𝑇1𝑇3

(d) Multi-column

𝐈

𝑇2 𝑇1𝑇3

(a) STL

𝐈

𝑇

Figure 1. Typical architectures for MTL in the case of triple tasks.

has a significant impact on the performance of each task
[18]. These weights can be manually determined [13, 19,
39, 41], which, however, requires expert knowledge on in-
dividual loss functions and extensive trial-and-errors.

Dynamic weighting, which adjusts weights of losses dur-
ing training, can overcome this problem. Recent dynamic
weighting algorithms update weights periodically based
on the uncertainty of losses [18], the rates of change of
losses [25], and the weighted geometric mean of losses [6].
In [40], an attempt was made to achieve the Pareto optimal-
ity between losses. GradNorm [5] also adjusts loss weights
by monitoring loss reduction rates over time. However, un-
like the proposed algorithm, it needs to access the gradients
of losses with respect to shared network parameters. Thus,
when tasks are connected in a complicated way, such as
in the multi-column architecture in Figure 1(d), GradNorm
may demand a high computational cost. Therefore, it is ap-
plied only to the multi-decoder architecture in Figure 1(c)
in [5].

Curriculum learning [14, 23, 30, 37] is another effective
approach to MTL that starts with easy tasks and gradually
moves on to more difficult tasks. In [30,37], the learning se-
quence of tasks was determined according to the correlation
between tasks. In [23], instance difficulties, as well as task
difficulties, were considered. In [14], difficulties of tasks
were measured and used for learning schedule similarly to
the proposed algorithm. However, the proposed algorithm
differs from the training of other MTL algorithms in that
it adjusts weights based on loss scales. In [22], loss scales
were considered for training networks, but it only focused
on the monocular depth estimation [15, 20, 21].

3. Proposed Algorithm

We train a neural network performing multiple tasks in
a supervised manner. Let f be the network and θ be its
parameters. We aim at determining optimal parameters

θ∗ = argmin
θ

∑
(I,J)∈D

ℓ(f(I; θ), J) (1)

where D is a training dataset composed of (I, J) pairs. I
is an input signal and J represents the ground-truth labels
for multiple tasks. Also, ℓ is a loss function between the
estimate Ĵ ≜ f(I; θ) and the ground-truth J .
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Figure 2. A schematic diagram of an MTL model for three tasks.

Figure 2 shows a schematic diagram of f for three tasks
involving depth, normal, and segmentation losses. In gen-
eral, let Jk, Ĵk, and ℓk denote a ground-truth label, its esti-
mate, and a loss function for the kth task, respectively. The
overall loss function ℓ in (1) is defined as a weighted sum
of the loss functions for individual tasks, given by

ℓ(f(I; θ), J) =

n∑
k=1

wkℓk(Ĵk, Jk) (2)

where wk is a weight for the kth task, and n is the number
of tasks. Either fixed or dynamic weighting can be adopted
to determine wk in MTL.

In fixed weighting, weights wk are fixed throughout the
training. The simplest scheme, called equal weighting, is to
fix all weights identically. In such a case, the overall loss
may be dominated by a specific loss, since each loss may
have a different scale. Figure 3(a) shows an example of
equal weighting, in which depth and normal errors may gen-
erate too small gradients as compared with dominant seg-
mentation errors. This imbalance between losses can be re-
duced by setting weights manually as in Figure 3(b), so that
the contribution of each loss is equalized at the beginning.
However, it requires trial and error to find such weights.
Besides, it cannot reflect loss variations during training. In
Figure 3(b), the segmentation loss decreases faster than the
others, resulting in an imbalance in the end.

Dynamic weighting can overcome these problems. By
adjusting weights after each period, the contributions of
losses can be equalized throughout the training, as in Fig-
ure 3(c). Let us define a loss scale as the product of a loss
value and its weight. In Figure 3(c), the weights are deter-
mined adaptively to equalize the loss scales of all tasks.

We propose a sophisticated dynamic weighting algo-
rithm, which adjusts weights to balance loss scales and to
make the MTL network learn all tasks effectively. Notice
that the proposed algorithm requires neither extra network
parameters nor expert knowledge of individual loss func-
tions. It simply monitors the progress of loss scales during
training and adjusts weights periodically with only a slight
computational overhead, so that the trained network can un-
dertake all tasks more effectively. In this work, a training

Overall loss, ℓ 𝑤𝐃ℓ𝐃 𝑤𝐍ℓ𝐍 𝑤𝐒ℓ𝐒
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(c) Dynamic weighting for equalizing loss scales

Figure 3. Loss function graphs of three weighting schemes.

epoch is defined as the period.
The proposed LSB algorithm has three phases. In the

first period, without prior information about losses, weights
are set manually. In the second period, loss scales are bal-
anced using the previous loss record. From the third period
onward, the difficulty of each task is evaluated using the
loss record of the previous two periods. Then, the training
focuses on difficult tasks.

