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Abstract

Recent learning-based multi-view stereo (MVS) methods
show excellent performance with dense cameras and small
depth ranges. However, non-learning based approaches still
outperform for scenes with large depth ranges and sparser
wide-baseline views, in part due to their PatchMatch opti-
mization over pixelwise estimates of depth, normals, and
visibility. In this paper, we propose an end-to-end trainable
PatchMatch-based MVS approach that combines advantages
of trainable costs and regularizations with pixelwise esti-
mates. To overcome the challenge of the non-differentiable
PatchMatch optimization that involves iterative sampling and
hard decisions, we use reinforcement learning to minimize
expected photometric cost and maximize likelihood of ground
truth depth and normals. We incorporate normal estimation
by using dilated patch kernels and propose a recurrent cost
regularization that applies beyond frontal plane-sweep algo-
rithms to our pixelwise depth/normal estimates. We evaluate
our method on widely used MVS benchmarks, ETH3D and
Tanks and Temples (TnT). On ETH3D, our method outper-
forms other recent learning-based approaches and performs
comparably on advanced TnT.

1. Introduction
Multi-view stereo (MVS) aims to reconstruct 3D scene ge-

ometry from a set of RGB images with known camera poses,
with many important applications such as robotics [25], self-
driving cars [8], infrastructure inspection [7, 13], and map-
ping [31]. Non-learning based MVS methods [5, 26, 32,
34, 41] evolved to support pixelwise estimates of depths,
normals, and source view selection, with PatchMatch based
iterative optimization and cross-image consistency checks.
Recent learning-based MVS methods [12, 15, 16, 39, 40]
tend to use frontal plane sweeps, evaluating the same set
of depth candidates for each pixel based on the same im-
ages. The trainable photometric scores and cost-volume
regularization of the learning-based methods leads to excel-
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Figure 1. We propose PatchMatch-RL, an end-to-end trainable
PatchMatch-based MVS approach that combines advantages of
trainable costs and regularizations with pixelwise estimates of
depth, normal, and visibility. The left half of the bottom images
is the depth, and the right half is the normals. We show that our
method can achieve smoother and more complete depth and normal
map estimation over the existing approach (COLMAP).

lent performance with dense cameras and small depth ranges,
as evidenced in the DTU [2] and Tanks-and-Temples (TnT)
benchmarks [18], but the pixelwise non-learning based ap-
proach outperforms for scenes with large depth ranges and
slanted surfaces observed with sparser wide-baseline views,
as evidenced in the ETH3D benchmark [28].

Our paper aims to incorporate pixelwise depth, normal,
and view estimates into an end-to-end trainable system with
advantages from both approaches:

• Pixelwise depth and normal prediction efficiently
models scenes with large depth ranges and slanted sur-
faces.

• Pixelwise view selection improves robustness to occlu-
sion and enables reconstruction from sparser images.

• Learned photometric cost functions improve corre-
spondence robustness.
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• Learned regularization and contextual inference en-
able completion of textureless and glossy surfaces.

One challenge is that PatchMatch optimization and pix-
elwise view selection involve iterative sampling and hard
decisions that are not differentiable. We propose a reinforce-
ment learning approach to minimize expected photometric
cost and maximize discounted rewards for reaching a good
final solution. Our techniques can also be used to enable
learning for other PatchMatch applications (e.g. [3, 14, 21]),
though we focus on MVS only. Estimating 3D normals of
pixels is also challenging because convolutional features
tend to be smooth so that neighboring cells add little new
information, and patch-wise photometric costs are memory
intensive. We find that with shallower feature channels and
dilated patch kernels, we effectively estimate pixel normals.
A third challenge is how to perform regularization or global
inference. Each pixel has its own depth/normal estimate, so
cost-volume based regularization does not apply. We pro-
pose a recurrent cost regularization that updates a hidden
state via message passing that accounts for depth/normal
similarities between pixels.

In summary, our main contribution is an end-to-end
trainable PatchMatch-based MVS approach that combines
advantages of trainable costs and regularizations with pixel-
wise estimates, requiring multiple innovations:

• Reinforcement learning approach to train end-to-end
within a PatchMatch sampling based optimization.

• Use of normal estimates in learning-based MVS, en-
abled by trainable PatchMatch optimization and CNN
patch features.

• Depth/normal regularization that applies beyond frontal
plane-sweep algorithms; e.g. to our pixelwise
depth/normal estimates.

