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Abstract

Many vision tasks use secondary information at infer-
ence time—a seed—to assist a computer vision model in
solving a problem. For example, an initial bounding box
is needed to initialize visual object tracking. To date, all
such work makes the assumption that the seed is a good
one. However, in practice, from crowdsourcing to noisy au-
tomated seeds, this is often not the case. We hence pro-
pose the problem of seed rejection—determining whether to
reject a seed based on the expected performance degrada-
tion when it is provided in place of a gold-standard seed.
We provide a formal definition to this problem, and focus
on two meaningful subgoals: understanding causes of er-
ror and understanding the model’s response to noisy seeds
conditioned on the primary input. With these goals in mind,
we propose a novel training method and evaluation metrics
for the seed rejection problem. We then use seeded versions
of the viewpoint estimation and fine-grained classification
tasks to evaluate these contributions. In these experiments,
we show our method can reduce the number of seeds that
need to be reviewed for a target performance by over 23%
compared to strong baselines.

1. Introduction
Many tasks in computer vision require not only a pri-

mary input, such as an image or a video, but also additional
information based on the primary input—a seed—to be pro-
vided to the task model. This seed may be used to define the
problem, such as in visual object tracking [28], video ob-
ject segmentation [36], and visual question answering [1],
or to provide additional information for common tasks such
as fine-grained scene classification [27], visual concept pre-
diction [57], or viewpoint estimation [52]. Critically, these
tasks are evaluated using verified gold-standard seeds, ig-
noring the noisy processes by which seeds are generated.

The performance of computer vision models with poor
primary inputs has been explored in the context of nat-
urally difficult [55, 69, 9, 14] and intentionally adversar-
ial [58, 61, 10, 51] primary inputs, leading to a variety of

Distance from Gold-Standard: 30 px
Geodesic Error: 174.8°
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Geodesic Error: 18.5°
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Geodesic Error: 18.5°

Figure 1: An example from keypoint-conditioned viewpoint
estimation [52], with a heatmap of error caused by all po-
tential clicks overlaid. Approaches focused on input-space
accuracy [47, 49, 7, 43, 8, 40, 33] would select the red
keypoint over the yellow keypoint as it closer to the gold-
standard (green) keypoint, even though this results in higher
error.

methods designed to make models more robust [55, 69] or
detect and reject difficult inputs [14]. However, no work
to our knowledge has been performed on the identification
and rejection of bad seeds: seeds that cause a significant
increase in error on the task when used in place of the gold-
standard seed. As reliability issues in crowdsourcing are
well studied [24, 39, 48, 44] and automated systems that
could be used to create seeds are subject to unpredictable
failure modes [42, 61], not having any mechanism for de-
tecting bad seeds is a critical oversight.

To emphasize the need for such a mechanism, we exam-
ine Figure 1, where a human annotator is asked to click a se-
mantically meaningful location on the image (e.g. rear seat)
to resolve the viewpoint estimation model’s perceptual am-
biguities. This example illustrates the complex, and some-
times counterintuitive, interaction between the primary in-
put, seed, and task model: while many seeds that are in-
correct in the input space (e.g. the yellow seed) don’t de-
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Indoor → Restaurant
Outdoor Natural → Restaurant

Outdoor Man-Made → Restaurant

Indoor → Hanger
Outdoor Natural → Hanger

Outdoor Man-Made → Greenhouse

Indoor → Ballroom
Outdoor Natural → Stage

Outdoor Man-Made→Ice Skating Rink

`

Incorrect Answer 
Regardless of Seed

Answer Quality 
Depends on Seed

Correct Answer 
Regardless of Seed

Task: Hierarchical Scene Classification

Task: Keypoint-Conditioned Viewpoint Estimation

Figure 2: On both the KCVE (top row) and HSC (bottom
row) tasks, the task model may or may not condition its
answer solely on the primary input. For KCVE, the gold-
standard seed is shown as a green circle, while the overlaid
heatmap shows error from low (green) to high (red). For
HSC, the gold-standard seed is in bold, correct answers are
shown in green, and incorrect answers are shown in red.

grade the performance, many that are nearly correct in the
input space (e.g. the red seed) perform significantly worse
than the gold-standard. It follows that current methods,
which are designed to optimize accuracy for dataset cu-
ration [49, 7, 43, 8, 40, 33], are inadequate for this task
not only because they require excessive additional seeds
to achieve consensus, but also because they optimize the
wrong objective: they maximize accuracy in the input space
at the potential cost of output accuracy.