Let {π1, π2, ..., πn} be the set of priority factors for
losses. Specifically, the priority factor πk represents the
target contribution ratio of the kth loss function ℓk to the
overall loss function ℓ. Thus,

∑n
k=1 πk = 1. In applica-

tions, these priority factors can be provided explicitly. If
there is no such provision, we set πk = 1

n for every k. Also,
let Lt

k be the average loss of ℓk over the tth period. Then,
the average loss Lt of ℓ over period t is given by

Lt =

n∑
k=1

wt
kL

t
k (3)

where wt
k is the weight for ℓk in period t. It is updated from

wt−1
k to wt

k at the start of period t.

1st period: There is no record of previous losses. Thus,
equal weighting can be adopted as in Figure 4(a). In gen-
eral, we set the weights using the priority factors by

w1
k = πk, 1 ≤ k ≤ n. (4)

2nd period: We attempt to make the loss scale of the kth
task proportional to the priority factor πk. Suppose that
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Figure 4. Three phases of the proposed LSB algorithm.

πk = 1
n for every k. Then, as shown in Figure 4(b), the loss

scales can be equalized by adjusting each weight to be in-
versely proportional to the corresponding loss. Notice that,
at period t (≥ 2), the loss record of the previous period t−1
is available: Lt−1 and Lt−1

k for 1 ≤ k ≤ n.
At the start of period t, we aim to balance the loss scales

wt
kL

t
k by adjusting the weights wt

k. However, we do not
know the losses Lt

k yet. To address this problem, we assume
that

Lt

Lt−1
=

Lt
1

Lt−1
1

=
Lt
2

Lt−1
2

= · · · = Lt
n

Lt−1
n

. (5)

It is a reasonable assumption if all tasks are learned at a
similar pace during period t. We seek to train the MTL
network to satisfy this assumption as much as possible, and
it holds to some extent if the period is short enough.

The loss scale wt
kL

t
k of task k should contribute to the

overall loss Lt according to the priority factor πk;

wt
kL

t
k = πkL

t. (6)

The weight wt
k is hence given by wt

k = πkL
t/Lt

k. By the
assumption in (5), we have Lt/Lt

k = Lt−1/Lt−1
k . Thus,

the proposed algorithm determines the weight wt
k using the

previous loss record by

wt
k = πk

Lt−1

Lt−1
k

(7)

for t ≥ 2 and 1 ≤ k ≤ n.
The weighting rule in (7) has the following property.

Proposition 1. For t ≥ 2, we have

n∑
k=1

wt
kL

t−1
k =

n∑
k=1

wt−1
k Lt−1

k . (8)

Proof. From (7), wt
kL

t−1
k = πkL

t−1. Since
∑n

k=1 πk = 1,∑n
k=1 w

t
kL

t−1
k = Lt−1. Then, (8) is established by (3).
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Figure 5. Illustration of the weighting rule in (7).

This proposition means that the overall loss Lt−1 is un-
changed when the weights wt−1

k are updated to wt
k. Thus,

the update of the weights does not change the magnitude of
the overall loss, which makes the monitoring of the overall
losses over periods easier.

Figure 5 shows an example of the loss trends when the
weighting rule in (7) is adopted. Three loss functions ℓD,
ℓN, and ℓS yield different values in Figure 5(a), but the cor-
responding loss scales are equalized after the first two peri-
ods in Figure 5(d) using the weights in Figure 5(b). Also, in
Figure 5(c), loss reduction rates of the three tasks are simi-
lar to one another, as assumed in (5), except for the second
period. Finally, after the first two periods, the overall loss
ℓ in Figure 5(d) does not have big discontinuities between
periods as predicted by Proposition 1.

We use the weighting rule in (7) for all t ≥ 2. However,
from the third period onward, more information is available
about the characteristics of loss functions ℓk. To exploit
such characteristics, we modify the overall loss function ℓ
using the following scheme when t ≥ 3.

3rd period onward: Using the loss record of the previous
two periods, we quantify the difficulty of each task. Then,
we focus on more difficult tasks by assigning bigger weights
to them. Let dtk denote the difficulty factor for task k at
period t, which is computed by

dtk =

(
Lt−1
k /Lt−2

k

Lt−1/Lt−2

)β

(9)

for t ≥ 3 and 1 ≤ k ≤ n. Here, β is a hyper-parameter.
Suppose that β = 1. Then, dtk indicates whether the kth loss
ℓk decreases faster or slower than the overall loss ℓ. If dtk >
1, ℓk decreases slower, implying that task k is difficult. On
the contrary, dtk < 1 implies that task k is relatively easy.
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Figure 6. Trends of difficulty factors, when β = 1 in (9).

