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Abstract

3D building reconstruction from monocular remote sens-

ing imagery is an important research problem and an eco-

nomic solution to large-scale city modeling, compared with

reconstruction from LiDAR data and multi-view imagery.

However, several challenges such as the partial invisibil-

ity of building footprints and facades, the serious shadow

effect, and the extreme variance of building height in large-

scale areas, have restricted the existing monocular image

based building reconstruction studies to certain application

scenes, i.e., modeling simple low-rise buildings from near-

nadir images. In this study, we propose a novel 3D building

reconstruction method for monocular remote sensing im-

ages, which tackles the above difficulties, thus providing an

appealing solution for more complicated scenarios. We de-

sign a multi-task building reconstruction network, named

MTBR-Net, to learn the geometric property of oblique im-

ages, the key components of a 3D building model and their

relations via four semantic-related and three offset-related

tasks. The network outputs are further integrated by a prior

knowledge based 3D model optimization method to produce

the the final 3D building models. Results on a public 3D

reconstruction dataset and a novel released dataset demon-

strate that our method improves the height estimation per-

formance by over 40% and the segmentation F1-score by

2% - 4% compared with current state-of-the-art.

1. Introduction
3D building reconstruction is an important and funda-

mental task for monitoring the human settlements and ur-
ban environment, assessing the disasters, maintaining the

*Equal Contribution.

Figure 1. An example of the 3D building reconstruction result ob-
tained from our approach. The purple, brown, pink and green col-
ors denote the roof, footprint, facade and overlapped regions, re-
spectively. Our method produces vector 3D model for buildings
with complex shapes and an extreme variance of heights.

geographical information, etc. During the past few decades,
existing methods were mostly based on aerial LiDAR data
[31], which is difficult to be applied to large-scale areas due
to the expensive cost, low frequency, and limited coverage.
For large-scale applications, many approaches have been
proposed towards building reconstruction from multi-view
imagery [10]. Although the satellite images have a higher
acquisition frequency and a larger coverage, the application
scenarios of these methods are seriously restricted by the re-
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quirement of multiple homologous images over the same re-
gion [20]. The monocular image based building reconstruc-
tion, on the contrary, avoid such limitations and demon-
strate great potential for large-scale applications, which has
become an important research topic in recent years [22].

However, the limited information of a monocular image
results in great challenges for 3D building reconstruction.
As shown in Figure 1, some key components such as the
footprints and facades are partially invisible on these im-
ages. The serious shadow effect also results in difficul-
ties for accurate segmentation and reconstruction of differ-
ent parts of a building. Moreover, in large-scale areas, the
building heights vary across an extremely wide range. It is
hard to directly learn a precise height value via a deep neural
network. These challenges restrict the application scene of
existing studies to reconstructing simple low-rise buildings
from near-nadir images [16, 22, 29, 34].

As an important prerequisite for 3D building reconstruc-
tion, building footprint extraction has been extensively ex-
plored over a long period. Recent studies are mostly based
on deep neural networks, such as semantic segmentation or
instance segmentation models [1, 22, 33]. Several studies
design polygonal building segmentation approaches to pro-
duce the vectorized outputs [17, 18, 19, 35]. Existing meth-
ods generally achieve satisfying results for low-rise build-
ings in near-nadir images, as the footprint contour is com-
pletely visible without the parallax effect. However, these
methods often produce poor segmentation boundaries when
extracting high-rise buildings from oblique images.

Motivated by the progress of monocular depth estima-
tion, various methods have been proposed for building
height estimation via deep neural networks [11, 16, 22, 25,
29, 34]. These methods focus on height estimation from
near-nadir images, which only take up a small proportion of
the remote sensing images. For oblique or off-nadir scenes,
a recent study [7] proposed a monocular height estimation
method via learning the geocentric pose of buildings, which
is designed for single height estimation task instead of 3D
building reconstruction. Besides these limitations, all the
methods mentioned above produce raster outputs. Further
post-processing is required for converting such outputs into
the final vector 3D model for practical applications.

