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Figure 1: We propose a method that estimates 3D human pose and shape from video using uncertainty information and
part-based 3D dynamics. Our method is able to recover the accurate and smooth 3D motion, achieving the state-of-the-art
performance on standard benchmarks.

Abstract

Despite the recent success of 3D human reconstruction
methods, recovering the accurate and smooth 3D human
motion from video is still challenging. Designing a temporal
model in the encoding stage is not sufficient enough to set-
tle the trade-off problem between the per-frame accuracy
and the motion smoothness. To address this problem, we
approach some of the fundamental problems of 3D recon-
struction tasks, simultaneously predicting 3D pose and 3D
motion dynamics. First, we utilize the power of uncertainty
to address the problem of multiple 3D configurations result-
ing in the same 2D projections. Second, we confirmed that
dividing the body into local regions shows outstanding re-
sults for estimating 3D motion dynamics. In this paper, we
propose (i) an encoder that makes two different estimations:
a static feature that presents 2D pose feature as distribution
and a dynamic feature that includes optical flow informa-
tion and (ii) a decoder that divides the body into five dif-

ferent local regions to estimate the 3D motion dynamics of
each region. We demonstrate how our method recovers the
accurate and smooth motion and achieves the state-of-the-
art results for both constrained and in-the-wild videos.

1. Introduction
Reconstructing a 3D human mesh can be used for many

applications, including motion analysis, virtual and aug-
mented reality, gaming, and biometrics. However, estimat-
ing 3D human pose and shape from a single image or video
is a challenging problem because of the limited 3D scan
data and the ambiguity that multiple 3D configurations can
result in the same 2D projection. To address the above diffi-
culties, Loper et al. [27] introduced a parametric 3D human
mesh model, SMPL, that was learned from thousands of 3D
body scans. Recently, many studies have been proposed to
directly regress the model parameters from the input image
by utilizing the power of the DCNN, which have shown im-
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pressive results [3, 12, 28, 32, 11, 36]. However, these single
image-based methods tend to produce temporally inconsis-
tent and unsmooth 3D motion when applied to a video.

Several methods [2, 5, 37, 29, 38, 18] have been pro-
posed to effectively extend single image-based methods to
video cases. They have introduced the concept of temporal
network to SMPL. This network makes a model learn di-
rectly from a video to better capture temporal information.
However, these methods are still not capable of recover-
ing the accurate and smooth 3D human motion. Among the
above studies, contrary to other methods that showed limita-
tions in recovering smooth 3D motion, the model proposed
in [2] succeeded in reducing the temporal inconsistency by
learning 3D motion dynamics but showed a low per-frame
accuracy. To address this problem, we approach some of the
fundamental problems of 3D reconstruction tasks, simulta-
neously learning 3D pose and 3D motion dynamics.

The main reason that the 3D reconstruction task is chal-
lenging derives from the existence of ambiguity in that var-
ious 3D poses can be projected into the same or similar 2D
poses. The estimated 3D meshes can be completely wrong
even though they are closely matched with input images
when projected into 2D space. However, existing studies
have not addressed this problem directly. We found that we
could improve robustness of the model on such ambigu-
ity by utilizing the power of uncertainty in the embedding
step [15]. As 2D poses have an inherent ambiguity, it is diffi-
cult to represent 2D poses through a deterministic mapping,
which previous 3D human reconstruction methods use in
the latent feature space. Unlike previous methods, we pro-
pose employing a view-invariant probabilistic encoder for
a static feature that presents 2D pose features as distribu-
tion to inform the decoder of the uncertainty information in
2D space. As an ideal model reconstructs a view-invariant
3D human mesh, the uncertainty concept plays an impor-
tant role in 3D human reconstruction task. Furthermore, we
introduce a novel method to optimize the decoding process
using uncertainty-aware pose loss, which further helps the
model to reconstruct an accurate 3D pose. Apart from the
static feature taking into account the uncertainty of the 2D
pose, we also estimate the dynamic feature including opti-
cal flow information from the video. This dynamic feature
is effective for estimating 3D motion changes in a short pe-
riod of time. The encoding method we suggested makes two
different estimations; a static feature and a dynamic feature
from the video show a significant effect on the decoder to
recover the accurate and smooth 3D motion.