In experiments, our system outperforms other recent
learning-based methods on ETH3D and performs similarly
on TnT, and our ablation study validates the importance of
pixelwise normal and view selection estimates.

2. Related Works
Given correct scene geometry, the pixels that correspond

to a surface patch in different calibrated cameras can be
determined, and their appearance patterns will be similar
(“photometrically consistent”). This core idea of multi-view
stereo (MVS) leads to an array of formulations, optimization
algorithms, and refinements. We focus on our work’s direct
lineage, referring the interested reader to a survey/tutorial [9]
and paper list [1] for more complete background and cover-
age.

The first and simplest formulation is to assign each pixel
to one of a set of candidate disparities or depth values [22].
The locally best assignment can be determined by filtering
across rows in rectified images, and surface smoothness pri-
ors can be easily incorporated within this ordered labeling
problem. However, per-view depth labeling has many short-
comings in a wide-baseline MVS setting: (1) depth maps do

not align in different views, making consistency checking
and fusion more difficult; (2) depth for oblique surfaces is
not constant, degrading matching of intensity patches; and
(3) the range of depth values may be large, so that large
steps in depth are needed to feasibly evaluate the full range.
Further, occlusion and partially overlapping images demand
more care in evaluating photometric consistency.

These difficulties led to a reformulation of MVS as solv-
ing for a depth, normal, and view selection for each pixel
in a reference image [27, 41]. The view selection iden-
tifies which other source images will be used to evaluate
photometric consistency. This more complex formulation
creates a challenging optimization problem, since each pixel
has a 4D continuous value (depth/normal) and binary la-
bel vector (view selection). PatchMatch [3, 5, 27] is well-
suited for the depth/normal optimization, since it employs
a hypothesize-test-propagate framework that is ideal for ef-
ficient inference when labels have a large range but are ap-
proximately piecewise constant in local neighborhoods. The
pixelwise PatchMatch formulations have been refined with
better propagation schemes [32], multi-scale features [32],
and plane priors [26, 34]. Though this line of work ad-
dresses the shortcomings of the depth labeling approach, it
often fails to reconstruct smooth or glossy surfaces where
photometric consistency is uninformative, mainly due to the
challenge of incorporating global priors, which is addressed
in part by Kuhn et al.’s post-process trainable regulariza-
tion [19]. Also, though hancrafted photometric consistency
functions, such as bilaterally weighted NCC, perform well
in general, learned functions can potentially outperform by
being context-sensitive.

Naturally, the first inroads to fully trainable MVS also fol-
lowed the simplistic depth labeling formulation [15, 16, 36],
which comfortably fits the CNN forte of learning features,
performing inference over “cost volumes” (features or scores
for each position/label), and producing label maps. But de-
spite improvements such as using recurrent networks [37] to
refine estimates, coarse-to-fine reconstruction [39], visibility
maps [35], and attention-based regularization [23], many
of the original drawbacks of the depth labeling formulation
persist.

Thus, we now have two parallel branches of MVS state-
of-the-art: (1) complex hand-engineered formulations with
PatchMatch optimization that outperform for large-scale
scene reconstruction from sparse wide-baseline views; and
(2) deep network depth-labeling formulations that outper-
form for smaller scenes, smooth surfaces, and denser views.
Differentiation-based learning and sampling-based optimiza-
tion are not easily reconciled with refinements or combina-
tions of existing approaches. Duggal et al. [8] propose a
differentiable PatchMatch that optimizes softmax-weighted
samples, instead of argmax, and use it to prune the depth
search space to initialize depth labeling. We use their idea
of one-hot filter banks to perform propagation but use an
expectation based loss that sharpens towards argmax during
training to enable argmax inference. The very recent Patch-
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Figure 2. Architecture overview: We first extract multi-scale features using CNNs with shared weights. We then perform coarse-to-fine
estimation, with correlation of feature maps at corresponding scales used to evaluate photometric costs and perform view selection. At the
coarsest stage, we initialize pixelwise oriented points (depths/normals) and associated hidden states per plane. Then, a series of PatchMatch
iterations updates the points and hidden state maps. The PatchMatch iteration consists of four stages: (1) pixelwise view selection; (2)
candidate propagation; (3) candidate scoring with recurrent cost regularization; and (4) candidate selection. The current solution is then
upsampled as an input to the finer level, and this continues until oriented point estimates at the finest level are fused from all images.

matchNet [30] minimizes a sum of per-iteration losses and
employs a one-time prediction of visibility (soft view selec-
tion). We use reinforcement learning to train view selection
and minimize the loss of the final depth/normal estimates.
Our work is the first, to our knowledge, to propose an end-to-
end trainable formulation that combines the advantages of
pixelwise depth/normal/view estimates and PatchMatch opti-
mization with deep network learned photometric consistency
and refinement.