In this work, we resolve this critical oversight by di-
rectly studying the problem of seed rejection. Seed rejec-
tion seeks a principled mechanism for discarding candidate
seeds that result in a less accurate output than the corre-
sponding (unknown at inference time) gold-standard seed.
A rejected seed could then be requeried to improve over-
all performance. Conceptually, we separate the problem of
seed rejection into two distinct sub-goals:
Understanding the Cause of Error: The first goal is un-
derstanding the degree to which the seed affects the out-
put of the task model. If the seed has no influence on the
task model’s output (Figure 2, left and center), requesting
another seed would be of little benefit. While the task of
selective prediction [14, 6] has been proposed for handling
bad primary inputs, no work to our knowledge has been per-
formed on the task of rejecting bad seeds independent of the
primary input’s quality.
Understanding the Task Model Response: Next, we must

gain an understanding of the task model’s response, and
how a human’s intuition of a seed’s quality differs from its
effect on the accuracy of the task model’s output. We again
highlight the example shown in Figure 1, where a small Eu-
clidean error in the input space (red keypoint) can cause a
large increase in output error, while a much larger Euclidean
error (yellow keypoint) may have little effect.

To address these challenges, we propose Dual-loss Ad-
ditional Error Regression (DAER), a novel training method
developed for the seed rejection problem. DAER con-
siders the two challenges discussed above separately dur-
ing training, and combines them during inference to pre-
dict the effect of a candidate seed on the downstream
task. We evaluate the performance of DAER on two tasks:
keypoint-conditioned viewpoint estimation [52]—a human-
in-the-loop extension of the canonical viewpoint estimation
task [54, 50, 68, 35, 32]—and hierarchical scene classifi-
cation [27]—a method that improves performance on fine-
grained classification [56, 67, 31, 63] by integrating a coarse
scene classification.

To evaluate DAER, we introduce a task-agnostic bench-
mark evaluation method for seed rejection, centered around
new metrics designed specifically to assess the performance
of a seed rejection method: Additional Error (AE), Mean
Additional Error (MAE), and Area under the Mean Addi-
tional Error curve (AMAE). Unlike existing metrics, such
as selective risk [15], these metrics focus on the potential
benefit of a new seed, instead of an oracle label of the target
value that may be prohibitively difficult to obtain at scale.

The contributions of this paper are as follows:
1. A formalization and benchmark metrics for the seed re-

jection problem, in which a model is tasked with de-
termining if a candidate seed will produce significantly
higher error than the corresponding (unknown at infer-
ence time) gold-standard seed.

2. Dual-loss Additional Error Regression (DAER), a
broadly applicable training and inference method for the
task of seed rejection.

3. An evaluation of DAER on the tasks of keypoint-
conditioned viewpoint estimation [52] (KCVE) and hi-
erarchical scene classification [27] (HSC), which shows
that DAER can reduce the the number of seeds that need
to be reviewed for a given target performance by over
23% compared to the best-performing baseline.

2. Related Work

2.1. Seeded Inference

Seeded inference describes a number of problems in
which a task model accepts a primary input and additional
information based on that primary input—a seed—and esti-
mates a target value. Though the list of problems that can be
classified as seeded inference is long [47, 4, 49, 16, 41, 57,
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52, 27, 22, 36, 28, 1, 19], this is the first work to explicitly
consider them as a class of problems.