Additionally, we confirmed that dividing the body into
local regions shows outstanding results for estimating 3D
motion dynamics. Estimating 3D motion dynamics for all
joints together is difficult, as the deformations of the local
body regions are different. The nearby joints have strong
dependency, while the dependency of the distant joints is

weak. We propose to estimate 3D dynamics by dividing the
entire body into five local body regions: torso, left arm, right
arm, left leg, and right leg. Unlike existing methods that ig-
nore spatial relationships between features by using a fully
connected layer (FCN) to estimate 3D pose and 3D motion
dynamics, we model the spatial relationships between lo-
cal regions in the decoding process. This allows the model
to consider the independent characteristics of different local
body regions while making the joints in the same local body
region more dependent. This decoding method also enables
our network to better infer about uncommon global poses
by learning the distribution of local body poses instead of
the distribution of global body poses.

In this paper, we propose a 3D human reconstruction
method that can estimate the accurate and smooth motion
from video. Qualitative and quantitative results show that
our method outperforms previous state-of-the-art methods
for both constrained and in-the-wild videos. The contribu-
tions of the paper can be summarized as follows:

• We propose to estimate two different features from
video: a static feature and a dynamic feature for simul-
taneously predicting 3D pose and motion dynamics.

• We propose employing a view-invariant probabilistic
encoder that presents 2D pose features as distribution
for considering uncertainty in 2D space. Furthermore,
we introduce an uncertainty loss in the decoding pro-
cess.

• We present a decoder that divides the body into five
different local regions to estimate the 3D motion dy-
namics of each region.

2. Related Work
3D pose and shape from a single image. The first concept
of SMPL, a statistical body shape model, was built by Loper
et al. [27]. Since then, many efforts have been made to im-
prove the model-based approach for 3D pose and shape es-
timation, which predicts SMPL parameters from an input
image. Bogo et al. [10] proposed the first end-to-end ap-
proach, SMPLify, which fits the SMPL model to the output
of an off-the-shelf keypoint detector [26]. Lassner et al. [7]
used silhouettes along with keypoints in the fitting proce-
dure. Recently, with rapidly developing power in neural net-
works, several attempts have been made to use DCNN to di-
rectly regress the SMPL parameters from pixels [33, 3, 28,
12, 22, 20, 13, 32]. They used a 2D keypoint reprojection
loss [3, 22, 20], body/part segmentation [28, 12] as cues for
weak supervision. Kanazawa et al. [3] proposed an end-to-
end trainable human mesh recovery system that penalizes
a statistically implausible 3D human mesh through adver-
sarial training. Kolotouros et al. [32] introduced a collab-
oration between regression-based and optimization-based
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methods for a self-improving system. On the other hand, a
few model-free approaches [14, 31, 16, 19] have been pre-
sented to regress mesh vertex coordinates directly. Varol et
al. [14] proposed BodyNet, which estimates the 3D human
shape in 3D volumetric space. Kolotouros et al. [31] pro-
posed a Graph CNN architecture that takes a SMPL tem-
plate mesh as input and estimates the 3D vertex coordinates
using image features from ResNet [23]. Moon and Lee [16]
introduced a lixel-based heatmap to localize mesh vertices
in a fully convolutional manner. Choi et al. [19] proposed
the recovery of a 3D human mesh from a 2D pose using a
Graph CNN. However, these single image-based methods
tend to produce jitter when applied to a video.
3D pose and shape from video. Several methods have been
conducted to exploit temporal information for estimating
3D pose and shape from video [4, 2, 37, 5, 29, 38, 18].
Arnab et al. [4] presented a bundle adjustment method to
improve HMR for temporally consistent fits of the SMPL
model. Kanazawa et al. [2] proposed learning 3D human
dynamics to reduce the 3D prediction’s temporal incon-
sistency. Doersch et al. [5] used 2D keypoint heatmaps
and a sequence of optical flow to train their network. Sun
et al. [37] proposed a skeleton-disentangling based frame-
work that divides 3D human pose and shape estimation task
into multi-level spatial and temporal granularity. They en-
forced the network with an unsupervised adversarial train-
ing strategy, temporal shuffles and order recovery. Kocabas
et al. [29] proposed using a bi-directional gated recurrent
unit (GRU) [25] to extract a temporal feature from video
and feed it to a SMPL parameter regressor. A motion dis-
criminator was introduced to encourage the regressor to
produce plausible 3D human motion. Luo et al. [38] esti-
mated 3D human motion in two stages. They first capture
the coarse overall motion using a variational motion esti-
mator and then refine the pose using the motion refinement
regressor. Choi et al. [18] proposed to remove the resid-
ual connection between the static and temporal features and
forecast the current temporal features from the past and
future frames for temporally consistent motion. However,
these methods are still not capable of recovering the accu-
rate and smooth 3D human motion.