3. PatchMatch-RL MVS
We propose PatchMatch-RL, an end-to-end learning

framework that uses PatchMatch for Multi-View Stereo
(MVS) reconstruction. Figure 2 shows an overview of our
approach. Given a set of images I and its corresponding
camera poses C = (K, E) with intrinsic K and extrinsic
E = [R, t] matrices, our goal is to recover the depths (and
normals) of the reference image Iref ∈ I using a set of
selected source images Isrc ⊂ I that overlap with Iref .

Rather than solving only for depth, we also estimate sur-
face normals, which enables propagating hypotheses and
comparing spatially distributed features between reference
and source images along the local plane. Surface normal
estimation improves depth estimates for oblique surfaces
and is also useful for consistency checks, surface modeling,
and other downstream processing.

Our estimation proceeds coarse-to-fine. At the coarsest
level, estimates are randomly initialized and then refined
through a series of PatchMatch iterations that consist of

pixelwise view selection, candidate propagation, regularized
cost computation, and candidate update. Resulting estimates
are then upsampled and further refined, this continues until
the finest layer, after which all depth estimates are fused into
a 3D point cloud.

3.1. Initialization
For each level in the coarse-to-fine optimization, we ex-

tract CNN features for the reference and source images using
a Feature Pyramid Network (FPN) [20]. For memory effi-
ciency, the number of output channels varies per scale, with
shallower feature channels in the higher-resolution feature
maps. Fs

p denotes the feature vector for pixel p at image s.
Our goal is to solve for an oriented point ωp, consisting

of a plane-camera distance δp and normal np, for each pixel
p in Iref . Pixel depth dp is related to δp through dp =
−δp/(np ·K−1 ·p). The depth dp is sampled uniformly from
the inverse depth range as: d0p ∼ 1/U( 1

dmax
, 1
dmin

), with
dmin and dmax specifying the depth range. Sampling from
the inverted range prioritizes depths closer to the camera
center, as shown effective by Gallup et al. [10]. The per-pixel
normal np is initialized independently of depth by sampling
from a 3D Gaussian and applying L2 normalization [24].
The normal vector is reversed if it faces the same direction
as the pixel ray.

3.2. Feature Correlation
The feature maps can be differentiably warped [36] ac-

cording to the pixelwise plane homographies from refer-
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Figure 3. Estimated Visibilities. The leftmost image corresponds
to the reference image, and the right two images are the source
images. We color-code the corresponding region to be estimated
as visible in the last PatchMatch iteration. The estimated visibility
matches precisely with the actual visibility. (Best viewed in color.)

ence image r to source image s as Hr→s
ωp = Ks · (Rr→s −

tr→snTp
δp

) · K−1
r . With support window Wα,β

p of size α and
dilation β centered at p, we define the correlation value Gsωp
of the oriented point ωp as the attention-aggregated group-
wise correlation for matching feature vectors in the source
image:

Aq
p = σ(

Fr
p · h√
||Fr

p ||2
)q, q ∈ Wα,β

p

Gsωp =
∑
q

Aq
p · (Fr

q ⊛ Fs
Hr→s
ωp

·q).

We denote group-wise feature vector correlation [33] as ⊛,
scaled dot-product attention for supporting pixel q on center
pixel p by the reference feature map as Aq

p, and the atten-
tional feature projection vector as h, implemented as a 1x1
convolution. The resulting Gsωp represents the similarity of
the features centered at p in the reference image and the
corresponding features in the source image, according to ωp.

In preliminary experiments, our estimation of normals np
was poor and did not improve depth estimation. The problem
was that the smoothness of features prevented a 3x3 patch
from providing much additional information. Making larger
patches was not practical due to memory constraints. This
problem was solved through use of dilation (β = 3), and
we further reduced memory usage by producing shallower
feature channels.