While some work acknowledges that performance can be
improved by choosing which seed to request [2, 17], current
work generally does not consider the seed itself to be sub-
ject to error. In cases where the seed is categorical, such as
hierarchical scene classification [27, 57], seeds other than
the gold-standard are not considered. In contrast, many
works in which the input space is effectively continuous,
such as keypoint clicks in keypoint-conditioned viewpoint
estimation [52] and bounding boxes in visual object track-
ing [28, 60], acknowledge that seeds can be noisy and either
seek to improve robustness [45], or simply evaluate the ro-
bustness of existing models to a range of expected noise
defined a-priori [60, 52]. Critically, in addition to ignoring
the effect of seeds that are not within this predefined range,
these methods do not consider which specific seeds result in
an increase in error.

2.2. Selective Prediction

A problem closely related to seed rejection is the prob-
lem of selective prediction [6, 14]. In selective prediction,
the goal is to split primary inputs into a set that is classified
by a task model and a set that is classified by expert human
annotators such that annotation cost is minimized subject to
an error constraint, or error is minimized subject to a cost
constraint. Selective prediction has been applied to many
regression and classification strategies over time, from near-
est neighbors in the 1970’s [20], to support vector machines
in the early 2000s [12], to deep artificial neural networks
today [64, 14]. Gurari et al. [18] extend the problem of
selective prediction by considering the case where multiple
models (including human annotators) are available, and pre-
dicting a best performer based on a regressed intersection-
over-union.

While both selective prediction and seed rejection pre-
dict performance of a task model on a given input, selec-
tive prediction only considers rejection of a single input,
which would be seen in tasks such as as image classifica-
tion [13, 38, 15] or tabular regression [53, 14]. In these
tasks, the only option if the primary input is rejected is to
receive a target label from a human expert. This results in
an unnecessary increase in annotation cost due to the target
label being inherently more difficult to obtain than a seed.
For example, it is substantially easier to perform a keypoint
click than a full viewpoint annotation [52], or to initialize
an object tracker with a first-frame bounding box than draw
a bounding box on every video frame [28].

3. Seed Rejection
Here, we first define seed rejection and its associated

metrics in a problem-independent manner, where task and
rejection models may be parameterized by learned or hard-

Reject     ?
(                   ) Start

Receive Sample
Primary Input: 
Candidate Seed: 

Estimate    using 
Task Model

EndNo

Yes

Figure 3: A flowchart of seed rejection on a single sample
(x, sc) ∈ D. The rejection model, g(x, sc) ∈ {0, 1} seeks
to reject samples for which using the candidate seed results
in worse performance than using the (unknown at inference)
gold-standard seed.

coded methods. Next, we present a generic formulation of
our proposed solution, which we call Dual-loss Additional
Error Regression (DAER). In Section 4, we instantiate this
methodology in two concrete problems.

3.1. Problem Statement

Seed rejection, shown in Figure 3, is based around a task
model, f(x, s), which accepts a primary input, x, and extra
information based on that primary input—a seed, s—that is
either a candidate, sc, or gold-standard, sgs, (s ∈ {sc, sgs}).
Given these inputs, the task model provides an estimate of a
target value, y, with the goal of minimizing a task-specific
performance measure, ℓ.

We then consider how using a candidate seed in place
of the gold-standard seed affects the inference-time output
of a certain task model for a given primary input. While
the gold-standard seed is unknown at inference time, during
training and evaluation it acts as a verified “true” seed to
compare the performance of a candidate seed to. We mea-
sure this change in performance using a new metric we call
additional error (AE), which is given as:

AE(x, sc, sgs, y|f, ℓ) =
max(ℓ(f(x, sc), y)− ℓ(f(x, sgs), y), 0) . (1)

Critically, we note the max operator, which enforces the
constraint that a candidate seed cannot outperform the cor-
responding gold-standard seed. This is important in cases
such as those shown in Figure 5-(B) and (C), where there
exist seeds that perform better than the gold-standard, but
we can not expect a method tasked with returning the gold-
standard seed to provide it.

