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Abstract

An optimal transportation map finds the most economi-
cal way to transport one probability measure to the other. It
has been applied in a broad range of applications in vision,
deep learning and medical images. By Brenier theory, com-
puting the optimal transport map is equivalent to solving
a Monge-Ampère equation. Due to the highly non-linear
nature, the computation of optimal transportation maps in
large scale is very challenging.

This work proposes a simple but powerful method, the
FFT-OT algorithm, to tackle this difficulty based on three
key ideas. First, solving Monge-Ampère equation is con-
verted to a fixed point problem; Second, the obliqueness
property of optimal transportation maps are reformulated
as Neumann boundary conditions on rectangular domains;
Third, FFT is applied in each iteration to solve a Poisson
equation in order to improve the efficiency.

Experiments on surfaces captured from 3D scanning and
reconstructed from medical imaging are conducted, and
compared with other existing methods. Our experimental
results show that the proposed FFT-OT algorithm is simple,
general and scalable with high efficiency and accuracy.

1. Introduction
Recent years have witnessed the rapid development of

optimal transportation and its broad applications in vision
[32, 31, 41, 38], deep learning [1, 16, 28] and medical imag-
ing [18, 17, 39, 29]. An optimal transportation map (OT
map) finds the most economical way to transport one prob-
ability measure to the other, the total transportation cost is
treated as the Wasserstein distance between the two random
distributions. Therefore, OT maps have been used for mea-
suring the differences among probability distributions, and
for registering images or 3D shapes.
Motivation Due to the highly non-linear nature, improv-
ing the computational efficiency of OT maps becomes one
of the central challenges. Researchers have developed
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many methods to tackle this difficult problem with dif-
ferent emphasises. For examples, the Sinkhorn algorithm
[35, 7, 25, 12] greatly improves the optimization speed of
the Kantorovich potential by adding an entropy regularizer
terms, but sacrificing the accuracy; the convex geometric
variational algorithms [39, 24, 27] find the precise solu-
tion, but with complex dynamic geometric data structure
and adaptive arithmetic precision. The fluid dynamic algo-
rithms [2, 19, 18] find the optimal flow in space-time, there-
fore increases the dimension and reduces the computational
efficiency.Therefore, existing methods can hardly find the
accurate solutions for large scale OT problems efficiently.
In order to handle the challenge, this work proposes a novel
algorithm: FFT-OT, which computes large scale optimal
transportation maps with high efficiency and accuracy using
the fundamental and powerful tool: Fast Fourier Transfor-
mation.
Key Ideas The proposed algorithm is based on three simple
ideas. The goal is to find the OT map between two probabil-
ity measures T : (Ω, fdx)→ (Ω∗, gdy), based on Brenier’s
theorem 3.1, this is reduced to finding the Brenier potential
u : Ω→ R by solving the Monge-Ampere equation (1).
1. Fixed point By improving the formulation in [10, 4], an
operator in the Sobolev space is constructed P : H2(Ω)→
H2(Ω), such that the solution u∗ of the Monge-Ampere
equation is the fixed point of P , P[u∗] = u∗. The fixed
point can be achieved by iterations, u(n+1) ← P[u(n)],
when n → ∞, u(n) converges to u∗, u(n) → u∗. The
convergence of the iteration process and the convexity of
the solution has theoretic guarantees.
2. Obliqueness Boundary Condition The boundary condi-
tion Du(Ω) = Ω∗ is difficult to directly formulated. Our
formulation is based on the obliqueness boundary condition
in Eqn. (5). Suppose the domain Ω is a planar rectangle, the
Brenier potential is rewritten as