In this work, we propose a novel method for 3D build-
ing reconstruction from monocular oblique remote sensing
images. Our method solves the limitations of previous stud-
ies via: (1) a 3D building reconstruction network that con-
verts the ill-posed problem into learning the visible parts
of buildings and their relations via four semantic-related
and three offset-related tasks; (2) a 3D model optimiza-
tion method that further integrates the network outputs for
improving the height estimation and polygonization, based
on the prior knowledge of the building structure. Results
demonstrate that our method improves the height estimation

performance by over 40% and the segmentation F1-score by
2% - 4% compared with current state-of-the-art.

Our main contributions are summarized as follows:

• We design MTBR-Net, a multi-task building recon-
struction network that effectively learns the geomet-
ric property of oblique images, the key elements of
buildings and their relations, producing 3D models for
buildings with various heights and complex shapes.

• We propose a 3D model optimization method that in-
tegrates the network outputs based on the prior knowl-
edge of building structures, which further improves
the height estimation accuracy and produces vector 3D
models with valid shapes.

• We release a new dataset for monocular 3D building
reconstruction, including oblique images of multiple
views and over 200,000 annotated buildings of a wide
range of heights.

2. Related work
2.1. Building extraction from remote sensing images

Building extraction methods have been extensively ex-
plored in both remote sensing and computer vision do-
mains. The deep neural network based pixel-wise segmen-
tation methods have become state-of-the-art for building ex-
traction [24, 8, 22]. The multi-task learning strategy has
been used in several studies via learning a distance trans-
form [1] or a modified signed distance function from the
building boundary [22]. Several other studies combine ac-
tive contour models with deep neural network to improve
the segmentation boundaries for single building segmenta-
tion [6, 23, 12]. In addition, some recent approaches pro-
duce polygonized footprints that are in a more desirable for-
mat for actual applications. Several polygonal segmentation
methods are designed for simplifying the segmentation map
[17, 18], while others predict the polygon vertices at each
time step using a CNN-RNN architecture [19]. In general,
existing building extraction methods regard different parts
of a building instance as an unified entirety. These meth-
ods usually produce poor segmentation boundaries when
extracting high-rise buildings from oblique images, which
take up a substantial proportion in actual scenes. Our
method, on the contrary, predicts the visible components
(e.g. roof, facade, and skeleton) and their position relations
(offset) via a multi-task network, and effectively integrates
these predictions to produce accurate footprint polygons.

2.2. Building height estimation and reconstruction
Over a long period, a large number of building recon-

struction methods are based on LiDAR data [31] and multi-
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Figure 2. An overview of our proposed method. Taking a monocular remote sensing image as input, our MTBR-Net outputs a roof/facade
segmentation map, a footprint segmentation map, a skeleton segmentation map, a skeleton orientation prediction map, a image-wise offset
angle, and two pixel-wise offset field maps. The outputs of the four semantic-related tasks and three offset-related tasks are further
integrated for height vector optimization and polygonization, producing the final vectorized 3D model.

view imagery [10, 3, 28, 20], which have limitations of ex-
pensive data acquisition costs and limited coverage, and re-
quire multiple homologous images over the same region.
For monocular image based building reconstruction, tradi-
tional methods are based on the shadow information, lines
and line intersections of the building outlines, etc., as well
as the meta information of satellites such as the sun-earth
relative position [15, 26]. These methods usually require
a series of complex procedures for reconstructing the 3D
building model from the above information.

Motivated by the progress of monocular depth estima-
tion, several recent studies propose deep learning based
methods for monocular building height estimation. Some
studies propose a single-task network for building height
estimation, via regressing height values using an encoder-
decoder network [25] or simulating a height map using gen-
erative adversarial networks [11]. Several other studies are
designed for both building footprint extraction and height
estimation via a multi-task network [29, 34], or exploit the
semantic labels as prior information for height estimation
[16]. Different from our study, all these methods focus on
height estimation from near-nadir images. Moreover, the
raster reconstruction results require further post-processing
process to generate the final 3D building model.