When t ≥ 3, by incorporating the difficulty factors, we
define the overall loss function ℓ as

ℓ(f(I; θ), J) = α

n∑
k=1

dkwkℓk(Ĵk, Jk) (10)

where α is a parameter to make the overall loss unchanged
by the update of weights. Then, the average loss Lt of ℓ
over period t is

Lt = αt
n∑

k=1

dtkw
t
kL

t
k (11)

where αt is the control parameter in period t, given by

αt =
1∑n

k=1 πkdtk
. (12)

Figure 4(c) illustrates this third phase.
Similar to Proposition 1, we have the following property.

Proposition 2. For t ≥ 3, we have

αt
n∑

k=1

dtkw
t
kL

t−1
k = αt−1

n∑
k=1

dt−1
k wt−1

k Lt−1
k (13)

Proof. From (7), wt
kL

t−1
k = πkL

t−1. Also, by (12),

αt
∑
k

dtkw
t
kL

t−1
k =

∑
k d

t
kπkL

t−1∑n
k=1 πkdtk

= Lt−1. (14)

The proposition is then established by (11).

Difficulty factors dtk vary dynamically during training.
Figure 6 illustrates difficulty trends during training when β
in (9) is fixed to 1. Two observations can be made:

• Difficulty factors oscillate. A difficult task can become
an easy one and vice versa, as the training goes on.

• The difficulty gaps between tasks are large at the start
of training, but they get smaller gradually. Eventually,
all difficulty levels become near 1.

Because of these two properties, even though the loss func-
tion in (10) is used instead of (2), each loss scale converges
to be proportional to its priority factor as the training pro-
gresses. However, large variations of dk in initial periods
can affect the training adversely. Therefore, we adopt a cur-
riculum learning scheme of smoothly increasing β in (9)
according to t. Specifically, β is initialized to 0 and incre-
mented gradually. Thus, initially, the loss function in (10)
is reduced to (2), but difficulty factors play more important
roles in later periods.
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Figure 7. Examples of images and labels in the (a) NYUv2 [42]
and (b) Taskonomy [45] datasets.

Table 1. Summary of the network structures in experiments.

Full-sharing

An input image is processed by a single encoder and
then a single decoder, which generates multi-channel
output for each pixel representing the estimates of
multiple tasks.

Multi-decoder
Multiple identically structured decoders are linked to
an encoder backbone. Each decoder outputs an
estimate for the corresponding task.

Multi-column
The cross-stich network [29] is used. It consists of
multiple encoder-decoder columns for as many tasks
and cross-stitch units connecting them.

4. Experimental Results

4.1. Dataset

The proposed LSB algorithm is applied to joint learning
of multiple pixelwise prediction tasks. We test MTL net-
works, which process an RGB image I ∈ Rw×h×3 to esti-
mate multiple maps of spatial resolution w× h. A different
kind of map is generated according to the task, as illustrated
in Figure 7. We employ two widely used datasets for MTL:
the NYUv2 [42] and Taskonomy [45] datasets.

The NYUv2 dataset consists of 795 training and 654 test
RGB images with labels for depth, normal, and segmenta-
tion. Using NYUv2, we train networks to learn the three
tasks jointly from input images, resized to 384× 288.

The Taskonomy dataset provides labels for a wide range
of tasks. From the tiny split, we build a mini dataset of
2,762 training images and 548 test images with a 1

100 sam-
pling ratio. We test two combinations of tasks: 4-task
for depth, normal, curvature, and reshading and 8-task for
depth, normal, curvature, reshading, 2D edge, 3D edge, 2D
keypoint, and 3D keypoint. Images are resized to 256×256.

5111



Table 2. Performance comparison of the proposed algorithm with the conventional algorithms on the NYUv2 dataset using various
architectures with the MobileNet.v2 backbone. In each test, the performance rank is provided within parentheses. The best average rank is
boldfaced, while the second-best one is underlined.

(a) Single-task learning

Depth Normal Segmentation Rank

δ1 RMSE δ30◦ ∠mean mIoU Acc. Min Max Avg.