u(x, y) = (x2 + y2)/2 + φ,

where −φ is the well-known Kantorovich potential. The
obliqueness condition is equivalent to the Neumann bound-
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ary conditon ∂φ/∂n = 0 of the Kantorovich potential φ.
3. Fast Fourier Transformation During the fixed point it-
erations, the operator P[u(n)] is to solve a Poisson equa-
tion Eqn. (4) and Eqn. (6). Since the domain has a natural
regular grid structure, it is very convenient to use finite dif-
ference method to solve the Poisson equation [36]. More
crucially, since the discrete Laplace matrix has the fixed
structure, the Poisson equation can be solved using the FFT
method to reduces the complexity.
Contributions This work proposes a simple FFT-OT al-
gorithm to solve the OT problem by the classical FFT
method.
Advantages The simple FFT-OT algorithm greatly im-
proves the computational efficiency, accuracy and scalabil-
ity. It can be implemented on GPU or FPGAs to further im-
prove the speed. Furthermore, it can be directly generalized
to higher dimensional situations. So the proposed FFT-OT
algorithm has great potential to handle large scale real time
OT problems.
Disadvantages The proposed FFT-OT algorithm requires
the supports of the probability distributions to be rectangu-
lar. Nevertheless, it is possible to generalize the algorithm
to general convex domains. The proposed FFT-OT algo-
rithm focuses on 2 dimensional cases only, but it can be
generalized to higher dimensional situations.

2. Related Work
There is a vast literature on optimal transportation prob-

lem. For a thorough review, we refer the readers to [43, 44]
for theories and [30] for computational methods. In the fol-
lowing we will briefly review the most related works. The
existing algorithms can be roughly classified into four cate-
gories:
Kantorovich Formulation Monge-Kantorovich theory has
been applied to solve optimal transportation problem via
linear programming technique [20, 21]. Karmarkar pro-
posed a polynomial time algorithm for linear programming
in [22]. Sinkhorn proposed to add an entropy regularizer
term to approximate the solution with high efficiency [35].
Recently, many algorithms based on the Sinkhorn algorithm
are proposed. These methods firstly add an entropic regu-
larizer to the prime Kantorovich formulation, and then solve
either its prime problem [7, 25] or the dual problem [12].
Genevay et al. [12] proposed stochastic optimization for
Kantorovich potential with entropic regularization to handle
large-scale OT problems. In theory, this type of algorithms
can only give approximations.
Brenier Formulation Gu et.al [15] built the theoretical
connection between the Brenier theorem and Alexandrov
theorem in convex geometry. Su et.al. proposed a geometric
variational approach to solve optimal transport maps in [47]
for surface area-preserving mapping, in [40] for cortical sur-
face matching and in [39] for surface registration. Levy

generalized the method for volumetric cases in [24, 23].
The method has been generalized to register surfaces with
more complicated topologies, in [48], multiply-connected
surface registration in [37]. De Goes et al. [9] proposed to
use OT for 2D shape reconstruction and simplification, later
on they generalized to use capacity-constrained Voronoi tes-
sellation to deal with blue noise processing problem [8].
Mérigot [27] proposed a multi-scale approach to acceler-
ate the computation for large scale problems. Seguy et
al. [34] proposed a regularization relaxation of OT problem
and approximated the Alexandrov potential with DNN.The
method are also generalized to the spherical OT maps in
[29, 45] and [6], where the power diagrams are constructed
on the sphere. These methods compute the Brenier potential
using power diagrams, which require sophisticated geomet-
ric data structures and adaptive arithmetic.
Fluid Dynamics Benamou-Brenier reformulated the opti-
mal transportation using fluid dynamics [2] . A flow start-
ing from the source density and ending at the target density
with minimal kinetic energy induces a family of time de-
pendent diffeomorphisms, the final diffeomorphism is the
desired OT map with L2 cost. The theorem leads to a ro-
bust algorithm [19]. Haker, Angenenent and Tannenbaum
proposed a method in [18] to improve a measure-preserving
map by removing the divergence free component. Haber,
Rehman and Tannenbaum further improved the efficiency
of the method in [17] and applied for volumetric medical
imaging. These methods solve the OT problem in time-
space domain, increase the time and storage complexity.
Direct Numerical Methods There are many numerical al-
gorithms for solving Monge-Ampere equation by different
linearization methods. a) Loeper and Rapetti introduced the
linearization of Monge-Ampere based on the derivative of
matrix determinant in [26], which focuses on uniform tar-
get density. Saumier, Agueh and Khouider [33] generalized
the method to non-uniform target densities and combined
with Strain’s spectral method [36] to compute OT maps for
image processing. During the iteration, each step is reduced
to solve a variant coefficient Poisson equation, and special
step-length is carefully chosen to ensure the convergence;
b) Dean and Glowinski [10] linearized the Monge-Ampere
equation using the algebraic identity 2 and compute the OT
map by least square method. Benamou, Frosse and Ober-
man generalized the method to higher dimensions in [4].
c) Georges and Guennebaud [13] introduced a different lin-
earization method and used finite difference method to solve
the OT problem. Their method is restricted on 2D with un-
form target density only, and the Poisson equation formula-
tion is difficult to utilize FFT directly.
Comparison Comparing with methods in Kantorovich for-
mulation, such as Sinkhorn [35], our proposed algorithm
finds the solution with high accuracy, the approximation er-
ror is O(h2), where h is the spacial step length [5]; Com-
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(a). Buddha surface (S,g) (b). Kantorovich potential φ