For building height estimation from oblique images,
Christie et al. [7] proposed a monocular height estimation
method via learning the geocentric pose of buildings, i.e,
an image-wise flow angle and a pixel-wise magnitude value
[27], under the prerequisite that buildings of the same im-
age have the same offset angle. This study only focuses on
single-task height estimation instead of 3D reconstruction,
and the prerequisite is not always applicable. Our method,
by contrast, includes an image-wise offset angle prediction
task and two pixel-wise offset field prediction tasks, as well

as several semantic-related tasks, which is applicable for
images with different offset angles and produces vectorized
3D reconstruction results.

2.3. Building reconstruction datasets
Several public datasets provide both footprint annota-

tions and pixel-wise height information that are generated
from LiDAR data. ISPRS Potsdam and Vaihingen [14] and
Urban Semantic 3D (US3D) [2] are two popular datasets
used in many recent studies [11, 22, 29, 34, 16], in which
most of the images are near-nadir and the roof and footprint
are nearly overlapped. Recently, Christie et al. [7] proposed
two new datasets, i.e, DFC19 and ATL-SN4, which extend
the US3D [2] and SN4 [32] datasets to include additional
images with a wider range of oblique viewing angles. Al-
though a variety of annotations are provided, most annota-
tion types (e.g. roof, facade, and height) are generated from
point cloud data and have plenty of fragments and noises.
These datasets are difficult to be used for vector 3D model
reconstruction and performance evaluation at instance level.
Unlike the existing 3D reconstruction datasets mentioned
above, the dataset proposed in this study provides manually
labeled roof, facade, footprint, and height of each building
instance in complete shapes and vector format. The pro-
posed dataset can be used for vector 3D model reconstruc-
tion from oblique remote sensing images and performance
evaluation at both instance and pixel levels.

3. Methods
The overall framework of our proposed approach is

demonstrated in Figure 2, which consists of two main com-
ponents: (1) a multi-task deep neural network that produces
the 3D building reconstruction model via four semantic-
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related and three offset-related tasks. (2) a 3D model opti-
mization module that integrates the network outputs to fur-
ther improve the height estimation and produce vector 3D
models with valid shapes. Taking a monocular remote sens-
ing image as input, an HR-Net based multi-task network is
designed for seven interrelated tasks, i.e. a roof/facade seg-
mentation and a skeleton segmentation task for predicting
the visible parts of a building; a skeleton orientation predic-
tion task for polygonization; a footprint segmentation task
based on our proposed feature warping module; an image-
level offset angle prediction and two pixel-level offset field
prediction tasks for predicting the relation between roof and
footprint. The 3D reconstruction results obtained from the
network is further optimized via a prior knowledge based
method for improving the height estimation, and a skele-
ton orientation based polygonization method for producing
vector 3D building models. In the following, we first intro-
duce the definitions of the seven tasks. Then we introduce
the training of our MTBR-Net and the 3D model optimiza-
tion method. The implementation details are described at
the end of this section.

3.1. Task definitions of MTBR-Net

3.1.1 Semantic-related tasks

Roof/Facade and Footprint: The semantic-related tasks
are designed for producing the essential components of a 3D
building model. We first design a task for roof and visible
facade segmentation, which have complete contour on the
monocular remote sensing images. The footprint contours,
on the contrary, are often partially invisible but have the
same shape as the roof contour. Under this prerequisite, our
footprint segmentation task is based on warping the feature
map of roof using the predicted offset field, which will be
introduced in Section 3.2.
Building Skeleton: To learn the structure of a 3D build-
ing model, we define four types of semantic edges that are:
(1) between roof and background (Ea), (2) between roof
and facade (Eb), (3) between facade and background (Ec),
(4) between facade and footprint (Ed). The four types of
edges constitute the whole visible skeleton of a building on
oblique images. For a building instance, Eb usually has
the same shape as Ed, which serves as an important prior
knowledge in the 3D building model optimization process.
Skeleton Orientation: Inspired by [18], we design a task to
predict the edge orientation of the building skeleton, which
will be utilized for converting the raster segmentation map
into vector 3D model in the polygonization phase. For each
pixel on the skeleton, its orientation is decided by the angle
between the edge normal and the gravity direction in the
clockwise direction, e.g., the ↵ in Figure 3. The detailed
definition can be found in [18].