We seek a rejection model, g(x, sc) ∈ {0, 1}, such
that candidate seeds with low additional error are accepted
(g(x, sc) = 1), and candidate seeds with high additional
error are rejected (g(x, sc) = 0). While an ideal rejection
model would be able to divide candidate seeds into “cor-
rect” and “incorrect” bins, in practice the goal is to opti-
mize a tradeoff between the proportion of candidate seeds
that are accepted (referred to as coverage) and an aggregate
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Figure 4: DAER separates the regression of additional error into two components: predicting whether the candidate seed is
correct through a correctness loss, and predicting the additional error through a regression loss, which is only backpropagated
if the candidate seed is incorrect. For illustration, we include an example from the hierarchical scene classification task.

measure of the task model’s performance over the accepted
set (Section 3.2). This is for two reasons: first, such tech-
niques are often subject to budgetary constraints, meaning
the rejection model may need to accept candidate seeds that
cause more error than the gold-standard seed but less than
other candidate seeds (particularly in the case of continu-
ous performance measures [52, 36, 28]). Next, the rejection
model may be uncertain of the quality of the seed, and needs
to balance its confidence with the cost of rejecting a seed.
This suggests that seed rejection models should effectively
rank primary input-seed pairs in order of desirability.

For example, in the case where keypoint-conditioned
viewpoint estimation is used at scale to generate datasets via
scene reconstruction [49], many workers would be asked
to click specific keypoints on selected frames. A certain
number of these keypoint clicks, targeting a budget or er-
ror tolerance through a method such as selective guaranteed
risk [13], are escalated to a more experienced worker who
is assumed able to provide the correct seed.

3.2. Aggregate Metrics

With the goal of a rejection model defined, we note
that aggregate metrics are required for parameter tuning
and comparing the performance of rejection models on a
test set, D. We hence propose the Mean Additional Error
(MAE), which corresponds to the mean of all additional er-
rors across an accepted set of samples:

MAE(f, g|D, ℓ) = (2)
1

|D|
∑

(x,sc,sgs,y)∈D g(x, sc)AE(x, sc, sgs, y|f, ℓ)
1

|D|
∑

(x,sc)∈D g(x, sc)
.

Since a target coverage or MAE is chosen based on an
application constraint (e.g., budget) we further seek a met-
ric that can compare rejection models across all coverages.
For this, we introduce the Area under the Mean Additional
Error curve (AMAE) metric. This metric is found in two
steps: first, we calculate the mean additional error at all
coverages to produce a curve like the one shown in Figure 6.

Next, we calculate the area under this curve. For a test set
where the samples are ordered by the coverage where they
are first accepted, this can be calculated empirically using
the equation:

AMAE =
1

|D|

|D|∑
i=1

∑i
j=1 AE(xj , sjc, s

j
gs, y

j |f, ℓ)
i

. (3)

The AMAE can then be used to directly compare rejection
models across all target coverages. For all proposed metrics
(AE, MAE, AMAE), a lower value corresponds to a better
performance.

3.3. DAER

We approach the task of seed rejection by using a re-
gressed estimate of the additional error (Equation 1) as a
scoring function to which a threshold can be applied. This
regression is learned through a novel method we call Dual-
loss Additional Error Regression (DAER). Core to DAER
is the separation of the additional error regression into two
components corresponding to the challenges described in
the introduction. The correctness loss, which addresses
the subgoal understanding the cause of error, is a classi-
fier which estimates the likelihood that seed is correct. The
regression loss, which addresses the subgoal understanding
task model response, estimates the additional error given
that the seed is incorrect. That is, the regression loss is
only used for training when the given seed is incorrect. This
overall procedure is shown in Figure 4.

Mathematically, the correctness and regression outputs
can be used to calculate the expected additional error:

E(AE(xi, sic, s
i
gs, y

i|f, ℓ)) = (4)

p(seed correct)E(AE |seed correct) +
p(¬seed correct)E(AE |¬seed correct) .

Since the additional error for a correct seed is always zero,
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this simplifies to:

E(AE(xi, sic, s
i
gs, y

i|f, ℓ)) = (5)

p(¬seed correct)E(AE |¬seed correct) .

We use this formula to predict the additional error at in-
ference time, but not during training. Instead, we train
p(¬seed correct) and E(AE |¬seed correct) with separate
losses, a method that is the key component of DAER. While
DAER’s training method is mathematically equivalent to
regressing the additional error directly, we show in Sec-
tion 4.3 that separating the two components significantly
improves performance.