(c). Conformal map ψ (d). Optimal transport map T

Figure 1: The Buddha example demonstrates the Brenier’s
theorem, computed by the FFT-OT algorithm 2.

paring with methods of computing Brenier potential using
geoemtric optimization, such as [39], our algorithm doesn’t
require complex data structure, therefore greatly simplifies
the design and improves the efficiency; comparing with
the most direct numerical methods, our algorithm use FFT
to solve Poisson equations, therefore is much simpler and
faster.

3. Basic Concepts and Theorems
The fundamental concepts and theorems are briefly re-

viewed, more details can be found in [43].
Monge’s Problem Given two probability distributions
f(x)dx and g(y)dy with supports Ω and Ω∗ respectively. A
C1 map T : Ω→ Ω∗ is measure preserving if detDT (x) =
f(x)/g ◦ T (x), where DT is the Jacobian of the map, and
denoted as T#f = g. Given a cost function c : Ω×Ω∗ → R
representing the cost for transporting a unit mass from point
x to y, the transport cost of the mapping T is defined as
C(T ) :=

∫
Ω
c(x, T (x))f(x)dx. Monge raised the problem

to find the optimal transport map, which is the measure pre-
serving map with the least transportation cost,

min{C(T ) : T : Ω→ Ω∗, T#f = g}.

Brenier’s Theorem The Brenier’s theorem gives an answer
to Monge’s problem, under mild regularity conditions:

Theorem 3.1 (Brenier). If the transport cost is the
quadratic Euclidean distance, c(x, y) = 1

2 |x − y|2, then
there exists a convex function u : Ω → R, unique up to a
constant, such that the gradient map T = Du : Ω → Ω∗

Figure 2: Convergence Rate and Accuracy Test. Top row:
Buddha surface; bottom row: brain cortical surface. Reso-
lution 1k × 1k, ε = 1e − 15. Left: the convergence error
during the iterations; right: the solution L2 error with re-
spect to the resolution.

is the unique optimal transport map. u is called the Brenier
potential, satisfying the Monge-Ampère equation:

detD2u(x) =
f(x)

g ◦Du(x)
, (1)

with the boundary condition: Du(Ω) = Ω∗.

Fig. 1 illustrates the theorem, computed using the FFT-
OT algorithm 2. Frame (a) shows the Buddha surface (S,g)
in R3, with a metric g. Assume after normalization, the to-
tal surface area is 1. Frame (c) shows the conformal map
ψ : S → Ω, where Ω is the unit square. ψ push-forwards
surface area element dAg to the plane. Frame (d) shows
the OT map T : (Ω, ψ#dAg) → (Ω,L), where L is the
Lebesgue’s measure. Frame (b) shows the Kantorovich po-
tential φ = u−(x2+y2)/2, where u is the Brenier potential
and T = Du.
Obliqueness Boundary Condition General OT maps sat-
isfy the obqliueness condition [42].

Lemma 3.2 (Obliqueness). Suppose Ω,Ω∗ ⊂ Rn are
bounded domains, Ω is convex, ∂Ω∗ is C1. The density
functions f and g satsify the balance condition

∫
Ω
f =∫

Ω∗ g, and are bounded, 0 < c0 < f, g < c1 < ∞, the
Brenier potential is u : Ω → R. Suppose x ∈ ∂Ω and
q ∈ ∂Ω∗, Du(x) = y, then ⟨n(x),n(y)⟩ > 0, where n
represents the inner normal.