3.3. Pixel-wise View Selection

Based on Schönberger et al. [27], we compute scale,
incident-angle, and triangulation angle difference based geo-
metric priors for each source image s for each ωp. Instead of
hand-crafting the prior function, we concatenate the priors
with the feature correlations Gsωp and use a multi-layered
perceptron (MLP) to predict a pixel-wise visibility estimate,
denoted V̂sp ∈ [0, 1]. Figure 3 shows an example of the
estimated visibilities in the source images.

We then sample N -views based on the L1 normalized
probability distribution over V̂sp for each pixel, to obtain a
sampled set of views, Vp. The visibility probabilities are fur-
ther used to compute a weighted sum of feature correlations
across views.

(a) (b) (c)
Figure 4. Red-Black PatchMatch Propagation Kernels. In each
kernel, the grey square indicates the pixel to be updated. The red
squares indicate the neighboring pixels that provide PatchMatch a
set of candidate oriented points for the gray pixel. We use kernel
(c) for the coarsest level and kernel (b) for the finer levels.

3.4. Candidate Propagation

The oriented point map ωt at the t-th PatchMatch iter-
ation is propagated according to the propagation kernel.
A common kernel is the Red-Black propagation kernel
by Galliani et al. [10], as illustrated in Figure 4. We let
ψt:,p = {ωtq | q ∈ K(p)} ∪ {ωtp

prt} denote the set of can-
didate oriented points obtained by propagation kernel K
at pixel p and by random perturbation of the current can-
didate. The propagation can be applied using a series of
convolutional filters of one-hot encodings, with one values
in positions that correspond to each neighbor, as defined
by K. The visibility-weighted feature correlations for each

candidate are computed as GV
ψk,p

=

∑
v∈Vp V̂vpG

v
ψk,p∑

v∈Vp V̂vp
.

3.5. Candidate Regularized Cost and Update

Existing learning-based cost regularization methods, such
as 3D convolution on spatially aligned cost volume [36] or
k-nearest neighbor based graph convolutions [6], exploit
ordinal relationships between neighboring label maps. How-
ever, there is no consistent relationship between candidates
for ωp or for candidates of neighboring pixels. Instead, we
get insight from loopy Belief-Propagation (LBP), where each
node’s belief is iteratively updated by message-passing from
the neighboring nodes, so that confidently labeled nodes
propagate to less confident neighbors. We represent beliefs
for each candidate as hidden states ζtψk,p , and use a recur-
rent neural network (RNN) to estimate regularized score
Zψk,p and updated hidden state ζt+1

ψk,p
. Figure 5 illustrates

the process.

Similar to LBP, we compute pairwise neighborhood
smoothness [4] of the candidate with respect to the cur-
rent label, {M(ψk,p, ωq)|q ∈ N (p)}, where M(ωp, ωq) =
dist(ωp, q) + dist(ωq, p) is the sum of distances between
each oriented point and the plane parameterized by the other
oriented point. We append the smoothness terms to the
weighted feature correlation GV

ψk,p
as an input to the RNN.

The RNN can then aggregate the confidences (represented
by feature correlations) over similar oriented points.

The per-pixel candidates and corresponding hidden states
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Figure 5. Recurrent Cost Regularization. Given the hidden state
ζtp of each pixel p in the t-th iteration and the visibility-weighted
feature correlations of each propagated candidate GV

ψt:,p
, we use a

Gated Recurrent Unit (GRU) module to estimate the regularized
cost Zψ:,p and updated hidden state ζtψ:,p

for each plane candidate.
Then, the best candidate ψmax,p for the next iteration is hard-
sampled according to the regularized costs, replacing the current
oriented point ωtp at p, and the corresponding hidden states of the
pixel ζtp are updated using the corresponding sampled candidate
ζt
ωt+1
p

.

are updated by:

ωt+1
p = ψtk,p ∼ Zt

ψ:,p

ζt+1
p = ζt

ωt+1
p
.

In inference, the sampling of ωp is argmax; in training, the
sampling hardens from probabilistic to argmax as training
progresses. The updated hidden states are used as an in-
put to the recurrent cost regularization module in the next
PatchMatch iteration.

3.6. Coarse-to-Fine PatchMatch and Fusion
The estimated map of oriented points ωt and the corre-

sponding hidden states ζt are upsampled as an input to the
finer level PatchMatch iteration using nearest neighbor inter-
polation. The ω of the finest level are fused together into a
3D point cloud by following the method used by other MVS
systems [10, 27, 36]. First, consistency is checked for each
reference image with the source views using reprojection
distance, relative depth distance, and normal consistency.
Then, we reproject the mean value of N -view consistent
depths into the world space to obtain consensus points.