4. Experiments
Our seed rejection method is applicable to a wide va-

riety of problems, as it is fully specified by a four-tuple
containing a (fixed) task model, a rejection model archi-
tecture, a performance measure, and a definition of a cor-
rect seed. In this section, we demonstrate this flexibility
by showing state-of-the-art performance on two disparate
tasks: keypoint-conditioned viewpoint estimation and hier-
archical scene classification. Extra details on training and
evaluation for both tasks are available in our supplementary
material and code repository1.

4.1. Keypoint-Conditioned Viewpoint Estimation

Keypoint-conditioned viewpoint estimation [52] is a
human-in-the-loop extension of the canonical computer-
vision task of viewpoint estimation [54, 50, 68, 35, 32]. In
this task, a human annotator is given an image of a vehi-
cle, and asked to click a keypoint such as “front right tire.”
This human-produced information is then combined with
features from a convolutional neural network to estimate the
camera viewpoint more accurately than would be possible
without the keypoint [50, 54].

In this work, we use the Click-Here CNN architec-
ture [52] as our task model and, with modified output lay-
ers, our rejection model. For evaluation, our performance
measure is the geodesic on the unit sphere, following con-
vention [52, 50, 54]. However, it is impractical to use
this measure during training due to the computational dif-
ficulty of calculating the matrix logarithm. Instead, our re-
jection model predicts rotational displacement in terms of
Larochelle et al.’s distance [29],

d = ||I −A2A
T
1 ||F , (6)

where A1 and A2 are the rotation matrices produced by the
ground-truth and regressed Euler angles.

While it is intuitive to define a correct seed as one that ex-
actly matches the gold-standard seed, the Click-Here CNN

1https://github.com/lemmersj/ground-truth-or-daer

architecture uses a 46x46 one-hot grid as a seed, which
makes it unlikely that a randomly selected point will match
the gold-standard keypoint. Therefore, defining a correct
seed in this way would result in a rejection model whose
objective effectively reduces to regressing the additional er-
ror directly. Instead, we define a correct seed as a seed for
which the additional error is zero:

p(seed correct) =

{
0 AE = 0

1 AE ̸= 0
. (7)

In addition to more effectively balancing correct and incor-
rect seeds, defining a correct seed in this way encourages
the rejection model to take a shortcut by learning the inter-
action between the task model and primary input prior to
considering the seed. For example, the left and center cases
in Figure 2 can be accepted without considering the location
of the seed.
Training During training, candidate seeds are generated by
randomly sampling a pixel within the input image crop.
For the correctness loss, we use binary cross-entropy, while
we follow the common convention of using binned cross-
entropy for the regression loss [54, 50].
Evaluation We maintain the human-in-the-loop motivation
of the original work by evaluating with crowdsourced key-
points for our seeds. We collected a total of 6,042 keypoints
on the PASCAL3D+ validation set [62] from US-based an-
notators via Amazon Mechanical Turk. In order to produce
a representative seed distribution for validation, we divide
the PASCAL3D+ validation set and corresponding crowd-
sourced seeds into five folds such that no vehicle crop ap-
pears in more than one fold, and report the mean across
folds.
Baselines Our baselines for seed rejection on the keypoint-
conditioned viewpoint estimation task are:
• Softmax Response (S.R.): The largest value of the soft-

max output. This was shown by Geifman & El-
Yaniv [13] to perform best on selective prediction, the
task most similar to seed rejection.

• Known Distance: Oracle knowledge of the candidate
seed’s Euclidian distance from the gold-standard seed.
This has a relation to crowdsourcing approaches,
which seek to minimize error in the input space.

• Task Network Entropy: The distributional entropy of the
output of the task model.

• Task Network Percentile: 10,000 samples are taken
from the task model’s output distribution, and the
80th percentile difference between all samples and the
mean is used as our rejection criteria. Results for other
percentiles are given in supplementary material.