4. Computational Algorithm
The Monge-Ampère equation (1) is highly non-linear,

therefore difficult to solve directly. Our key idea is to con-
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Figure 3: The sample nodes (red) and the gohst nodes (blue)
are in the cell centers. The obliqueness condition is equiva-
lent to the Neumann boundry condition.

vert the OT problem to a fixed point problem and solve it
using FFT.
Fixed Point In two dimensional case, the Monge-Ampère
equation can be written as uxxuyy − u2xy = f/g ◦ Du.
Therefore

(uxx + uyy)
2 = u2xx + u2yy + 2u2xy + 2

f

g ◦Du
, (2)

this leads to a Poisson equation,

∆u =
√
u2xx + u2yy + 2u2xy + 2f/g ◦Du, (3)

where ∆ = ∂2/∂x2 + ∂2/∂y2. Because the Brenier poten-
tial is convex, its Laplacian is non-negative, hence we take
the positive square root in the above formula. This ensures
the convexity of the Brenier potential during the computa-
tional process [3]. We define the operator T : H2(Ω) →
H2(Ω),

T [u] = ∆−1
{√

u2xx + u2yy + 2u2xy + 2f/g ◦Du
}

(4)

The solution to the Monge-Ampère equation 1 is the fixed
point u∗ of T , T (u∗) = u∗. Therefore, we can search for
the fixed point by iterative method, u(n+1) = T [u(n)], the
convergence is proved in [10, 4].
Obliqueness Condition In the current work, we focus on
rectangular planar domain, namely Ω = Ω∗ = [−1,+1] ×
[−1,+1]. As shown in Fig. 3, the four corner points pk’s
divide the boundary into four segments γk, k = 0, 1, 2, 3.
The normal to γk is nk. Given a boundary point x ∈ γk, its
image is also a boundary point T (x) ∈ ∂Ω∗. By oblique-
ness lemma 3.2, we have ⟨n(x),n(T (x))⟩ > 0, therefore

n(x) = n(T (x)), (5)

therefore T (x) is also on γk, namely both x and T (x) are on
the same γk. Since each corner point belongs to 2 adjacent
segments, therefore its image is itself, T (pk) = pk. Let
u(x, y) = φ(x, y) + (x2 + y2)/2, φ be the Kantorovich

potential. We obtainDu = Dφ+Id and ∆u = ∆φ+2.The
operator T [u] in Eqn. (4) is converted to the operator P[φ]
in Eqn. (6). The obliqueness condition (5) becomes to the
Neumann boundary condition, namely ∂φ/n = 0.

Finite Difference Method As shown in figure 3, the im-
age domain Ω∗ is discretized to a Cartesian M × N grid.
The step lengths are given by hx = 2/M and hy = 2/N .
The coordinates of each grid point are given by (xi, yi) =(
−1 + hx

2 + ihx,−1 + hy

2 + jhy

)
. We add “ghost cells”

to the boundary as shown in figure 3 frame (a) in order to
evaluate high order derivatives for the Neumann boundary
condition. The Brenier potential is represented as a two di-
mensionalM×N matrix (uij), the differentials are approx-
imated by the central difference method,

D2
xxuij =

1

h2
x

(ui+1,j + ui−1,j − 2ui,j)

D2
yyuij =

1

h2
y

(ui,j+1 + ui,j−1 − 2ui,j)

D2
xyuij =

1

4hxhy
(ui+1,j+1 + ui−1,j−1

− ui−1,j+1 − ui+1,j−1)

(7)

The discrete Laplace matrix has a canonical form (see the
supplementary document), the regular structure allows us to
apply FFT method to speed up the computation.
bf FFT to solve Poisson Equation Suppose we are given a
Poisson equation ∆u = ρ with Neumann boundary condi-
tion ∂u/n = 0, the necessary condition for the existence of
a solution can be derived as follows:∫

Ω

ρ =

∫
Ω

∆u =

∫
Ω

∇ · ∇u =

∫
∂Ω

∂u

∂n
ds = 0. (8)

If ρ doesn’t satisfy the condition, we can add an offset c to
ρ, such that the integration of ρ−c is 0. For solving discrete
Poisson equation

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij = ρi,j , (9)

with Neumann boundary condition, we can use the Discrete
Cosine Transformation (DCT) method. Given two dimen-
sional array u(i, j), the two dimensional DCT is given by

ũ(m,n) = c(m,n)
∑
i,j

u(i, j) cos
(2i+ 1)mπ

2M
cos

(2j + 1)nπ

2N
,

and the inverse DCT is

u(i, j) =
∑
m,n

c(m,n)ũ(m,n) cos
(2i+ 1)mπ

2M
cos

(2j + 1)nπ

2N
,

where m, i = 0, 1, . . . ,M − 1 and n, j = 0, 1, . . . , N − 1,

c(m,n) =

{ √
2√

MN
m = 0, n = 0

2√
MN

otherwise

Let ρ̃ = DCT(ρ), the solution to the discrete Poisson equa-
tion (9) is u, ũ = DCT(u), then it can be easily proved that