4. PatchMatch-RL Training
It is challenging to make PatchMatch MVS end-to-end

trainable. The argmax based hard decisions/sampling re-
quired for PatchMatch update and view selection is non-
differentiable, and the incorporation of normal estimates
with soft-argmax causes depth and normal to depend on
each other. We propose a reinforcement learning approach
to jointly learn the candidate cost and visibility estimation
parameters.

We use VθV (ωp) to denote the pixel-wise visibility esti-
mation function, parameterized by θV , that outputs visibility
score V̂sp for each source image s given images I and cam-
eras C. We use SθS (ψp) to denote a matching score function,

parameterized by θS , that produces plane candidate score
Zψp for each ψp given I, C and selected views Vp. Our
formulation contains two agents: one selects views and the
other selects the candidates.

4.1. Reward Function
We define the reward rt = N (ωt;ω∗, σω) as a probability

of observing the oriented point ωt from distribution given
ground truth oriented point value ω∗ in iteration t. We define
the distribution as a joint independent normal distribution of
depth and normal of pixel p:

N (ωtp;ω
∗
p, σω) = N (ntp;n

∗
p, σn) · N (dtp; d

∗
p, σd). (1)

We let the expected future reward be a γ-discounted sum of
future rewards: Gt =

∑
t′>=t γ

t′−trt. We formulate the
gradient of the reward as a negation of the gradient of cross-
entropy between the step-wise reward N (ωt;ω∗, σω) and an
agent πθ(at, st), according to the REINFORCE algorithm
as:

▽θJ = Eπθ [Q
πθ (s, a)▽θ log πθ(a | s)]

=
∑
t

▽θ lnπ
t
θ(a

t | st)Gt

=
∑
t

∑
t′>=t

▽θγ
t′−t(N (ωt

′
;ω∗, σω) log πθ). (2)

The sampling can be done in two ways: the categorical
distribution, which makes the policy approximate the expec-
tation of the distribution; or argmax, which makes the policy
the greedy solution. As an exploration versus exploitation
strategy, we employ a decaying ϵ-greedy approach where we
sample candidates using (1) expectation by probability of ϵ
or (2) using argmax by probability of 1− ϵ. We also apply a
decaying reward of τ · N (dtp; d

∗
p, σd).

Below, we describe the policy of each agent. We use
SV ,AV , πV ,RV , and SS ,AS , πS ,RS to denote the state, ac-
tion, policy and reward space of the view selection and can-
didate selection agents respectively. For simplicity, we use
st ∈ S, at ∈ A, and rt ∈ R to denote the corresponding
agent’s state, action, and reward in the t-th iteration that
apply to a particular pixel.

4.2. Learning Photometric Cost
For the candidate selecting agent, the state space is the set

of candidate plane parameters ψ: for each oriented point ωp,
and the the action space is the selection of a candidate label
for each pixel in each iteration according to the parameter-
ized photometric cost function SθS (ωp). The probability of
selecting each candidate is defined as a softmax distribution
based on the photometric cost of each plane candidate, and
the stochastic policy πS samples from this distribution:

πS(a
t | st) = ωt ∼ e−SθS (ψt: )∑

q∈K e
−SθS (ψtq)

(3)
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Ref. Image GT. Depth COLMAP Ours
Figure 6. Qualitative comparison against COLMAP on the ETH3D high-resolution benchmark. From the left, reference image,
ground truth depth, depth estimate from COLMAP, normal estimate from COLMAP, depth estimate of our model, and normal estimate of
our model. All of the depth maps share the same color scale based on the ground truth depth ranges. We show that our estimated depths and
normals are more complete than COLMAP.

The parameters can be learned via gradient ascent through
the negative cross-entropy between the probability distribu-
tion of the candidates given ground truth and the probability
distribution of the candidates estimated by photometric cost
function:

▽θSNωt log πS = ▽θS
∑
k∈K

Nψtk
· log( e−SθS (ψtk)∑

j∈K e
−SθS (ψtj)

)

where Nψtk
= N (ψtk;ω

∗, σψ) represents the probability of
observing the candidate ψtk according to the ground truth.