Depth 57.6% 0.824 - - - - - - -
Normal - - 43.2% 39.9 - - - - -
Segmentation - - - - 18.9% 54.3% - - -

(b) Full-sharing

Equal weighting 57.1% (3) 0.841 (3) 42.9% (4.5) 40.8 (4) 18.7% (4.5) 53.4% (5) 3 5 4.00
Uncert [18] 56.1% (4.5) 0.844 (4) 42.9% (4.5) 40.8 (4) 19.3% (3) 54.3% (3) 3 4.5 3.83
DWA [25] 57.7% (1) 0.825 (1) 43.0% (3) 40.8 (4) 18.7% (4.5) 54.0% (4) 1 4.5 2.92
GLS [6] 56.1% (4.5) 0.847 (5) 43.1% (2) 40.4 (1) 19.6% (2) 54.4% (2) 1 4.5 2.75
Proposed 57.6% (2) 0.829 (2) 43.3% (1) 40.5 (2) 19.8% (1) 54.7% (1) 1 2 1.50

(c) Multi-decoder

Equal weighting 58.4% (4) 0.821 (5) 42.7% (3) 40.6 (1) 19.2% (3) 54.6% (1.5) 1 5 2.92
GradNorm [5] 57.0% (6) 0.829 (6) 41.6% (6) 40.9 (2.5) 20.5% (1) 53.3% (6) 1 6 4.58
Uncert [18] 58.1% (5) 0.813 (3) 42.0% (5) 41.7 (6) 19.0% (5) 53.8% (5) 3 6 4.83
DWA [25] 58.9% (3) 0.814 (4) 42.5% (4) 40.9 (2.5) 19.1% (4) 54.1% (4) 2.5 4 3.58
GLS [6] 59.6% (1) 0.797 (1) 42.8% (2) 41.1 (5) 18.7% (6) 54.3% (3) 1 6 3.00
Proposed 59.2% (2) 0.800 (2) 43.0% (1) 41.0 (4) 19.5% (2) 54.6% (1.5) 1 4 2.25

(d) Multi-column (cross-stitch [29])

Equal weighting 59.5% (5) 0.801 (5) 44.3% (2.5) 40.0 (2) 19.9% (4) 55.7% (5) 2 5 3.92
Uncert [18] 60.9% (2) 0.775 (2) 44.1% (4) 40.1 (3) 20.8% (2) 56.3% (3) 2 4 2.67
DWA [25] 59.9% (4) 0.792 (4) 43.7% (5) 40.2 (4) 20.5% (3) 56.2% (2) 2 5 3.67
GLS [6] 60.6% (3) 0.778 (3) 44.3% (2.5) 40.5 (5) 19.6% (5) 55.9% (4) 2.5 5 3.75
Proposed 61.6% (1) 0.772 (1) 44.8% (1) 39.5 (1) 21.0% (1) 56.5% (1) 1 1 1.00

4.2. Implementation

As a weighting algorithm for multi-task losses, the pro-
posed LSB algorithm can be applied to various MTL net-
works. Table 1 summarizes three architectures for verifying
the effectiveness of the LSB algorithm. Each structure cor-
responds to a category in Figure 1. In all architectures, the
encoders down-sample an input image 5 times and extract
features of spatial resolution w

32×
h
32 , while the decoders up-

sample the encoder output 5 times. Thus, the output has the
same resolution as the input. As the backbone networks, a
lightweight network MobileNet.v2 [36] and a high capacity
network PNASNet [24] are used, respectively.

In training, we adopt a single loss function for each task.
For example, the depth loss is defined as the absolute differ-
ence between a logarithmic ground-truth depth and its esti-
mate, and the normal loss is computed from the inner prod-
uct of ground-truth and estimated normal vectors. More de-
tailed implementation including network architecture, loss
functions, and training details are specified in Sections 1, 2,
and 3, respectively, of the supplemental document.

4.3. Performance Comparison

We compare the proposed LSB algorithm with con-
ventional MTL algorithms: equal weighting, Uncert [18],
DWA [25], GLS [6], and GradNorm [5]. These algorithms
are recent ones, and most of them can be applied to various
MTL architectures. Thus, the comparison is possible under
the same experimental conditions. To verify the versatil-
ity and reliability of the proposed algorithm, we adopt the

two datasets [42, 45], the three networks in Table 1 and the
two encoder backbones [24, 36] and conduct experiments
on their various combinations.

NYUv2: Table 2 summarizes the comparison results on
NYUv2 using the MobileNet.v2 backbone. Six evaluation
metrics (two for each task) in Table 3 are employed. Grad-
Norm is tested for the multi-decoder architecture only, as
done in [5]. Also, as a benchmark, we measure the perfor-
mance of STL for each task.

There is a trade-off between multiple tasks in MTL. By
focusing on a specific task only, an algorithm can easily out-
perform the other algorithms on that task, but it may per-
form poorly on the other tasks. Thus, it is hard to compare
MTL algorithms using a single metric. It is also unreason-
able to average the scores of multiple metrics, which rep-
resent different physical quantities. Therefore, we adopt a
rank-based evaluation protocol [38]. In Table 2, we provide
the rank of each algorithm in each metric within parentheses
and present the average rank in the rightmost column.