3. Proposed Method
Our method covers two challenging tasks: (i) estimating

an uncertainty-aware temporal feature from video and (ii)
recovering the accurate and smooth 3D motion by dividing
the body into five different local regions to estimate part-
based dynamics. The overall framework of our method is
shown in Figure 2.

3.1. Problem Setup

Given an input video V = {It}Tt=1 of length T , where
It denotes the tth frame, our goal is to recover human mo-

tion sequences M = {Θt}Tt=1 where each Θt represents the
SMPL [27] parameters for the tth frame. The SMPL param-
eters Θ consists of the pose θ ∈ R24×3 and shape β ∈ R10

parameters. While θ models the global body rotation and the
relative rotation of 23 joints in axis-angle format, β models
the body shape as captured by the first 10 coefficients of
a PCA shape space. Given θ and β, SMPL defines a func-
tion M(θ,β) ∈ R6890×3 that outputs a 3D human mesh.
The SMPL 3D joint locations X(Θ) = WM(θ, β) are de-
fined as a linear combination of the mesh vertices via a pre-
trained linear regressor, W . To project the 3D joints X back
to 2D space, we use a weak perspective camera model with
scale and translation parameters [s, t], t ∈ R2. We denote
x ∈ Rj×2 = sΠ(RX(Θ)) + t as the 2D projection of the
3D joints, where R ∈ R3 is the global rotation matrix and
Π represents the orthographic projection.

3.2. Uncertainty-aware Temporal Feature

Our temporal encoder extracts an uncertainty-aware tem-
poral feature that includes uncertainty and dynamics infor-
mation from video. First, we encode image features into a
temporal feature, following Kocabas et al. [29]. Given a se-
quence of frames I1, . . . , IT , ResNet, pre-trained by Kolo-
touros et al. [32], extracts an image feature per frame. Then,
a global average is applied to the ResNet outputs, which be-
come f1, . . . , fT , where ft ∈ R2048. These are sent to a GRU
layer that yields a temporal feature g1, . . . ,gT based on the
previous frames, where gt ∈ R2048. This feature is concate-
nated with a static feature that considers the uncertainty in
2D space and a dynamic feature that includes optical flow
information, which are described as follows.
Uncertainty-aware static feature. An ideal embedding
vector z for 2D pose should remain consistent across cam-
era views. However, human poses in 2D space have an
inherent ambiguity in that various 3D poses can be pro-
jected into the same 2D pose and deterministic mapping in
encoding stage that does not consider the ambiguity hin-
ders the performance in 3D reconstruction task. Inspired
by Sun et al. [21], we propose employing an uncertainty-
aware pose encoder using probabilistic embedding which
encodes a 2D pose feature based on a Gaussian distribu-
tion, p (z | x) = N