4.3. Learning View Selection
For the view selection agent, the state space contains the

set of source images; the action space is a selection of N
images among the source images for each iteration; and the
policy uses the parameterized view selection function V(ωtp)
to estimate the visibility (∀s ∈ Isrc), V̂s. The stochastic
policy πV is:

πV(a
t | st) = v ∼ V̂v∑

s∈Isrc V̂
s

(4)

and the gradient:

▽θV log πV = ▽θV log(

∑
v∈N V̂v∑
s∈Isrc V̂

s
)

≈ ▽θV (log(
∑
v∈N

V̂v)− log(
∑

m∈(N∪M)

V̂m)).

For robustness of training, we include only the selected N
views and worseM views in the denominator to prevent min-
imizing the probabilities of good but unselected views. This
incentivizes training to assign more visibility to good views
than bad views (that do not view the point corresponding to
the reference pixel).

5. Experiments
We evaluate our work on two large-scale benchmarks:

Tanks and Temples Benchmark [18] and ETH3D High-Res
Multi-View Benchmark [28].

5.1. Training Details
For all experiments, we train using the BlendedMVS

dataset [38], which contains a combination of 113 object,
indoor, and outdoor scenes with large viewpoint variations.
We use the low-res version of the dataset which has a spatial
resolution of 768×576. Throughout training and evaluation,
we use α = 3 and β = 3, 3 layers of hidden states H,
γ = 0, 1 for photometric scorer and view selection scorer
respecively, and feature map sizes corresponding to 1

8 ,
1
4 and

1
2 of the original image size. For training, we use 2, 1, and
1 iterations, and for evaluation we use 8, 2, and 2 iterations
for each scale respectively. We use the PatchMatch Kernel
K shown in Figure 4(b) for training. As an exploitation
versus exploration strategy, we employ a Decaying ϵ-Greedy
approach where we either sample candidates proportional
to their softmax scores with a probability of ϵ or select the
argmax candidate with the probability of 1 - ϵ. The initial
value of ϵ is 0.9 with an exponential decay of 0.999 per each
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Test 2cm: Accuracy / Completeness / F1 Test 5cm: Accuracy / Completeness / F1
Method Resolution Time(s) Indoor Outdoor Combined Indoor Outdoor Combined

ACMH [32] 3200x2130 546.77 91.1 / 64.8 / 73.9 84.0 / 80.0 / 81.8 89.3 / 68.6 / 75.9 97.4 / 78.0 / 83.7 94.1 / 75.0 / 90.4 96.6 / 87.1 / 85.4
Gipuma [10] 2000x1332 272.81 86.3 / 31.4 / 41.9 78.8 / 45.3 / 55.2 84.4 / 34.9 / 45.2 95.8 / 42.1 / 54.9 93.8 / 54.3 / 67.2 95.3 / 45.1 / 58.0
COLMAP [27] 3200x2130 2245.57 92.0 / 59.7 / 70.4 92.0 / 73.0 / 80.8 92.0 / 63.0 / 73.0 96.6 / 73.0 / 82.0 97.1 / 83.9 / 89.7 96.8 / 75.7 / 84.0

PVSNet [35] 1920x1280 - 65.6 / 78.6 / 70.9 68.8 / 84.3 / 75.7 66.4 / 80.1 / 72.1 82.4 / 87.8 / 84.7 84.5 / 92.7 / 88.2 82.9 / 89.0 / 85.6
PatchmatchNet [30] 2688x1792 491.69 68.8 / 74.6 / 71.3 72.3 / 86.0 / 78.5 69.7 / 77.5 / 73.1 84.6 / 85.1 / 84.7 87.0 / 92.0 / 89.3 85.2 / 86.8 / 85.9
Ours 1920x1280 556.50 73.2 / 70.0 / 70.9 78.3 / 78.3 / 76.8 74.5 / 72.1 / 72.4 88.0 / 83.7 / 85.5 92.6 / 89.0 / 90.5 89.2 / 85.0 / 86.8

Train 2cm: Accuracy / Completeness / F1 Train 5cm: Accuracy / Completeness / F1
Method Resolution Time(s) Indoor Outdoor Combined Indoor Outdoor Combined