The proposed algorithm consistently yields the best aver-
age ranks for all architectures. Also, the proposed algorithm
ranks 1st or 2nd in most metrics. Especially, for the multi-
column architecture, the proposed algorithm ranks 1st in all
metrics and thus has the best average rank (= 1.00), which
is significantly better than the second-best one (= 2.67) of
Uncert. Also, it even outperforms the STL networks in all
metrics. These results indicate that the proposed LSB al-
gorithm is an effective approach to train MTL networks,
without demanding additional network parameters or expert
knowledge on loss functions. The average performances
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Table 3. Evaluation metrics: di, ni, and si are the ground-truth
depth, normal vector, and segmentation class of pixel i, while d̂i,
n̂i, and ŝi are their estimates. N is the number of pixels in an
image.

Depth
δn % of di such that max

{
d̂i
di

, di
d̂i

}
< 1.25n

RMSE
(

1
N

∑
i(d̂i − di)

2
) 1

2

Normal δt◦ % of ni such that ∠(n̂i, ni) < t◦

∠mean Mean of ∠(n̂i, ni)

Segmentation mIoU Average IoU ratio over classes
Accuracy % of si such that ŝi = si

Table 4. Performance comparison of the proposed algorithm with
the conventional algorithms on the NYUv2 dataset using various
architectures with the PNASNet backbone.

(a) Full-sharing

Depth Normal Segmentation Rank
δ1 δ30◦ Acc. Avg.

Equal weighting 74.8% (3) 44.8% (4) 64.4% (2.5) 3.17
Uncert [18] 71.9% (5) 44.6% (5) 64.3% (4) 4.67
DWA [25] 73.3% (4) 44.9% (3) 64.4% (2.5) 3.17
GLS [6] 78.3% (1) 46.8% (2) 58.1% (5) 2.67
Proposed 77.5% (2) 50.5% (1) 65.0% (1) 1.33

(b) Multi-decoder

Equal weighting 77.6% (1.5) 51.8% (4) 65.6% (4) 3.17
Uncert [18] 77.1% (3) 53.7% (3) 65.6% (4) 3.33
DWA [25] 74.2% (4) 51.6% (5) 65.6% (4) 4.33
GLS [6] 73.0% (5) 57.2% (1) 66.3% (2) 2.67
Proposed 77.6% (1.5) 56.6% (2) 66.9% (1) 1.50

(c) Multi-column (cross-stitch [29])

Equal weighting 77.7% (5) 60.5% (5) 65.9% (2) 4.00
Uncert [18] 78.9% (3) 61.4% (3) 65.5% (4) 3.33
DWA [25] 78.6% (4) 61.5% (2) 65.1% (5) 3.67
GLS [6] 80.2% (1) 61.1% (4) 65.6% (3) 2.67
Proposed 79.0% (2) 64.7% (1) 66.4% (1) 1.33

over multiple trials are compared in Section 4 of the sup-
plemental document, which confirm that the superiority of
the proposed algorithm is statistically significant.

Table 4 summarizes the comparison results using the
PNASNet encoders, which have a much higher learning ca-
pacity than the MobileNet.v2 encoders. Regardless of en-
coder backbones, the proposed algorithm consistently out-
performs the conventional algorithms. Figure 8 qualita-
tively compares depth, normal, and segmentation results of
the proposed algorithm with those of the equal weighting
scheme. The proposed algorithm provides more accurate
prediction results with smaller errors.

Taskonomy: Table 5 compares the results of 4-task learn-
ing and 8-task learning on the Taskonomy dataset using the
multi-column structure with the MobileNet.v2 backbone.
The evaluation protocols for these eight tasks are specified
in Section 2 of the supplemental document. In both settings,
the proposed algorithm yields the best average ranks 1.75
and 1.88. In the 8-task learning, the proposed algorithm
provides the best results in four out of the eight tasks. Also,
in terms of the 2D edge loss, the proposed algorithm yields
0.114, which is meaningfully lower than 0.119 of GLS.

Table 5. Performance comparison of 4-task learning and 8-task
learning settings on the Taskonomy dataset using the multi-column
architecture with the MobileNet.v2 backbone.