!"
!#

!$

!%

!$

: Skeleton Orientation
: Offset Vector

Figure 3. Representation of different types of supervisions. The
middle image shows the annotation of offset field A for the left re-
mote sensing image. In the right image, the four types of semantic
edge of the building skeleton are denoted by different colors. The
angle between the black arrow and the gravity direction defines the
skeleton orientation. The red arrow denotes the offset vector.

3.1.2 Offset-related tasks

The offset-related tasks are designed for estimating the
height of each building. We encode the relative height of a
building as an offset vector of two signed values (denoted by
Ox and Oy), reflecting the direction from a roof to its corre-
sponding footprint (denoted by the red arrows in Figure 3).
The offset vector will be used for warping the roof to foot-
print in both network training and building model optimiza-
tion phases, which can be further converted to the actual
height based on the meta information (image resolution and
nadir angle) [15, 26]. In general, the buildings of a single-
source remote sensing image often have the same offset an-
gle. However, some publicly available images, such as the
Google Earth imagery, are mosaicked from different data
sources with multiple offset angles. Considering both cases,
we design an image-wise offset angle prediction task and
two pixel-wise offset field prediction tasks.
Offset Field A: The first pixel-wise task is designed for pre-
dicting the offset vector for roof and facade regions, which
will be used for warping the predicted roof segment to foot-
print after network training. For offset field A, the pixels of
roof regions are assigned as the same values, i.e., the offset
vector from roof to footprint, which is denoted by (Or

x, O
r
y).

The pixels within the facade region are assigned as (�x, �y)
from the current pixel to the footprint contour, i.e., the val-
ues of Eb to Ed vary gradually from (Or

x, O
r
y) to (0, 0). The

offset field values of background regions are set as (0, 0). A
visualization example of the offset field annotation can be
found in the middle of Figure 3.
Offset Field B: The second pixel-wise task is designed for
predicting the offset vector for footprint regions, which will
be used for warping the feature map of roof/facade segmen-
tation to footprint during training phase. For offset field B,
the pixels of footprint regions are assigned as the offset field
A values of the corresponding roof regions, i.e., (Or

x, O
r
y),

while the pixels in other regions are assigned as (0, 0).
Offset Angle: Although pixel-wise tasks are good at han-
dling images with multiple offset angles, it is hard to predict
the offset angle accurately for low-rise buildings. This prob-
lem can be easily solved by image-wise offset prediction via
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learning from nearby high-rise buildings.

3.2. Training of MTBR-Net
Our MTBR-Net is based on the HR-Net architecture

[30]. The capacity of maintaining high-resolution repre-
sentations throughout the whole process is beneficial for
remote sensing images with a relatively low spatial reso-
lution and a large image size. In our method, the footprint
segmentation task is based on the warped feature map of
roof/facade segmentation, while the other six tasks share the
same feature representation. Each task owns a task-specific
head that consists of two 1⇥ 1 convolution layers.

Offset-based Feature Warping Module: We design an
offset-based feature warping module for footprint segmen-
tation, which not only strengthen the relation constraints
between semantic and offset-related tasks but improves the
footprint segmentation performance. First, we warp the out-
put feature map of the first 1⇥ 1 convolution of roof/facade
segmentation task based on offset field B. Then the warped
feature map is concatenated with the prediction map of off-
set field B and the feature map of roof/facade segmentation,
constituting the feature map for footprint segmentation.

The roof/facade, footprint, skeleton, and orientation pre-
diction tasks are formulated as pixel-wise segmentation
problems. The loss function of the above tasks are denoted
by Lrf , Lfoot, Lske, and Lori (uniformly denoted by Lseg)
and calculated according to formula 1, in which N denotes
the number of pixels of an image; C denotes the number of
classes; yi,c and p(yi,c) denote the binary indicator and the
predicted probability that pixel i belongs to class c.