(
z;µ,σ2I

)
. We use 2D pose outputs

from HRNet [24]. For a pair of input 2D poses (xi,xj),
p (m | xi,xj) is defined as the probability that their corre-
sponding 3D poses (yi,yj) match. Probabilistic embedding
can be used to this matching probability as p (m | xi,xj) =∫
p (m | zi, zj) p (zi | xi) p (zj | xj) dzi dzj . It can be

approximated using Monte-Carlo sampling with K samples
drawn from each distribution as

p (m | xi,xj) ≈
1

K2

K∑
k1=1

K∑
k2=1

p
(
m | z(k1)

i , z
(k2)
j

)
. (1)

A combination of triplet ratio loss and positive pairwise loss
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Figure 2: The overall framework of the proposed method. Given a temporal sequence of images, the model extracts an
uncertainty-aware temporal feature that includes uncertainty in 2D space and optical flow information. Then, the decoder
simultaneously predicts 3D pose and part-based motion dynamics to recover accurate and smooth motion.

is used for the training process of estimating this uncertainty
value. The triplet ratio loss pushes together/pulls apart 2D
poses corresponding to similar/dissimilar 3D poses. Given
batch size N and input triplet (xi,xi+ ,xi−), triplet ratio
loss using distance kernel Dm is defined as

Lratio =

N∑
i=1

max(0, Dm(zi, zi+)−Dm(zi, zi−) + α).

(2)

A positive pairwise loss is applied to increase the match-
ing probability of similar poses and defined as

Lpositive =

N∑
i=1

− log p (m | zi, zi+) . (3)

The overall loss function for uncertainty-aware embedding
model is the combination of Lratio and Lpositive as following:

Luncertainty = Lratio + Lpositive . (4)

The model outputs the mean µt ∈ R32 and covariance
σt ∈ R32 of the 2D pose. We then combine them into an
uncertainty-aware static feature ut ∈ R64. The estimated σ
value can denote the uncertainty and be applied to our loss
function for recovering human motion sequences.
Dynamic feature. Optical flow has strong cues for motion
dynamics, which can be a key to solving the problem that
the previous methods produce jitter for fast motion, result-
ing in temporally inconsistent motion. We extract the dy-
namic feature including optical flow information between
each successive frame, following [9, 17]. The stack of ho-
mographies can be used to represent the optical flow within

the interval. We estimate the homography from flow corre-
spondences by solving a homogeneous linear equation via
SVD. Then, the output 3×3 homography matrix is normal-
ized by the top-left corner element. For a frame It, the op-
tical flow information is constructed by calculating the ho-
mographies between successive frames within the interval
[It−15, It]. We combine the homographies into a dt ∈ R135

vector. This dynamic feature shows effective results for pre-
dicting our part-based motion dynamics in the decoding
process.

3.3. Learning Part-based 3D Human Dynamics

We propose to simultaneously predict 3D pose and part-
based 3D motion dynamics. The auxiliary loss for learning
to predict 3D motion dynamics helps in estimating tempo-
rally consistent and smooth motion. Furthermore, we pro-
pose dividing the entire body into five local body regions:
torso, left arm, right arm, left leg, and right leg is effec-
tive for estimating 3D dynamics because the deformations
of the local body regions are different. The joint positions
within each group are highly correlated, while the joint po-
sitions between the groups are significantly less related.
However, previous methods ignore the spatial relationships
by using FCN layers to predict 3D pose and dynamics.
Each predicted pose/dynamics and each intermediate fea-
ture is connected to all of the input features indiscrimi-
nately. To address this problem, we use split-and-recombine
model [1] to estimate our part-based motion dynamics. We
divide the body into five groups and the FCN layers are
divided into groups accordingly. Low-Dimensional Global
Conetxt (LDGC) is incorporated in a group connected layer
to account for global information while largely preserving
local feature independence. It coarsely represents informa-
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tion from the less relevant joints, and is brought back to the
local group in a manner that limits disruption to the local
pose modeling while allowing the local group to account for
non-local dependencies. With this split-and-recombine ap-
proach, the gth group features in layer l + 1, f l+1

[
Gl+1
g

]
,

can be expressed as the following:

f l+1
[
Gl+1
g

]
= Θl

g

(
f l
[
Gl
g

]
◦Mf l

[
Gl\Gl

g

])
, (5)

where Θl
g is the fully-connected weight matrix, f l

[
Gl\Gl

g

]
is the global context for the gth group and M is the mapping
function that defines how the global context is represented.
The split-and-recombine based model is used to learn a dy-
namics decoder that predicts the change in SMPL parame-
ters at time t ±∆t. The dynamics predictor is trained such
that the predicted pose in the new timestep θt±∆t = θt±∆θ
minimizes the generator loss at time frame t±∆t. The part-
based dynamics learning enforces the model to better re-
cover smooth motion and infer about uncommon 3D poses.