(a) 4-task learning

Equal
weighting Uncert DWA GLS Proposed

Depth 0.298 (5) 0.291 (3) 0.292 (4) 0.290 (2) 0.289 (1)
Normal 0.276 (1) 0.280 (4) 0.282 (5) 0.278 (3) 0.277 (2)
Curvature 0.267 (5) 0.264 (3) 0.265 (4) 0.263 (1.5) 0.263 (1.5)
Reshading 0.247 (5) 0.244 (4) 0.242 (2.5) 0.239 (1) 0.242 (2.5)

Rank Avg. 4.00 3.50 3.88 1.88 1.75

(b) 8-task learning

Depth 0.290 (4) 0.286 (1) 0.288 (3) 0.299 (5) 0.287 (2)
Normal 0.301 (3) 0.316 (5) 0.300 (2) 0.299 (1) 0.309 (4)
Curvature 0.269 (4) 0.274 (5) 0.268 (3) 0.262 (1) 0.267 (2)
Reshading 0.238 (2.5) 0.238 (2.5) 0.239 (4) 0.241 (5) 0.235 (1)
2D edge 0.145 (5) 0.135 (3) 0.144 (4) 0.119 (2) 0.114 (1)
3D edge 0.552 (1) 0.560 (5) 0.558 (4) 0.555 (2) 0.557 (3)
2D keypoint 0.126 (4) 0.121 (3) 0.129 (5) 0.103 (2) 0.101 (1)
3D keypoint 0.106 (5) 0.105 (3) 0.105 (3) 0.105 (3) 0.104 (1)

Rank Avg. 3.56 3.44 3.50 2.63 1.88
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Figure 8. Qualitative comparison of the proposed algorithm with
the equal weighting scheme on the NYUv2 dataset with the PNAS-
Net backbone. For easier comparison, prediction error maps, as
well as predicted results, are provided. In segmentation error
maps, erroneously predicted regions are in red.

4.4. Analysis

Comparison of loss scale trends: Figure 9 compares the
weight and loss scale trends on the NYUv2 dataset over pe-
riods. In equal weighting, the segmentation loss is domi-
nant throughout the training. Although Uncert and DWA
assign bigger weights to the depth and normal losses than
the segmentation loss, the overall loss is still dominated by
the segmentation loss. In contrast, the proposed algorithm
equalizes the loss scales by adjusting the weights more ef-
fectively. Loss scale trends for more experiments are also
available in Section 5 of the supplemental document.

Hyper-parameter β: In the default mode, we initialize the
hyper-parameter β in (9) to 0 and increase it each period.
Table 6 compares different settings of β. Note that a neg-
ative β makes the proposed algorithm focus on easy tasks,
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Figure 9. Illustration of weights and loss scales for equal weight-
ing, Uncert [18], DWA [25], and the proposed algorithm.

Table 6. Comparison of various settings of β.
Depth Normal Segmentation

β δ1 RMSE δ30◦ ∠mean mIoU Acc.

−3 76.3% 0.538 44.8% 36.1 25.0% 56.5%
−1 78.5% 0.519 45.3% 36.1 25.5% 56.4%
0 78.6% 0.528 46.6% 36.2 27.5% 58.4%
1 79.2% 0.510 48.0% 35.6 28.1% 61.6%
3 77.5% 0.539 47.6% 36.0 27.1% 60.3%
10 77.9% 0.537 45.1% 36.0 21.8% 53.5%

Default 77.5% 0.522 50.5% 34.1 32.6% 65.0%

while a positive β on difficult tasks. At β = 0, the difficulty
is not taken into account. From the three settings β = −1,
β = 0, and β = 1, it is observed that focusing on difficult
tasks is more effective. However, as indicated by β = 3
and β = 10, too large a β degrades the results, since it
causes loss scales to fluctuate excessively in early periods.
Figure 10 shows difficulty trends in the default mode. At
later periods, with bigger β’s, difficulty factors experience
larger variations. However, those factors help to balance
loss scales more accurately in Figure 9.

Further analysis and qualitative results are provided in
Sections 6, 7, and 8 of the supplemental document.
Non-pixelwise tasks: The proposed LSB algorithm can be
applied to non-pixelwise tasks as well. If the design of
appropriate network architecture is preceded, LSB can be
applied to a wider range of tasks. We verify this extensi-
bility by learning face landmark localization and face at-
tribute classification using CelebA dataset [27]. Given a
face image, the attribute classification performs binary clas-

Period10 20 30 40
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0.9

Difficulty
𝑑𝐃
𝑡 𝑑𝐍

𝑡 𝑑𝐒
𝑡

Figure 10. Trends of difficulty factors of the proposed algorithm,
when β gradually increases starting from 0 in the default mode.

Table 7. Quantitative results on the CelebA dataset. Pixel distance
and accuracy are used as the evaluation metrics for the localiza-
tion and the classification, respectively. Compared with the equal
weighting scheme, the proposed algorithm performs better in the
localization, while also slightly better in the classification.