ACMH [32] 3200x2130 486.35 92.6 / 59.2 / 70.0 84.7 / 64.4 / 71.5 88.9 / 61.6 / 70.7 97.7 / 70.1 / 80.5 95.4 / 75.6 / 83.5 96.6 / 72.7 / 81.9
Gipuma [10] 2000x1332 243.34 89.3 / 24.6 / 35.8 83.2 / 25.3 / 37.1 86.5 / 24.9 / 36.4 96.2 / 34.0 / 47.1 95.5 / 36.7 / 51.7 95.9 / 35.2 / 49.2
COLMAP [27] 3200x2130 2102.71 95.0 / 52.9 / 66.8 88.2 / 57.7 / 68.7 91.9 / 55.1 / 67.7 98.0 / 66.6 / 78.5 96.1 / 73.8 / 82.9 97.1 / 69.9 / 80.5

PatchmatchNet [30] 2688x1792 473.92 63.7 / 67.7 / 64.7 66.1 / 62.8 / 63.7 64.8 / 65.4 / 64.2 78.7 / 80.0 / 78.9 86.8 / 73.2 / 78.5 82.4 / 76.9 / 78.7
Ours 1920x1280 555.58 76.6 / 60.7 / 66.7 75.4 / 64.0 / 69.1 76.1 / 62.2 / 67.8 89.6 / 76.5 / 81.4 88.8 / 81.4 / 85.7 90.5 / 78.8 / 83.3

Table 1. Results on the ETH3D high-resolution MVS benchmark train and test sets. We do not train on any ETH3D data. Bold denotes
the method with the highest F1 score for each setting. Results from several other methods are shown for comparison. We measure the mean
time taken for reconstructing each scene (including the fusion stage) using the author provided code on the same hardware. PVSNet results
are not available on the train set. Our method outperforms other recent learning-based approaches (PVSNet and PatchmatchNet) in most of
the metrics.

Precision / Recall / F1
Method Intermediate Advanced

CIDER [33] 42.8 / 55.2 / 46.8 26.6 / 21.3 / 23.1
COLMAP [27] 43.2 / 44.5 / 42.1 33.7 / 24.0 / 27.2
R-MVSNet [37] 43.7 / 57.6 / 48.4 31.5 / 22.1 / 24.9
CasMVSNet [11] 47.6 / 74.0 / 56.8 29.7 / 35.2 / 31.1
AttMVS [23] 61.9 / 58.9 / 60.1 40.6 / 27.3 / 31.9
PatchmatchNet [30] 43.6 / 69.4 / 53.2 27.3 / 41.7 / 32.3
PVSNet [35] 53.7 / 63.9 / 56.9 29.4 / 41.2 / 33.5
BP-MVSNet [29] 51.3 / 68.8 / 57.6 29.6 / 35.6 / 31.4
Ours 45.9 / 62.3 / 51.8 30.6 / 36.7 / 31.8

Table 2. Results on the Tanks and Temples benchmark. The
best performing model based onF1 score is marked as bold. Similar
to Table 1. Our method performs on par with existing learning
based methods on the advanced sets.

step.
To promote view-selection robustness, for each reference

image, we select 6 total views from the same scene: 3 ran-
dom views and 3 views sampled from the 10 best views
according to BlendedMVS. Among 6 source images, we
sample 1 best visibility-scoring image as visible and 2 worst
visibility-scoring images as invisible. We train the model
with Adam [17] and set the initial learning rate to 0.001 and
the decay to 0.5 per epoch. We implemented our approach
in PyTorch. We use an Nvidia RTX 3090 for training and
evaluation.

5.2. ETH3D High-Res Multi-View Benchmark
We evaluate our method on the ETH3D High-res Multi-

View Benchmark, which contains 17 different indoor or
outdoor scenes with 6048x4032 resolution images for each
scene. For evaluation, we fix the number of the source views
to 10 and sample the 3 best views. We use a fixed image
resolution of 1920× 1280 with camera intrinsics obtained
by COLMAP [27]. The system takes 13.5 seconds and uses
7693MB of peak memory for each reference image. Ta-
ble 1 provides quantitative results. We show that our method

Accuracy / Completeness / F1
Model Train 2CM Train 5cm
w/o normal 62.9 / 58.0 / 54.0 81.1 / 76.7 / 75.1
w/o view sel. 75.8 / 56.7 / 64.1 89.4 / 72.9 / 79.8
w/o rcr. 75.6 / 60.9 / 66.7 89.0 / 77.9 / 82.6
Ours 76.1 / 62.2 / 67.8 90.5 / 78.8 / 83.3