3.4. Loss Functions

We propose a loss function consisting of the generator
loss, LG , dynamics loss, L∆t, and uncertainty loss, Lunc.
As long as the respective data are available, our network is
trained with the loss function as following:

L = λGLG + λ∆tL∆t + λuncLunc, (6)

where we weight each of loss terms with λ parameters.
Generator loss. Generator loss consists of three L2 losses
between the predicted and groud-truth 2D/3D joint posi-
tions and SMPL parameters. Specifically:

LG = L2D + L3D + LSMPL, (7)

where each term is calculated as:

L2D =

T∑
t=1

∥xt − x̂t∥2, (8)

L3D =

T∑
t=1

∥Xt − X̂t∥2, (9)

LSMPL = ∥β − β̂∥2 +
T∑

t=1

∥θt − θ̂t∥2. (10)

Dynamics loss. The dynamics predictor is trained such that
the predicted pose in the new timestep θt±∆t = θt ± ∆θ
minimizes the generator loss at time frame t ± ∆t. Cam-
era parameters are required to estimate the 2D joints for
calculating the 2D loss. The optimal scale s and transla-
tion t⃗ parameters align the orthographically projected 3D
joints xorth = X[:, : 2] with the visible ground-truth 2D

joints xgt : mins,⃗t ∥(sxorth + t⃗) − xgt∥2. We solve this
problem following [2] and use the optimal camera parame-
ters Π∗ = [s∗,

−→
t∗ ] to compute the 2D joint positions loss at

times t±∆t.
Uncertainty loss. Simply optimizing for similarity of 2D
poses can fool the network to output a completely wrong
3D mesh that is closely matched with input image when
projected into 2D space. The similarity between the features
from the uncertainty-aware encoder of the input image and
the reconstructed result can help our method to be robust to
inherent ambiguity in 2D space. Based on this concept, we
propose an uncertainty loss as follows:

Lunc =

T∑
t=1

|| σ2
t∑
σ2
t

µt −
σ̂2
t∑
σ̂2
t

µ̂t∥2. (11)

4. Experimental Results
4.1. Datasets and Evaluation Metrics

Datasets. We use Human 3.6M [6], MPI-INF-3DHP [8],
and 3DPW [34] for 3D datasets. Human 3.6M consists of
motion capture sequences of actors performing tasks in a
controlled lab environment. MPI-INF-3DHP is a dataset
captured with a multi-view setup mostly in indoor environ-
ments. 3DPW contains 61 sequences of indoor and outdoor
activities. On the other hand, we use InstaVariety [2], Penn
Action [35], and PoseTrack [30] for 2D video datasets. In-
staVariety dataset contains annotated pseudo ground truth
2D keypoints paired with video sequences. There are in to-
tal 28,272 videos with varying length. Penn Action consists
of 15 sports actions, with 1,257 training videos and 1,068
test videos. PoseTrack is a benchmark for multi-person pose
estimation and tracking in videos and contains 1,337 videos.
Evaluation metrics. We report several metrics on 3DPW,
MPI-INF,3DHP, and Human3.6M datasets. For the per-
frame accuracy evaluation, we use Procrustes-aligned mean
per joint position error (PA-MPJPE), mean per joint po-
sition error (MPJPE), and mean per vertex position error
(MPVPE). The position errors are measured in millimeter
between the estimated and ground-truth 3D vertices after
aligning the root joint. For the motion smoothness evalua-
tion, we report the acceleration error. The acceleration error
computes an average of the difference in acceleration be-
tween the estimated and ground-truth 3D joints in (mm/s2).

