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Figure 1: AI Choreographer. We present a new 3D dance dataset, AIST++, which contains 5.2 hours of 3D motion
reconstructed from real dancers paired with music (left) and a novel Full-Attention Cross-modal Transformer (FACT) network
that can generate realistic 3D dance motion with global translation conditioned on music (right). We output our 3D motion
in representations that allow for instant motion retargeting to a novel character. Here we use a character from Mixamo [1]

Abstract

We present AIST++, a new multi-modal dataset of 3D
dance motion and music, along with FACT, a Full-Attention
Cross-modal Transformer network for generating 3D dance
motion conditioned on music. The proposed AIST++
dataset contains 5.2 hours of 3D dance motion in 1408 se-
quences, covering 10 dance genres with multi-view videos
with known camera poses—the largest dataset of this kind
to our knowledge. We show that naively applying sequence
models such as transformers to this dataset for the task of
music conditioned 3D motion generation does not produce
satisfactory 3D motion that is well correlated with the input
music. We overcome these shortcomings by introducing key
changes in its architecture design and supervision: FACT
model involves a deep cross-modal transformer block with
full-attention that is trained to predictN future motions. We
empirically show that these changes are key factors in gen-
erating long sequences of realistic dance motion that are
well-attuned to the input music. We conduct extensive ex-
periments on AIST++ with user studies, where our method
outperforms recent state-of-the-art methods both qualita-
tively and quantitatively. The code and the dataset can be
found at: https://google.github.io/aichoreographer.

∗ equal contribution. Work performed while Ruilong was an intern at
Google.

1. Introduction

The ability to dance by composing movement patterns
that align to musical beats is a fundamental aspect of hu-
man behavior. Dancing is an universal language found in all
cultures [50], and today, many people express themselves
through dance on contemporary online media platforms.
The most watched videos on YouTube are dance-centric
music videos such as “Baby Shark Dance”, and “Gangnam
Style” [75], making dance a more and more powerful tool
to spread messages across the internet. However, dancing is
a form of art that requires practice—even for humans, pro-
fessional training is required to equip a dancer with a rich
repertoire of dance motions to create an expressive chore-
ography. Computationally, this is even more challenging as
the task requires the ability to generate a continuous motion
with high kinematic complexity that captures the non-linear
relationship with the accompanying music.

In this work, we address these challenges by presenting
a novel Full Attention Cross-modal Transformer (FACT)
network, which can robustly generate realistic 3D dance
motion from music, along with a large-scale multi-modal
3D dance motion dataset, AIST++, to train such a model.
Specifically, given a piece of music and a short (2 seconds)
seed motion, our model is able to generate a long sequence
of realistic 3D dance motions. Our model effectively learns
the music-motion correlation and can generate dance se-
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Figure 2: Cross-Modal Music Conditioned 3D Motion Generation Overview. Our proposed a Full-Attention Cross-
modal Transformer (FACT) network (details in Figure 3) takes in a music piece and a 2-second sequence of seed motion,
then auto-regressively generates long-range future motions that correlates with the input music.

quences that varies for different input music. We represent
dance as a 3D motion sequence that consists of joint rota-
tion and global translation, which enables easy transfer of
our output for applications such as motion retargeting as
shown in Figure 1.

In order to generate 3D dance motion from music, we
propose a novel Full Attention Cross-modal Transformer
(FACT) model, which employs an audio transformer and
seed motion transformer to encode the inputs, which are
then fused by a cross-modal transformer that models the dis-
tribution between audio and motion. This model is trained
to predict N future motion sequences and at test time is ap-
plied in an auto-regressive manner to generate continuous
motion. The success of our model relies on three key design
choices: 1) the use of full-attention in an auto-regressive
model, 2) future-N supervision, and 3) early fusion of two
modalities. The combination of these choices is critical for
training a model that can generate a long realistic dance mo-
tion that is attuned to the music. Although prior work has
explored using transformers for motion generation [3], we
find that naively applying transformers to the 3D dance gen-
eration problem without these key choices does not lead to
a very effective model.

In particular, we notice that because the context window
in the motion domain is significantly smaller than that of
language models, it is possible to apply full-attention trans-
formers in an auto-regressive manner, which leads to a more
powerful model. It is also critical that the full-attention
transformer is trained to predict N possible future motions
instead of one. These two design choices are key for pre-
venting 3D motion from freezing or drifting after several
auto-regressive steps as reported in prior works on 3D mo-
tion generation [4, 3]. Our model is trained to predict 20
future frames, but it is able to produce realistic 3D dance
motion for over 1200 frames at test time. We also show that
fusing the two modalities early, resulting in a deep cross-
modal transformer, is important for training a model that
generates different dance sequences for different music.

In order to train the proposed model, we also address
the problem of data. While there are a few motion capture
datasets of dancers dancing to music, collecting mocap data

requires heavily instrumented environments making these
datasets severely limited in the number of available dance
sequences, dancer and music diversity. In this work, we pro-
pose a new dataset called AIST++, which we build from the
existing multi-view dance video database called AIST [82].
We use the multi-view videos to recover reliable 3D motion
from this data. We will release code and this dataset for re-
search purposes, where AIST++ can be a new benchmark
for the task of 3D dance generation conditioned on music.

In summary, our contributions are as follows:

• We propose Full Attention Cross-Modal Transformer
model, FACT, which can generate a long sequence of
realistic 3D dance motion that is well correlated with
the input music.

• We introduce AIST++ dataset containing 5.2 hours of
3D dance motions accompanied with music and multi-
view images, which to our knowledge is the largest
dataset of such kind.

• We provide extensive evaluations validating our design
choices and show that they are critical for high quality,
multi-modal, long motion sequence generation.