Lseg = � 1

N

NX

i=1

CX

c=1

yi,c ⇥ log(p(yi,c)) (1)

The total loss of four semantic-related tasks (Lsem) is
the weighted sum of each task-specific loss:

Lsem = Lori + ↵1Lrf + ↵2Lfoot + ↵3Lske (2)

For the offset-related tasks, we formulate the image-wise
offset angle prediction as a classification problem to sim-
plify the training process, and formulate the pixel-wise off-
set field prediction as a regression problem to obtain precise
offset values. The loss of angle prediction task Lang is cal-
culated by formula 3, where K denotes the number of angle
classes; yk and p(yk) denote the binary indicator and the
predicted probability for class k.

Lang = �
KX

k=1

yk ⇥ log(p(yk)) (3)

The loss of two offset field regression tasks (Lfield a and
Lfield b, uniformly denoted by Lfield) is calculated by the
endpoint error according to formula 4,

Lfield =
1

N

NX

i=1

|| ~Opred
i � ~O

gt
i ||2, (4)

where the predicted offset ~O
pred
i = [Opred

x,i , O
pred
y,i ], the

ground truth offset ~O
gt
i = [Ogt

x,i, O
gt
y,i]. The total loss of

three offset-related tasks (Loff ) can be calculated as:

Loff = Lang + Lfield a + Lfield b (5)

The total loss of our MTBR-Net can be summarized as:

L = Lsem + Loff (6)

3.3. Optimization of the 3D building model

We design a simple but effective method to further opti-
mize the building reconstruction results via integrating the
outputs of MTBR-Net, which consists of two major phases:
(1) a prior knowledge based template matching method
for optimizing the height estimation result for each build-
ing instance; (2) a skeleton orientation based polygoniza-
tion method for converting the raster results into vector 3D
building model with valid shapes.

The template matching method for height vector opti-
mization is based on the prior knowledge that: (1) the edge
between roof and facade (Eb) usually has the same shape
as the edge between facade and footprint (Ed); (2) the roof
often has the same contour shape as the footprint. For each
building instance on the roof/facade segmentation map Srf ,
we extract the template of Eb from the skeleton segmenta-
tion map Sske, the template of Eb from Srf , and the tem-
plate of roof segment from Srf . Accordingly, the target
images for the above three templates are Ed on Sske, Ed on
and Srf , and the footprint segments on Srf .

For each building instance, let ~V denote the vector for
moving the templates. Vector ~V has a fixed moving direc-
tion angle and a range of moving distance. The direction
angle of ~V is determined either by the offset angle or the
offset field A predictions. Specifically, for low-rise building
instances (with the offset length smaller than a threshold
Toff ), the direction angle is assigned with the image-wise
angle prediction result; otherwise, it is assigned with the an-
gle of the average offset field of the roof region. The moving
distance range of ~V is determined by the length of the aver-
age offset field of the roof region (len) and two used defined
ratios (r1 and r2), i.e, [r1 ⇥ len, r2 ⇥ len]. We use the IoU
between the templates and the corresponding target images
to calculate the template matching score. The length of vec-
tor ~V is optimized via a grid search method with an interval
of 1 pixel. For each building instance, the vector ~V that
maximizes the matching score (IoU) is the final optimized
height vector.
Polygonization: Based on the skeleton orientation pre-
diction, the raster roof segments can be simplified into
polygons with valid shapes. For each instance, the pixels
densely sampled from the roof contour constitute an initial
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Figure 4. Examples of the 3D building reconstruction results of
our method. The purple, brown, pink and green colors denote the
roof, footprint, facade and overlapped regions, respectively.

vertex set. For each initial vertex, we calculate the abso-
lute difference between its orientation class and its neigh-
bour vertex. If it is greater than a given threshold (Tori), the
vertex will be selected as valid and remained; otherwise, it
will be removed from the vertex set. The remaining valid
vertices constitute the simplified roof polygon, which will
be warped as the footprint based on the height vector. The
simplified roof polygon, footprint polygon, and the height
vector comprise the optimized 3D building model.