4.2. Comparisons to the State-of-the-art

We show our model’s power to recover accurate and
smooth 3D human motion from video by comparing the re-
sults with previous state-of-the art frame-based [3, 31, 32,
16, 19] and temporal [2, 5, 37, 29, 18] methods. As shown
in Table 1, our method achieves the state-of-the-art perfor-
mance in terms of per-frame accuracy with significantly

12379



3DPW MPI-INF-3DHP Human3.6M
Models PA-MPJPE ↓ MPJPE ↓ MPVPE↓ Accel↓ PA-MPJPE↓ MPJPE↓ Accel↓ PA-MPJPE↓ MPJPE↓ Accel↓

Kanazawa et al. [3] 76.7 130.0 - 37.4 89.8 124.2 - 56.8 88 -
Kolotouros et al. [31] 70.2 - - - - - - 50.1 - -
Kolotouros et al. [32] 59.2 96.9 116.4 29.8 67.5 105.2 - 41.1 - 18.3

Moon et al. [16] 57.7 93.2 110.1 30.9 - - - 41.1 55.7 13.4

Fr
am

e-
ba

se
d

Choi et al. [19] 58.3 88.9 106.3 22.6 - - - 46.3 64.9 23.9
Kanazawa et al. [2] 72.6 116.5 139.3 15.2 - - - 56.9 - -
Doersch et al. [5] 74.7 - - - - - - - - -

Sun et al. [37] 69.5 - - - - - - 42.4 59.1 -
Kocabas et al. [29] 56.5 95.8 113.4 27.1 63.4 97.7 29.0 41.5 65.9 18.3

Choi et al. [18] 55.8 95.0 111.5 7.0 62.8 97.4 8.0 41.1 62.3 5.3Te
m

po
ra

l

Ours 52.2 92.8 106.1 6.8 59.4 93.5 9.4 38.4 58.4 6.1

Table 1: Evaluation of state-of-the-art methods on 3DPW, MPI-INF-3DHP, and Human3.6M datasets. The best results are
highlighted in bold and “−” shows the results that are not available. Our method achieves the state-of-the-art performance in
terms of per-frame accuracy with significantly low acceleration error.

low acceleration error in an indoor dataset Human3.6M
and challenging in-the-wild datasets 3DPW and MPI-INF-
3DHP. Figure 3 also shows that our method achieves sig-
nificant improvements in acceleration error. These results
validate our hypothesis that exploiting uncertainty informa-
tion and 3D dynamics of local body regions is important
for improving both per-frame accuracy and motion smooth-
ness. We briefly compare the quantitative results of our
approach with those of previous state-of-the-art methods.
Kanazawa et al. [3] proposed an adversarial prior that con-
strains the 3D human pose to lie in the manifold of real
human poses. Kolotouros et al. [32] proposed combining
regression-based and optimization-based methods in a col-
laborative fashion by using SMPLify in the training loop.
[3, 32] improved the per-frame accuracy of the model-based
approach. On the other hand, several studies on model-free
approaches [31, 16, 19] have been proposed to better esti-
mate in-the-wild 3D poses, and they showed improved ac-
curacy. However, the acceleration errors shown in the above
studies are significantly high and these methods yield jittery
when applied to video. The work most related to our method
is [2]. They showed a large performance improvement in
terms of acceleration error, but their aggressive smoothing
resulted in poor accuracy in fast motion or extreme poses.
Kocabus et al. [29] proposed a temporal model and AMASS
motion discriminator to approach the trade-off between per-
frame accuracy and smoothness, and they showed perfor-
mance improvement. However, they still produce many jit-
ters and estimated motions are unsmooth. Recently, Choi
et al. [18] showed remarkable performance improvement
in terms of both per-frame accuracy and smoothness, but
performance improvement is still needed in both aspects.
Our method significantly surpasses the existing methods in
terms of per-frame accuracy and simultaneously shows re-
markable improvement in motion smoothness. The qualita-
tive comparisons in Figure 4, 5 show the superiority of our
method to previous state-of-the-art, VIBE [29]. Our method

Ours MEVA VIBE

time step

ac
ce

le
ra

tio
n 

er
ro

r 
(m

m
/s
2
) 100

80

60

40

20

0

Figure 3: Comparison of the acceleration errors for our
method, MEVA [38], and VIBE [29]. Our method shows
clearly lower acceleration errors than previous methods.

is able to produce accurate 3D meshes for difficult poses and
we can confirm this especially in the arms and legs.