Table 3. Ablation Study on ETH3D High-Res Training Set. We
compare our original system to using 1x1 feature patches that do
not take advantage of normal estimates (“w/o normal”), without
pixelwise view selection, instead using the top 3-ranked source
images for all pixels, and without recurrent cost regularization
(“w/o rcr”). The model with the highest F1 score is marked with
bold for each threshold.

achieves comparable results to the other listed methods on
the standard 2cm benchmark and the best results on the
5cm benchmark. Most learning-based methods fail to pro-
duce reasonable results on ETH3D because there are few
images with wide baselines and large depth ranges. In Fig-
ure 6, we compare the inferred depth and normal maps with
COLMAP [27]. From the results, we can see that our method
can cover weakly textured regions, such as white walls and
pillars, more completely than COLMAP [27], while still
maintaining good accuracy. However, the model may fail to
reconstruct reflective surfaces and large texture-less areas.

5.3. Tanks and Temples Benchmark
With the same trained model, we evaluate on the Tanks

and Temples [18] intermediate and advanced benchmarks
which contain 8 intermediate and 6 advanced large-scale
scenes respectively. Similar to the ETH3D High-res bench-
mark, we fix the number of the source views to 10, sample
the 3 best views, and fix the image resolution to 1920×1080.
Our method takes 12.1 seconds and uses 5801MB of peak
memory for each reference image. Table 2 shows the quanti-
tative results of the benchmark. We achieve similar results to
CasMVSNet [11] and PatchmatchNet [30]. In Figure 7, we
present qualitative results on the reconstructed point clouds.
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Figure 7. Point cloud reconstruction results. For the top row, from left to right, we show Ballroom and Playground from the Tanks and
Temples benchmark [18]. For the bottom row, from left to right, we show the reconstruction results of COLMAP [27], PatchmatchNet [30]
and our method in the Exhibition Hall from the ETH3D benchmark [28]. See the benchmark website for more reconstruction results.

We show that our method can generate complete and accu-
rate reconstructions, which includes repeated textures such
as carpet and thin structures such as poles for the swing.

5.4. Ablation Studies
Table 3 shows how each component contributes to the

performance of our method.
Importance of normals: Our use of normals enables mod-
eling oblique surfaces and provides a locally planar sup-
port region for photometric costs, which has otherwise been
achived through deformable convolution [30] or k-NN [6].
Without normal estimation for more non-frontal planar prop-
agation and support, accuracy drops by 13.2% and com-
pleteness drops by 3.2% for the 2cm threshold on ETH3D
(Table 3 “w/o normal”).
Importance of pixelwise view selection: Without pixel-
wise selection of the source images, the completeness of
the reconstruction at the 2cm threshold drops by 5.5% and
accuracy drops slightly (Table 3 “w/o view sel”). Pixelwise
view selection makes better use of many source views that
are partially overlapping the reference image.
Importance of recurrent cost regularization: We intro-
duce recurrent cost regularization to aggregate confidences
(i.e. feature correlations) across similar points without requir-
ing aligned cost volumes. For comparison, we try scoring
candidates using a multi-layer network based on only the
feature correlations for the centered patch. With this sim-
plification, the overall F1 score drops by 1.1% for the 2cm
threshold (Table 3 “w/o rcr ”).
Importance of argmax sampling: We tried to train using
soft-argmax based candidates where we take the expecta-
tion of the normals and the depths independently. However,

we failed to train an effective model due to the initial ag-
gregated values being clustered to the middle of the depth
ranges, which limits the range of predictions. Existing works
may avoid this problem by using sampling in a more restric-
tive way; e.g., by performing a depth search with reduced
range [8] or by sampling initial points from uniformly sep-
arated bins [30]. Our reinforcement learning approach en-
ables us to perform argmax sampling in the same way as
non-learning based approaches while benefiting from learned
representations.

6. Conclusion
We propose an end-to-end trainable MVS system that

estimates pixelwise depths, normals, and visibilities using
PatchMatch optimization. We use reinforcement learning
and a decaying ϵ-greedy sampling in training to learn effec-
tively despite using view selection and argmax sampling in
inference. Our system performs well compared to the latest
learning-based MVS systems, but further improvements are
possible. For example, we have not yet incorporated some
of the sophisticated geometric checks of ACMM [32] or
post-process refinement of DeepC-MVS [19], and higher
resolution processing would also yield better results. By
incorporating most of the critical ideas from non-learning
based methods into a learning-based framework, our work
provides a promising direction for further improvements in
end-to-end approaches.
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