ũ(m,n) =
ρ̃(m,n)

2[cos mπ
M + cos nπ

N − 2]
. (10)
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P
[
φ(n)

]
:= ∆−1ρ(n) = ∆−1

{√[
φ
(n)
xx + 1

]2
+

[
φ
(n)
yy + 1

]2
+ 2

[
φ
(n)
xy

]2
+ 2f/g ◦

[
Id+Dφ(n)

]
− 2

}
. (6)

The solution is unique upto a constant. By setting ũ(0, 0) to
be zero, we can normalize the solution. DCT and inverse
DCT can be computed using the Fast Fourier Transform
(FFT) method efficiently. The algorithm to solve the dis-
crete Poisson equation with Neumann boundary condition
is summarized in Alg. (1).

Algorithm 1: DCT Poisson Equation Solver
Input: Matrix ρ(i, j) on the rectangular grid,

(i, j) ∈ {0, 1, . . . ,M−1}×{0, 1, . . . , N−1}
Output: Solution to ∆u = ρ, s.t. ∂u/∂n = 0.
Add an offset to ρ such that Eqn. (8) holds;
Use FFT to compute DCT ρ̃ = DCT(ρ);
Compute ũ using Eqn. (10);
Use FFT to compute the inverse DCT u = IDCT(ũ).

Monge-Ampère Equation Solver Solving the Monge-
Ampère equation (1) is reduced to find the fixed point
of the operator P in Eqn. (6), which can be obtained by
iterations φ(n+1) ← P[φ(n)]. At teach iteration step,
evaluating P[φ(n)] is equivalent to solving a Poisson
equation.
At the beginning, the Brenier potential is set to be
u(0) = (x2 + y2)/2, φ(0) zero everywhere, and the OT
map T (0) is the identity map. In each iteration, we copy
φ(n) of each ghost cell from its closest regular cell in order
to ensure the Neumann boundary condition. We compute
φ
(n)
xx , φ(n)

yy , φ(n)
xy , (n)

x and φ
(n)
y using the finite difference

operators (7), then evaluate the operator P[φ(n)] using
Eqn. (6). In order to evaluate g ◦ [Id +∇φ(n)], we convert
the grid to a quad-mesh, the (i, j)-th vertex position is
defined as [Id + Dφ(n)](xi, yj). Then we render the mesh
to cover the domain Ω using the density g as the color. The
rendering can be obtained either by the scan conversion
algorithm [14] on CPU or use GPU directly. Once the right
hand side of Poisson equation (6) is obtained, we can solve
the equation using the DCT-Poisson equation solver (1),
and update φ(n+1) ← P[φ(n)]. We repeat this process
until the L2 distance between φ(n) and φ(n+1) is less than
a prescribed threshold ε. The algorithm is summarized in
Alg. (2). Fig 4 shows the process for the OT map from a
Gaussian distribution to the Lebesgue’s measure L. The
top row shows the Kantorovich potential φ(n), the bottom
row the intermediate mappings Id +Dφ(n).

Algorithm 2: FFT-OT
Input: Source density f(i, j) and target density

g(i, j) defined on Ω = [−1, 1]× [−1, 1],
(i, j) ∈ {0, . . . ,M − 1} × {0, . . . , N − 1};
a convergence threshold ε > 0

. Output: The optimal transport map
Du : (Ω, f)→ (Ω, g)

Initialize φ(0) ← 0;
while true do

Set the ghost cells by copying ϕ(n) from the
closest normal cells;

Compute ϕ(n)x and ϕ(n)y and compute
g ◦ [Id +Dφ(n)] using scan conversion;

Compute ϕ(n)xx , ϕ(n)yy and ϕ(n)xy using Eqn. (7);
Compute the right hand side ρ(n) of Eqn. (6);
Solve discrete Poisson equation
∆ϕ(n+1) = ρ(n) using Alg. (1);