3.4. Implementation details
For the HR-Net architecture used in our MTBR-Net, the

numbers of channels in the four stages are set as 12, 24,
48, and 96. The size of input image is 500 ⇥ 500 pixels.
The weights for Lsem calculation (↵1,↵2, and ↵3) are set
as 3, 3 and 2. The number of classes for offset angle predic-
tion and skeleton orientation prediction are both set as 36,
indicating that the bin width of the angle is 10°. For skele-
ton segmentation and skeleton orientation prediction tasks,
the foreground types are assigned with larger loss weights
than background (40:1 and 360:1 for two tasks) in order to
predict thick edges that are more robust to the roof/facade
segmentation results. For the height vector optimization,
the threshold Toff used for determining the direction an-
gle is set as 3 pixels. The ratios for determining the offset
length range (r1 and r2) are set as 0.7 and 1.5. In the poly-
gonization phase, the orientation difference threshold Tori

is set as 2, which indicates that the vertex with an interior
angle of 160° to 200° will be regarded as an invalid vertex
for simplifying the segmentation contour.

4. Experiments
4.1. Datasets

In this study, we propose a new dataset for 3D build-
ing reconstruction from monocular remote sensing images,

Figure 5. Examples of the GT buildings of our dataset. The anno-
tators are required to manually annotate the roofs (cyan polygons)
and the offset vectors (red arrows), producing the footprints (green
polygons) with the same shape as the corresponding roofs.

which provides holistic annotations and solves the limita-
tions of existing public datasets mentioned in Section 2.3.
The dataset contains oblique remote sensing images of a
diversity of view angles, which are collected from differ-
ent data sources (e.g. Google Earth and Microsoft Virtual
Earth). Over 200,000 buildings are annotated in our dataset,
which are located in multiple cities of China (including Bei-
jing, Shanghai, Harbin, Chengdu, Jinan and Xi’an). Figure
4 shows some examples of the 3D building reconstruction
results obtained from our method. Figure 5 shows examples
of the ground truth (GT) buildings of our dataset.

Our dataset contains 2,700 training images, 300 valida-
tion images and 300 test images, which are cropped into
1, 024 ⇥ 1, 024 pixels. To better evaluate the generaliza-
tion capacity of the proposed method for large-scale ap-
plications, we divide our test dataset into an in-domain
dataset containing 200 images located in the same city
but different regions with the training dataset, and an out-
domain dataset containing 100 images located in a new
city that is not included in the training dataset. The
whole dataset will be released on https://liweijia.
github.io/projects/building_3d/.

The performance of the 3D building reconstruction re-
sults is evaluated from different perspectives in the follow-
ing sections. In section 4.2, we evaluate the height estima-
tion performance in terms of the offset vector, actual height
and offset angle. In section 4.3, we evaluate the building
roof segmentation and footprint extraction results. The ef-
fect of different components will be analyzed in Section 4.4.

4.2. Height estimation performance
The height estimation performance is evaluated on both

our proposed dataset and DFC19 [7], a recent published 3D
reconstruction dataset. For our proposed dataset, we com-
pare the relative height (offset vector) estimation perfor-
mance of our method with current state-of-the-art method
[7], of which the network architecture is modified from U-
Net to HR-Net for a fair comparison. Table 1 lists the EPE
values obtained from two methods. For both methods, the
pixel-wise offset prediction are converted into instance-wise
results via calculating the average offset of each roof in-
stance. We report the EPE of the roof instances within dif-

12553



Table 1. Comparison of building height estimation on our proposed dataset. We report the EPE of the roof instances within different height
range and the average EPE of all instances. Our method reduces the EPE of high-rise buildings by 5 to 24 pixels compared with [7].

Dataset Method EPE of different height range (in pixels) Average
EPE0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 >100

In-domain Christie et al. [7] 6.22 5.26 7.04 9.01 10.94 12.52 14.89 19.47 24.50 73.07 50.41 6.19
Ours 4.92 4.24 6.02 5.91 6.87 7.82 8.39 12.45 20.75 61.41 26.69 4.88

Out-domain Christie et al. [7] 7.99 9.83 9.81 10.41 13.31 16.11 19.41 24.13 21.27 26.17 75.21 12.31
Ours 6.63 9.96 8.33 8.56 9.32 9.45 12.55 15.75 10.76 11.82 52.52 9.59

Figure 6. Examples of height estimation results on DFC19 (top)
and our dataset (bottom) obtained from our method and current
state-of-the-art [7]. Different colors represent different offset an-
gles. The brightness of each color reflects the offset length.

ferent height range (the pixel length of offset vectors) and
the average EPE of all instances. Our method reduces the
EPE of high-rise buildings by 5 to 24 pixels compared with
[7], indicating the superior of our offset encoding manner
and the effectiveness of our multi-task learning strategies.