Results We show in Table 1 that DAER outperforms
baselines on the keypoint-conditioned viewpoint estimation
task. We highlight specific examples in Figures 5 and 7. In
5-(A), we see an extreme case where the gold-standard is
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Method AMAE
Random 1.54
Softmax Response 0.9306
Known Distance 0.3964
Task Network Entropy 0.3534
Task Network Percentile 0.3092
DAER 0.2864

Table 1: Mean AMAE for baselines and DAER across all
folds on the KCVE task (lower is better).

near the decision boundary and there is a high additional er-
ror even though the candidate seed is near the gold-standard
seed. This causes the known distance baseline to fail by ac-
cepting the candidate seed early, while DAER and baselines
based on the task model’s output recognize a high proba-
bilty of error and accept this candidate seed late. In 5-(B),
we highlight a case where DAER successfully recognizes
that while the geodesic error for the candidate seed is high,
the ground-truth seed will not provide an improved estimate
of the camera viewpoint. 5-(C) represents a similar case in
which the gold-standard seed causes error in the output, but
in this case the candidate seed produces a better output, de-
spite a mismatch between the keypoint label and location.
In 5-(D), we see a failure case, where DAER is unable to
accurately estimate the task model’s decison boundary, re-
sulting in early acceptance of a poor seed.

4.2. Hierarchical Scene Classification

Hierarchical scene classification [21, 27, 57] is an exten-
sion of fine-grained classification [56, 67, 31, 63] in which
information about the coarse scene categorization—such as
“indoor”—is given to a classifier alongside the image to
help determine the fine-grained scene classification—such
as “ballroom”—of an image. In this work, we train and
evaluate on the SUN397 dataset [63], a dataset of over
130,000 images across 397 classes, and use the Plugin Net-
work architecture developed by Koperski et al. [27] as our
task model. For this problem, we define the correct seed
as the seed that matches the gold-standard coarse classifica-
tion. The performance measure is given as:

ℓ(f(x, s), y) =

{
0 f(x, sc) = y

100 f(x, sc) ̸= y
. (8)

With this performance measure, the MAE corresponds to
the percent difference in accuracy caused by using candi-
date seeds in place of the gold-standard seeds at a given
coverage.
Training The rejection model, based on a pretrained
ResNet-18 architecture, is trained using a randomly selected
coarse category as the seed, and validation is performed us-
ing all potential seeds for a primary input. The instance

KP Class: Motorcycle Head 

KP Class: Upper Right Windshield

(A) Gold-Standard Near Decision Boundary (B) Poor Gold-Standard Performance

(C) Candidate Seed Improves Performance (D) DAER Failure Case

Accept First Accept LastAccept First Accept Last

Accept First Accept LastAccept First Accept Last

Gold-Standard Seed

Candidate Seed

Ideal Softmax Response Known Distance

Task Network Entropy Task Network Percentile DAER

KP Class: Upper Left Rear Window

KP Class: Motorcycle Front Seat

Figure 5: Select example cases from KCVE. Ideal accept
location—the coverage at where sorting by additional error
would accept a seed—is given by the white star. Overlaid
heatmaps are from green (low error) to red (high error)

of the rejection model with the lowest validation AMAE is
used for testing. Full training details are available in the
supplementary material.
Evaluation For the hierarchical scene classification task,
the seed is produced via a classification model trained to
predict one of the 7 coarse category combinations (details
in supplementary). We train five rejection models and five
seeding models. This allows us to calculate the standard er-
ror across 5 runs for the baseline methods, and across 25
runs for the learned rejection models.
Baselines As our baselines, we use the task network entropy
and softmax response scores described in Section 4.1. Since
the seed is provided by a DNN classifier, we apply these
baselines to both the output of the task model, which we
prefix with the term “fine”, and the output of the seeding
model, which we prefix with the term “coarse”.
Results We see in Table 2 that DAER significantly out-
performs baselines on the seed rejection task for hierarchi-
cal scene classification under the aggregate AMAE met-
ric. Further, we see in Figure 6, that DAER outperforms
all baselines on the MAE metric at every coverage greater
than 0.197, which corresponds to all cases where fewer than
80.3% of seeds are rejected. At this crossover point, the
MAE is approximately 0.45, meaning in about 1 out of ev-
ery 222 samples an incorrect answer will be caused by an
incorrect seed.