Update φ(n+1) ← P[φ(n)];
if ∥ϕ(n+1) − φ(n)∥ < ε then

return Id +Dϕ(n+1);
end

end

5. Experimental Results

In this section, we report our experimental results. More
algorithmic details and results can be found in the supple-
mentary documents.
Setup All the algorithms are developed using generic C++
compatible with Windows and Linux platforms. We mainly
use libfftw [11] for Fast Fourier Transform and OpenGL,
OpenCV for the user interface. All the experiments are
conducted on a Windows laptop with Intel Core i7-7700HQ
2.80 GHz CPU and 16 GB memory. The surface meshes
are acquired either from 3D scanning or reconstructed from
medical images and represented by the half-edge data struc-
ture. All the meshes are conformally parameterized onto the
unit square using surface Ricci flow algorithm [46] and re-
sampled to the regular grids with different resolutions. The
area distortion induced by the conformal mapping is called
conformal factor.
Accuracy In order to measure the accuracy of our proposed

algorithm, we implemented two metrics. Fig. 1 shows the
computational example of the Budda surface with resolu-
tion 512×512, first the surface is conformally mapped onto
a rectangle (c), then an OT map is calculated (d), the com-
position of the conformal map and the OT map is an area-
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Figure 4: The iterations for the OT map from a Gaussian distribution with σx, σy = 0.25 and µx, µy = 0 to the Lebesgue’s
measure. The top row shows the Kantorovich potentials at different iterations φ(n)’s, the bottom row illustrates the mappings
Id +Dφ(n).

Figure 5: Accuracy Test. Historgrams of the area distortion
factors on each face. Left is the initial histogram of φ(0),
right is the final histogram of φ(n).

preserving map from the Budda surface to the square. For
each face fi on the mesh, we compute its original area νi
in R3 and the final planar area wi, then plot the histogram
of the logarithms of the area distortion factors, logwi/νi,
as shown in Fig. 5. It is obvious that the final histogram
highly concentrates on the origin, this shows the mapping
preserves the face areas with high accuracy.

The second metric measures the solution approximation
error. Suppose the resolution is n× n, the discrete solution
is un, the L2 approximation error is defined as

En :=

[∫
Ω

|detD2un(p)− f/g ◦Dun(p)|2dp
] 1

2

,

The right frame of Fig. 2 shows the error decreases quadrat-
ically with respect to the image resolution n, En ∝ 1/n2,
hence the error can be reduced by increasing n. This numer-
ical result is consistent with the convergence rate estimates
in [5].

Efficiency In order to measure the convergence speed, we
compute the L2 distance between two adjacent intermedi-
ate Kantorovich potentials φ(n) and φ(n−1), and define the
convergence error εn as,

log εn := log

[∫
Ω

|φ(n)(p)− φ(n−1)(p)|2dp
] 1

2

.

The left frame of Fig. 2 shows the logarithm of εn during
the optimization for the Buddha model, it is clear that the
convergence error εn decreases exponentially fast with re-
spect to n. The spacial complexity is equal to that of FFT.
The recursive FFT is O(NlogN), the iterative version is
only O(N), N = n2. Here, we use the CUDA iterative
FFT method.

Furthermore, we compare the proposed method with the
convex geometric optimization method in [39]. Table 1
reports the comparison results for meshes with 512 × 512
resolution, 26144 vertices and 522242 faces; table 2 for
meshes with 1k × 1k resolution. The method in [39] can
not handle the brain cortical surface. For the other models,
the FFT-OT algorithm is tens to hundreds of times faster.
The large the resolution n is, the greater the speed up fac-
tor. This demonstrates that the FFT-OT method greatly im-
proves the computational efficiency.
Scalability The proposed FFT-OT algorithm can handle
large OT problems.