For DFC19, we report all metrics regarding the build-
ing height estimation following [7], including the pixel-
level mean absolute error (MAE) and root mean square er-
ror (RMSE) of the actual height (in meters), the pixel-level
endpoint error (EPE) in roof and facade regions (in pixels),
and the image-level angle prediction error (in degree). As
shown in Table 2, we compare the results of our method
with the best results reported in [7] and two winning so-
lutions [16, 34] in 2019 Data Fusion Contest [9]. For our
method, we replace the offset field A prediction task with
the flow vector prediction of [7] for evaluating the actual
height, and calculate the average offset angle of roof re-
gions for evaluating the image-level metric. Results show
that our method significantly outperforms state-of-the-art in
terms of all metrics, reducing the actual height RMSE and
angle error by over 40%. Figure 6 provides a qualitative
comparison of the results obtained from our method and the
state-of-the-art results obtained from [7]. Results demon-
strate that our method produces height estimation results
with more accurate offset values and building boundaries.

4.3. Building segmentation performance
We further evaluate the roof and footprint segmentation

results using our proposed dataset. To the best of our knowl-
edge, this is the first dataset that provides manually labeled

Table 2. Comparison of building height estimation on DFC19
dataset, in terms of the MAE and RMSE of actual height (in me-
ters), EPE of offset vector (in pixels), and angle error (in degrees).

Method Actual Height Offset EPE Angle
ErrorMAE RMSE Roof Facade

Kunwar [16] 8.33 19.65 - - -
Zheng et al. [34] 8.72 19.32 - - -
Christie et al. [7] 7.73 16.87 5.44 7.11 15.09

Ours 4.75 9.57 4.67 5.35 8.40

roof, offset, and footprint annotations, which are essential
for our MTBR-Net. We compare the segmentation per-
formance of our approach with the current state-of-the-art
method for polygonal building segmentation proposed in Li
et al. [18] and several other competitive segmentation meth-
ods [21, 13, 4, 5, 30]. We calculate the precision, recall, and
F1-score (IoU � 0.5) at instance-level following [18, 8].

Table 3 lists the roof and footprint segmentation results
on the in-domain and out-domain test datasets. Our method
obtains the highest precision, recall, and F1-score for all
cases. For the roof segmentation results, our method im-
proves the F1-score of the single-task HR-Net by 4.6%
and 10.6%, which indicates that the proposed interrelated
tasks can effectively benefit the roof segmentation results
via joint learning. Regarding the footprint extraction per-
formance, our method improves the F1-score by 2.5% and
4.3% compared with current state-of-the-art [18], which in-
dicates the effectiveness of warping the predicted roof in-
stances to footprints using offset vectors. For all methods,
the performance drop on the out-domain dataset is due to
the change of test city as well as the increasing ratio of very
high-rise buildings compared with the in-domain dataset.
The runtime of our method is about 2.8 seconds per test im-
age on a Titan Xp GPU. Figure 7 provides a qualitative com-
parison of the footprint extraction results. Results show that
our method produces polygonal footprints with the most
accurate boundaries even for high-rise buildings. On the
other hand, our method has difficulties in accurately recon-
structing the extremely adjacent building instances, build-
ings without a clear boundary between the roof and the fa-
cade, and buildings with non-flat roofs (such as the family
houses), which should be improved in our future work.

4.4. Ablation study

In this section, we analyze the effect of the main novel
modules of our proposed approach, including: (1) the
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Table 3. Building roof and footprint segmentation results of different methods, in terms of precision, recall and F1-score (%). Our method
improves the roof segmentation F1-score by 1.6% and 3.0%, and improves the footprint segmentation F1-score by 2.5% and 4.3% compared
with current state-of-the-art [18].