Landmark localization Attribute

Eye Nose Mouth classification

Equal weighting 0.859 2.044 1.290 90.6%
Proposed 0.641 1.172 0.963 90.8%

GT Equal ProposedGT Equal Proposed

Male 100% 17%85% 90% 0% 86%

Young 100% 95%20% 58% 100% 92%

No beard 100% 93%77% 99% 100% 58%

Brown hair 0% 20%31% 6% 0% 23%

Wavy hair 100% 39%18% 6% 100% 28%

Figure 11. Qualitative comparison of the proposed algorithm with
the equal weighting scheme on the CelebA dataset. The estimated
landmark locations are highlighted, and some attribute classifica-
tion results are provided.

sification of each of 40 different attributes, which is a non-
pixelwise task. The multi-column architecture is adopted
for training. For classification, convolutional layers of de-
coders are substituted with fully connected layers and sig-
moid operations. Table 7 and Figure 11 show that LSB can
be applied effectively to these tasks as well.

5. Conclusions
We proposed the LSB algorithm for MTL that adjusts

weights to make the network learn all tasks effectively. In-
stead of controlling the weight of each loss directly, the
proposed algorithm balances loss scales periodically. Also,
by assessing the difficulty factors of tasks in each period,
the proposed algorithm focuses on learning more difficult
tasks. Extensive experiments on various pixelwise vision
tasks demonstrated that the proposed algorithm outperforms
conventional algorithms regardless of architecture, dataset,
and encoder backbone.

Acknowledgments

This work was supported by the National Research
Foundation of Korea (NRF) grants funded by the Korea
government (MSIT) (No. NRF-2018R1A2B3003896 and
No. NRF-2021R1A4A1031864).

5114



References
[1] R. K. Ando and T. Zhang. A framework for learning pre-

dictive structures from multiple tasks and unlabeled data. J.
Mach. Learn. Res., 6:1817–1853, Nov. 2005. 1

[2] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature
learning. In NIPS, 2007. 1

[3] S. Ben-David and R. Schuller. Exploiting task relatedness
for multiple task learning. In Learning Theory and Kernel
Machines, 2003. 1

[4] R. Caruana. Multitask learning. Machine Learning,
28(1):41–75, 1997. 1

[5] Z. Chen, V. Badrinarayanan, C. Y. Lee, and A. Rabinovich.
GradNorm: Gradient normalization for adaptive loss balanc-
ing in deep multitask networks. In ICML, 2018. 2, 6

[6] S. Chennupati, G. Sistu, S. Yogamani, and S. A Rawashdeh.
MultiNet++: Multi-stream feature aggregation and geomet-
ric loss strategy for multi-task learning. In CVPR Workshops,
2019. 1, 2, 6, 7

[7] R. Collobert and J. Weston. A unified architecture for natural
language processing: Deep neural networks with multitask
learning. In ICML, 2008. 1, 2

[8] L. Deng, G. Hinton, and B. Kingsbury. New types of deep
neural network learning for speech recognition and related
applications: An overview. In ICASSP, 2013. 1

[9] C. Doersch and A. Zisserman. Multi-task self-supervised
visual learning. In ICCV, 2017. 2

[10] D. Dong, H. Wu, W. He, D. Yu, and H. Wang. Multi-task
learning for multiple language translation. In Proc. ACL and
IJCNLP, 2015. 1

[11] T. Evgeniou and M. Pontil. Regularized multi-task learning.
In Proc. KDD, 2004. 1

[12] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha,
A. A. Rusu, A. Pritzel, and D. Wierstra. PathNet: Evolution
channels gradient descent in super neural networks. arXiv
preprint arXiv:1701.08734, 2017. 1, 2

[13] G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik. R-
CNNs for pose estimation and action detection. arXiv
preprint arXiv:1406.5212, 2014. 2

[14] M. Guo, A. Haque, D. A. Huang, S. Yeung, and L. Fei-Fei.
Dynamic task prioritization for multitask learning. In ECCV,
2018. 1, 2

[15] M. Heo, J. Lee, K.-R. Kim, and C.-S. Kim. Monocular depth
estimation using whole strip masking and reliability-based
refinement. In ECCV, 2018. 2

[16] J. T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong. Cross-
language knowledge transfer using multilingual deep neural
network with shared hidden layers. In ICASSP, 2013. 1, 2

[17] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z.
Leibo, D. Silver, and K. Kavukcuoglu. Reinforcement learn-
ing with unsupervised auxiliary tasks. In ICLR, 2016. 1

[18] A. Kendall, Y. Gal, and R. Cipolla. Multi-task learning using
uncertainty to weigh losses for scene geometry and seman-
tics. In CVPR, 2018. 1, 2, 6, 7, 8