In theory,the Sinkhorn method has intrinsic approxima-
tion error; in practice, it computes n4 unknowns, therefore
can’t handle the 2k × 2k cases in our experiments, such as
the models in table 1 and table 2. The convex geometric
algorithm can handle the OT problem for models with mod-
erate complexity. If the mesh vertices exceeds one million,
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the computation time will be extremely slow. In contrast,
we test our proposed algorithm with different resolutions,
from 512 × 512 upto 2k × 2k, the running times are re-
ported in table 3. The experiments show that computational
process is stable and scalable.
Generality Fig 7 shows an example of surface registration
from the female face 9 to the male face 11 by OT maps.
Both 3D surfaces are conformally mapped to the planar
rectangles, then registered by the OT maps in the plane.
The mappings are visualzied by warping the female face
texture. The left frame shows the OT map using the texture
color as densities, the right frame using the conformal fac-
tors (area distortion factors) as the densities. The method
in [26, 13] assumes the target measure is uniform, therefore
can’t compute the registration. This shows the generality of
the FFT-OT algorithm.
Simplicity The geometric variational algorithm in [40]
requires dynamic geometric data structures to represent
the power diagram, and adaptive/exact arithmetic libraries.
During the optimization, the temporal step-length is care-
fully dynamically chosen to ensure the searching is inside
the admissible space. Once the searching is outside the
admissible space, the step-length is reduced by half recur-
sively. The damping procedure is also used in algorithm
[33] to ensure the convergence. In contrast, the FFT-OT
algorithm neither has temporal step-length parameter, nor
requires parameter fine tuning. Hence the proposed FFT-
OT algorithm is very simple and easy to implement using
OpenCV or libfftw [11]. More technical details, experimen-
tal results and source code are reported in the supplementary
documents.

(a). the cortical surface (b). the Kantorovich potential φ

(c). the conformal map (d). the optimal transport map T

Figure 6: The brain cortical surface example.

Figure 7: Generality Test. Registration of the female face
to the male face. Left, based on texture color; Right, based
on conformal factor.

(a). the David head surface (b). the Kantorovich potential φ

(c). the conformal map (d). the OT map

Figure 8: The David head surface example.

Model Fig Su et al.(s) FFT-OT (s) Speedup
Buddha 1 166.293 4.24240 39.198
Brain 6 - 28.7916 -
Female 9 142.600 2.72536 52.323
Male 11 141.037 2.05898 68.498
Oldman 10 150.903 6.56181 22.997
David 8 172.514 28.338 8.482

Table 1: Efficiency Test with 512× 512 resolution.

6. Conclusion

Optimal transportation plays a fundamental role in com-
puter vision, but the computation is challenging. This work
proposes a novel FFT-OT algorithm in order to improve
the computational efficiency and accuracy. The key ideas
are converting the optimal transportation problem to a fixed
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(a). the female facial surface (b). the Kantorovich potential φ

(c). the conformal map (d). the OT map

Figure 9: The female facial surface example.

(a). the old man head surface (b). the Kantorovich potential φ

(c). the conformal map (d). the OT map

Figure 10: The old man head surface example.

point problem, formulate the obliqueness condition as the
Neumann boundary condition, and iteratively searches the
solution by solving Poisson equations using FFT. The ex-
perimental results demonstrates that the FFT-OT algorithm
is simple, general and scalable with high accuracy and effi-
ciency.

(a). the male facial surface (b). the Kantorovich potential φ

(c). the conformal map (d). the OT map

Figure 11: The male facial surface example.

Model Fig Su et al.(s) FFT-OT (s) Speedup
Buddha 1 1200.189 11.8304 101.450
Brain 6 − 80.9929 −
Female 9 1354.564 8.0702 167.834
Male 11 1273.650 6.0111 211.883
Oldman 10 1108.373 17.8078 62.237
David 8 1391.203 80.7017 17.239

Table 2: Efficiency Testing 1k × 1k resolution.

Model Fig 512 (s) 1024 (s) 2048 (s)
Buddha 1 4.2424 11.8304 97.8272
Brain 6 28.7916 80.9929 705.6193
Female 9 2.72536 8.0702 68.6188
Male 11 2.05898 6.0111 52.5744
Oldman 10 6.56181 17.8078 149.8557
David 8 28.593 80.7017 700.1554

Table 3: Scalability Testing

In future, the FFT-OT algorithm will be generalized to
handle higher dimensional situations and spherical cases for
broader applications in vision and deep learning.
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[24] Lévy, Bruno. A numerical algorithm for l2 semi-discrete
optimal transport in 3d. ESAIM: M2AN, 49(6):1693–1715,
2015. 1, 2

[25] Tianyi Lin, Nhat Ho, and Michael I. Jordan. Greedy
stochastic algorithms for entropy-regularized optimal trans-
port problems. In AISTATS. 2018. 1, 2

[26] Gregoire Loeper and Francesca Rapetti. Numerical solu-
tion of the monge-amepre equation by a newton’s algorithm.
Comptes Rendus Mathematique, 340(4):319–324, 2005. 2, 7
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