We also consider the goal of minimizing the number of
rejected seeds for a target MAE under the assumption of
oracle thresholding. We consider the cases where it is ac-
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Method AMAE
Random 6.17± 1.1e−1

Fine Softmax Response 3.35± 4.1e−2

Fine Entropy 3.29± 3.8e−2

Coarse Softmax Response 1.75± 4.6e−2

Coarse Entropy 1.75± 4.8e−2

DAER 1.62± 3.4e−3

Table 2: AMAE for baselines and DAER on the HSC task
(lower is better). Standard error is calculated across five
seeding models, and, for DAER, five rejection models.

ceptable that 1 out of every 100, 1 out of every 40, and 1
out of every 20 inferences are incorrect due to an incorrect
seed, corresponding to acceptable MAEs of 1, 2.5, and 5
respectively. The mean percentage of accepted seeds, as
well as the corresponding percent reduction in number of
rejected seeds for these cases is shown in Table 3. Notably,
for a target MAE of 5, DAER reduces the number of re-
jected queries by 23.8% over the next strongest baseline.

4.3. Importance of Subgoals

When defining seed rejection, we proposed two sub-
goals: understanding the cause of error and understand-
ing the task model response, which correspond to correct-
ness and regression losses, respectively, in DAER. While
we have shown that DAER outperforms the baselines, we
have not yet examined the contributions of each subgoal.
To do this, we perform three ablations:
1. Correctness: It may be adequate to guess whether or not

the seed is a cause of error. To test this, we use the
correctness loss alone as the rejection criteria.

2. Regression: The way DAER combines its outputs during

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Coverage

0
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2
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M
AE

Fine Entropy
Coarse Entropy
Fine SR
Coarse SR
DAER

Figure 6: The mean additional error compared to the pro-
portion of seeds accepted (coverage) for the hierarchical
scene classification task (lower is better). The dark lines
represent the mean of all runs. The shaded area represents
one standard error.

Method Target MAE
1 2.5 5

Fine Softmax Response 85.0% 67.0% 24.2%
Fine Entropy 84.4% 64.3% 22.7%
Coarse Softmax Response 51.8% 25.7% 6.7%
Coarse Entropy 51.7% 25.6% 6.7%
DAER 43.6% 24.2% 5.1%
Relative Reduction2 15.7% 5.5% 23.8%

Table 3: The percentage of seeds which must be rejected for
various target MAEs on the hierarchical scene classification
task (lower is better), as well as the percent reduction from
using DAER over the next-best baseline.

evaluation is mathematically equivalent to regressing
additional error directly. Therefore, we evaluate the
value of splitting our loss by training a model to per-
form regression without the correctness loss. By doing
this, we focus solely on understanding the task model’s
response to the given primary input and seed.

3. No Seed: While we, in some cases, encourage simpli-
fying the goal of understanding the task model’s re-
sponse by learning which primary inputs are difficult,
we would like to ensure that the model does not rely
solely on this shortcut. To test if this is the case, we
regress the additional error without access to the seed.

We see the results of these ablations in Table 4, which
reveals two interesting phenomena that provide insight into
the functionality of DAER: first, in both tasks the correct-
ness loss outperforms the regression loss. Second, even
without the seed, understanding the task model’s response
to the primary input is competitive with some baselines.

The fact that the correctness loss outperforms the re-
gression loss suggests that classifying seeds as correct and
incorrect—understanding the cause of error—is the eas-
ier task, and that this rough categorization combined with
its implicit confidence is a moderately effective rejection
method. However, the fact that it is improved by a condi-
tioned version of regressing the additional error shows us
both that eliminating cases where the seed is correct results
in an easier regression problem, and that a rejection model
trained to solve this regression problem can learn to esti-
mate the task model’s response.