In-domain dataset (Roof) In-domain dataset (Footprint) Out-domain dataset (Roof) Out-domain dataset (Footprint)Method Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
Cascade Mask R-CNN [4] 66.68 67.06 66.87 61.27 61.48 61.37 48.39 48.74 48.56 40.73 39.31 40.00

Mask R-CNN [13] 67.98 69.35 68.66 63.43 63.85 63.64 59.65 52.09 55.62 50.30 41.29 45.35
PANet [21] 68.38 67.98 68.18 64.03 61.91 62.95 62.11 50.46 55.68 52.54 41.03 46.08

HR-Net [30] 68.78 66.09 67.41 64.19 64.29 64.24 55.76 46.62 50.78 41.95 35.06 38.20
Li et al. [18] 71.76 69.25 70.48 65.71 66.37 66.04 60.44 56.40 58.35 49.69 45.77 47.65

Ours (w/o optimization) 72.72 71.37 72.04 66.85 68.05 67.44 65.20 57.97 61.37 54.34 46.37 50.04
Ours (w/ optimization) 72.72 71.37 72.04 69.47 67.71 68.58 65.20 57.97 61.37 56.45 48.17 51.98

Figure 7. Building footprint extraction results of different meth-
ods. The yellow, cyan, and red polygons denote the TP, FP, and
FN. Our method produces much more accurate footprint bound-
aries than other three methods.

offset-related prediction tasks; (2) the offset-based feature
warping module; (3) the prior knowledge based 3D model
optimization module. Table 4 lists the results on two test
datasets obtained by successively applying the above mod-
ules, in terms of both footprint extraction F1-score and
height estimation EPE. The results of the Baseline method
are obtained from [18]. The second row (+ Offset Field)
shows the height estimation results of offset field A pre-
diction and the footprint extraction results obtained from
warping the predicted roof instances to footprints based on
the average offset value of each roof instance. The third row
(+ Feature Warp) shows the results obtained from applying
the offset-based feature warping module, which are calcu-
lated from the footprint segmentation task. The final row (+
Optimization) shows the results obtained from applying the
prior knowledge based 3D model optimization method.

Results show that the footprint extraction score can be
improved by 0.8% via warping the roofs to footprints using
the offset field A prediction. Moreover, compared with the
baseline that directly predicting the footprint without fea-
ture warping, the F1-score can be improved by 1.4% and
2.4% via applying the feature warping module, indicating
the effectiveness of using offset field B prediction to warp
the feature map of roof/facade prediction for footprint seg-
mentation. The prior knowledge based model optimization
method further improves the building height estimation and

Table 4. Results of ablation study on two test datasets, in terms of
the footprint segmentation F1-score (%) and the height estimation
EPE (in pixels).

Method Segmentation F1-score (") Height estimation EPE (#)
In-domain Out-domain In-domain Out-domain

Baseline 66.04 47.65 - -
+ Offset Field 66.79 48.49 5.26 10.45

+ Feature Warp 67.44 50.04 5.17 10.21
+ Optimization 68.58 51.98 4.88 9.59

footprint extraction results via effectively using all types of
predictions, producing the footprints with the highest F1-
score while maintaining same contour shape as the roofs.

5. Conclusion
In this paper, we have presented a novel 3D building

model reconstruction method that produces vector 3D
building model with accurate roof, facade, footprint, and
height from monocular remote sensing images. Qualitative
and quantitative evaluations demonstrate the significant
advantages of our approach over state-of-the-art methods.
The effect of different components of our approach is also
verified in the ablation study. To the best of our knowledge,
this is the first work that produces vectorized 3D building
model reconstruction results from monocular remote sens-
ing images using deep neural networks. We believe that
this paper provides effective solutions for 3D building re-
construction in large-scale and complex application scenes.
In our future work, we would like to explore more effective
strategies for improving the 3D reconstruction results, such
as utilizing more prior knowledges regarding the building
structure, and improving the multi-task learning process via
adding more constraints based on the relation of different
components of a building instance.
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