[19] I. Kokkinos. UberNet: Training a universal convolutional
neural network for low-, mid-, and high-level vision using
diverse datasets and limited memory. In CVPR, 2017. 1, 2

[20] J. H. Lee, M. Heo, K.-R. Kim, and C.-S. Kim. Single-image
depth estimation based on fourier domain analysis. In CVPR,
2018. 2

[21] J. H. Lee and C.-S. Kim. Monocular depth estimation using
relative depth maps. In CVPR, 2019. 2

[22] J.-H. Lee and C.-S. Kim. Multi-loss rebalancing algorithm
for monocular depth estimation. In ECCV, 2020. 2

[23] C. Li, J. Yan, F. Wei, W. Dong, Q. Liu, and H. Zha. Self-
paced multi-task learning. In AAAI, 2017. 2

[24] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. J. Li,
L. Fei-Fei, A. Yuille, J. Huang, and K. Murphy. Progressive
neural architecture search. In ECCV, 2018. 6

[25] S. Liu, E. Johns, and A. J. Davison. End-to-end multi-task
learning with attention. In CVPR, 2019. 1, 2, 6, 7, 8

[26] X. Liu, P. He, W. Chen, and J. Gao. Multi-task deep neural
networks for natural language understanding. In Proc. ACL,
2019. 2

[27] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face
attributes in the wild. In ICCV, 2015. 8

[28] M. T. Luong, Q. V. Le, I. Sutskever, O. Vinyals, and L.
Kaiser. Multi-task sequence to sequence learning. In ICLR,
2016. 1

[29] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert. Cross-
stitch networks for multi-task learning. In CVPR, 2016. 1, 2,
5, 6, 7

[30] A. Pentina, V. Sharmanska, and C. H. Lampert. Curriculum
learning of multiple tasks. In CVPR, 2015. 1, 2

[31] P. Rajeev R. Ranjan, V. M. Patel, and R. Chellappa. Hy-
perFace: A deep multi-task learning framework for face
detection, landmark localization, pose estimation, and gen-
der recognition. IEEE Trans. Pattern Anal. Mach. Intell.,
41(1):121–135, Dec. 2017. 2

[32] S. A. Rebuffi, H. Bilen, and A. Vedaldi. Learning multiple
visual domains with residual adapters. In NIPS, 2017. 1

[33] S. Ruder, J. Bingel, I. Augenstein, and Anders A. Søgaard.
Learning what to share between loosely related tasks. arXiv
preprint arXiv:1705.08142, 2017. 2

[34] S. Ruder, J. Bingel, I. Augenstein, and A. Søgaard. Latent
multi-task architecture learning. In AAAI, 2019. 1

[35] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer,
J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and R.
Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016. 1, 2

[36] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C.
Chen. MobileNetV2: Inverted residuals and linear bottle-
necks. In CVPR, 2018. 6

[37] N. Sarafianos, T. Giannakopoulos, C. Nikou, and I. A. Kaka-
diaris. Curriculum learning for multi-task classification of
visual attributes. In ICCV Workshops, 2017. 1, 2

[38] D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. Int. J.
Comput. Vis., 47:7–42, Apr. 2002. 6

[39] M. L. Seltzer and J. Droppo. Multi-task learning in deep neu-
ral networks for improved phoneme recognition. In ICASSP,
2013. 1, 2

[40] O. Sener and V. Koltun. Multi-task learning as multi-
objective optimization. In NIPS, 2018. 2

5115



[41] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun. OverFeat: Integrated recognition, localization
and detection using convolutional networks. arXiv preprint
arXiv:1312.6229, 2013. 2

[42] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from RGBD images. In
ECCV, 2012. 5, 6

[43] D. Xu, W. Ouyang, X. Wang, and N. Sebe. PAD-Net: Multi-
tasks guided prediction-and-distillation network for simulta-
neous depth estimation and scene parsing. In CVPR, 2018.
2

[44] Z. Yin and J. Shi. GeoNet: Unsupervised learning of dense
depth, optical flow and camera pose. In CVPR, 2018. 1

[45] A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and S.
Savarese. Taskonomy: Disentangling task transfer learning.
In CVPR, 2018. 5, 6

[46] Z. Zhang, Z. Cui, and C. Xu. Pattern-affinitive propagation
across depth, surface normal and semantic segmentation. In
CVPR, 2019. 1

[47] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark
detection by deep multi-task learning. In ECCV, 2014. 2

[48] L. Zhou, Z. Cui, C. Xu, Z. Zhang, C. Wang, T. Zhang, and J.
Yang. Pattern-structure diffusion for multi-task learning. In
CVPR, 2020. 2

5116