4.3. Ablation Study

In this study, we show how each component of the two
tasks that we propose leads to improvements in per-frame
accuracy and motion smoothness, respectively.
Uncertainty-aware temporal feature. Table 2 shows the
performance of the models with different temporal en-
coders. We use the original VIBE [29] as a baseline fea-
ture extractor(w/o both) and add an uncertainty-aware static
feature and a dynamic feature to the temporal feature from
baseline to identify performance changes accordingly. The
per-frame accuracy remarkably increased with uncertainty-
aware static feature embedding. This result verifies that the
deterministic embedding of the 2D pose hinders the 3D
mesh recovery because there is an uncertainty in the 2D
pose. We deliver 2D pose uncertainty information to the
decoder using view-invariant probabilistic embedding, and
this information is helpful in estimating the accurate 3D
poses. In addition, estimating a dynamic feature in the em-
bedding step shows a considerable effect in terms of motion
smoothness by lowering the acceleration errors of the base-
line. This proves that extracting a dynamic feature includ-
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Figure 4: Qualitative comparison with VIBE [29]. For each sequence, the top row shows the input images, the middle row
shows our results (blue), and the bottom row shows the results of VIBE (gray). Our method can produce accurate 3D poses.
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Figure 5: Qualitative comparison on 3DPW dataset with VIBE [29]. The output meshes from VIBE and our method are
rendered in pink and blue, respectively. Our method (blue) is able to produce accurate 3D meshes for difficult poses.

3DPW
PA-MPJPE↓ MPJPE↓ MPVPE↓ Accel↓

w/o both 56.8 97.4 113.7 9.8
w/o ut 56.3 96.6 112.6 7.8
w/o dt 53.0 93.8 107.2 9.4
Ours 52.2 92.8 106.1 6.8

Table 2: Comparison between different temporal encoders.
The results show the importance of the static features ut and
dynamic features dt.

ing optical flow information is helpful to estimate 3D mo-
tion changes. Our embedding method is effective in terms
of both per-frame accuracy and motion smoothness.
Part-based 3D dynamics prediction. Table 3 shows the
acceleration error significantly reduced with learning part-
based 3D dynamics. This result verifies that dividing the
entire body into five local body regions is effective for esti-
mating 3D motion changes as the deformations of the local
body regions are different. Additionally, it showed a consid-
erable effect in estimating an accurate 3D mesh by lowering
the per-frame accuracy error. Our method better infer about
uncommon global poses by learning the distribution of lo-
cal body poses instead of the distribution of global body
pose, which is also shown in qualitative results. Through the
above comparisons, we confirmed that our decoding method
is effective in terms of both per-frame accuracy and motion
smoothness.

3DPW
PA-MPJPE↓ MPJPE↓ MPVPE↓ Accel↓

w/o dt, dynamics 56.1 96.3 112.8 21.6
w/o dynamics 55.7 95.8 111.4 12.7

Ours 52.2 92.8 106.1 6.8

Table 3: Ablation study on part-based dynamics predictor.

5. Conclusion
In this paper, we present an uncertainty-aware human

mesh recovery method that uses uncertainty information in
a 2D pose to directly address a fundamental problem of 3D
reconstruction tasks. Our method ensures the decoder to see
the uncertain features that can further improve robustness
of the model on inherent ambiguity in 2D space. We also
propose to divide the body into five different local regions
to estimate the 3D motion dynamics of each region. Our
method outperforms previous state-of-the-art methods and
this work can be a step forward in finding effective feature
embedding techniques for 3D human reconstruction.
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