Further, the fact that performance of a rejection model
trained without access to the seed is comparable to base-
lines on both tasks suggests that it is possible, but not opti-
mal, to perform seed rejection based on the sensitivity of a
primary input and task model to the seed. We see why this
might be the case in Figure 7, where the most accurate seed
rejection can be performed by regressing the additional er-
ror, but rejecting an unknown keypoint on the rightmost im-

2Calculated: Coarse Entropy−DAER
Coarse Entropy
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KCVE HSC
Correctness 0.2937 1.79 ± 2.3e−2

Regression 1.1633 2.05 ± 1.1e−2

No Seed 0.8002 2.28 ± 2.1e−2

DAER 0.2864 1.62 ± 3.4e−3

Table 4: AMAE for DAER and its individual subgoals
(lower is better).

age is much more likely to reduce the mean additional error
than rejecting an unknown keypoint on the other example
images.

5. Extensions and Limitations
We have defined the task of seed rejection and associ-

ated metrics, AE, MAE, and AMAE. Using these defini-
tions, we have shown that DAER outperforms baselines due
to its novel approach to regressing additional error. In this
section, we discuss extensions, limitations, and the implica-
tions of a real-world deployment of DAER.
Extensions to Other Common Tasks The frameworks of
seed rejection and DAER are applicable to a number of
tasks which use a seed. In some cases, the extension is
straightforward: tasks such as referring expression seg-
mentation [66, 34, 25, 23] and visual question answering
(VQA) [1, 45, 59] are often solved as classification prob-
lems, where the primary input is an image and the seed is
human-generated text. For these tasks, correct and incorrect
seeds can be classified in a manner similar to curated VQA
datasets [37, 19] while additional error can be regressed di-
rectly. The additional error derived metrics can likewise be
used in a straightforward way.

In tasks where the seeds are non-homogeneous—such
as using differing hierarchy levels for hierarchical scene
classification or choosing between keypoint or dimen-
sion line [30] annotations for human-in-the-loop view-
point estimation—the formulation holds, but the definition
of seed as containing multiple, inconsistently used, input
modes leads to a challenging set of architectural challenges.

For tasks such as single-target visual object tracking [3,
28, 11] and video object segmentation [36, 26, 5], there is
a meaningful challenge in defining the gold-standard seed:
while relevant datasets provide a gold-standard seed, there
is no guarantee that it will be the best performer nor that
the seeding method will tend to provide this gold-standard
seed. Further exploration of these interesting questions is
beyond the scope of this paper.
Implications of Deployment The goal of seed rejection is
to reduce the potential impact of incorrect seeds at inference
time. In doing so, it reduces the number of seeds required
for a target accuracy, thereby lowering the cost of deploy-
ment and making such artificial intelligence solutions more
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Figure 7: Geodesic error from the task model (top) com-
pared to the additional error prediction from a DAER rejec-
tion model (bottom). Error is overlaid from high (red) to
low error (green). Predictions are normalized per-image.

broadly accessible. Since the ultimate goal of seed rejection
is to correct inferences that are already incorrect for a fixed
task model, it is unable to increase the impact of any bias
or failure mode over a deployment that does not utilize a re-
jection model although, like all models, a DAER rejection
model is subject to its own failure modes.

One notable exception to this is if DAER is extended to
dataset curation, either through active learning [65] or by re-
moving training data that degrades model performance [46].
Since such an application would establish a bidirectional
dependency between the task and rejection models (i.e.,
the task model trains the rejection model which trains the
task model), the ultimate point of convergence is unclear,
and may amplify biases or blind spots. As such, we do
not recommend a direct extension of the findings of DAER
to dataset curation without a thorough investigation of this
phenomenon.

6. Conclusion
In this work, we introduced the novel problem of seed

rejection, addressing for the first time the impact of individ-
ual incorrect seeds on a model’s performance. In problem-
agnostic terms, we introduce the evaluation metrics of ad-
ditional error (AE), mean additional error (MAE), and area
under the mean additional error curve (AMAE), and desig-
nate two meaningful subgoals: understanding the cause of
error, and understanding the task model response. These
subgoals motivate the Dual-loss Additional Error Regres-
sion (DAER) method, which we show can reduce the num-
ber of required re-annotations for a target MAE by over
23% compared to the best-performing baseline.
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