2. Related Work
3D Human Motion Synthesis The problem of generating
realistic and controllable 3D human motion sequences has
long been studied. Earlier works employ statistical models
such as kernel-based probability distribution [64, 10, 25,
11] to synthesize motion, but abstract away motion details.
Motion graphs [53, 7, 47] address this problem by generat-
ing motions in a non-parametric manner. Motion graph is
a directed graph constructed on a corpus of motion capture
data, where each node is a pose and the edges represent the
transition between poses. Motion is generated by a random
walk on this graph. A challenge in motion graph is in gener-
ating plausible transition that some approaches address via
parameterizing the transition [30]. With the development
in deep learning, many approaches explore the applicabil-
ity of neural networks to generate 3D motion by training on
a large-scale motion capture dataset, where network archi-
tectures such as CNNs [35, 34], GANs [31], RBMs [80],
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RNNs [24, 4, 40, 27, 16, 18, 88, 12, 87] and Transform-
ers [3, 9] have been explored. Auto-regressive models like
RNNs and vanilla Transformers are capable of generating
unbounded motion in theory, but in practice suffer from
regression to the mean where motion “freezes” after sev-
eral iterations, or drift to unnatural motions [4, 3]. Some
works [8, 56, 49] propose to ease this problem by peri-
odically using the network’s own outputs as inputs during
training. Phase-functioned neural networks and it’s varia-
tions [94, 33, 73, 74] address this issue via conditioning the
network weights on phase, however, they do not scale well
to represent a wide variety of motion.

Audio To Human Motion Generation Audio to motion
generation has been studied in 2D pose context either in
optimization based approach [81], or learning based ap-
proaches [52, 72, 51, 67, 68, 21] where 2D pose skele-
tons are generated from a conditioning audio. Training data
for 2D pose and audio is abundant thanks to the high re-
liability of 2D pose detectors [14]. However, predicting
motion in 2D is limited in its expressiveness and poten-
tial for downstream applications. For 3D dance genera-
tion, earlier approaches explore matching existing 3D mo-
tion to music [71] using motion graph based approach [20].
More recent approach employ LSTMs [5, 79, 90, 97, 42],
GANs [51, 78, 28], transformer encoder with RNN de-
coder [36] or convolutional [2, 92] sequence-to-sequence
models. Concurrent to our work, Chen et al. [15] pro-
posed a method that is based on motion graphs with learned
embedding space. Many prior works [72, 68, 42, 28, 92]
solve this problem by predicting future motion determinis-
tically from audio without seed motion. When the same au-
dio has multiple corresponding motions, which often occurs
in dance data, these methods collapse to predicting a mean
pose. In contrast, we formulate the problem with seed mo-
tion as in [55, 96], which allows generation of multiple mo-
tion from the same audio even with a deterministic model.

Closest to our work is that of Li et al. [55], which also
employ transformer based architecture but only on audio
and motion. Furthermore, their approach discretize the out-
put joint space in order to account for multi-modality, which
generates unrealistic motion. In this work we introduce a
novel full-attention based cross-modal transformer (FACT
model) for audio and motion, which can not only preserve
the correlation between music and 3D motion better, but
also generate more realistic long 3D human motion with
global translation. One of the biggest bottleneck in 3D
dance generation approaches is that of data. Recent work
of Li et al. [55] reconstruct 3D motion from dance videos
on the Internet, however the data is not public. Further, us-
ing 3D motion reconstructed from monocular videos may
not be reliable and lack accurate global 3D translation in-
formation. In this work we also reconstruct the 3D motion
from 2D dance video, but from multi-view video sequences,

which addresses these issues. While there are many large
scale 3D motion capture datasets [39, 59, 1, 37], mocap
dataset of 3D dance is quite limited as it requires heavy
instrumentation and expert dancers for capture. As such,
many of these previous works operate on either small-scale
or private motion capture datasets [79, 5, 96]. We compare
our proposed dataset with these public datasets in Table 1.

Cross-Modal Sequence-to-Sequence Generation Be-
yond of the scope of human motion generation, our work
is closely related to the research of using neural network
on cross-modal sequence to sequence generation task. In
natural language processing and computer vision, tasks
like text to speech (TTS) [69, 41, 43, 83] and speech
to gesture [22, 28, 23], image/video captioning (pixels to
text) [13, 44, 58, 48] involve solving the cross-modal se-
quence to sequence generation problem. Initially, combina-
tion of CNNs and RNNs [86, 85, 91, 93] were prominent in
approaching this problem. More recently, with the develop-
ment of attention mechanism [84], transformer based net-
works achieve top performance for visual-text [95, 77, 19,
54, 38, 76, 76], visual-audio [26, 89] cross-modal sequence
to sequence generation task. Our work explores audio to
3D motion in a transformer based architecture. While all
cross-modal problems induce its own challenges, the prob-
lem of music to 3D dance is uniquely challenging in that
there are many ways to dance to the same music and that the
same dance choreography may be used for multiple music.
We hope the proposed AIST++ dataset advances research in
this relatively under-explored problem.

3. AIST++ Dataset
Data Collection We generate the proposed 3D motion
dataset from an existing database called AIST Dance
Database [82]. AIST is only a collection of videos with-
out any 3D information. Although it contains multi-view
videos of dancers, these cameras are not calibrated, making
3D reconstruction of dancers a non-trivial effort. We re-
cover the camera calibration parameters and the 3D human
motion in terms of SMPL parameters. Please find the details
of this algorithm in the Appendix. Although we adopt the
best practices in reconstructing this data, no code base exist
for this particular problem setup and running this pipeline
on a large-scale video dataset requires non-trivial amount of
compute and effort. We will make the 3D data and camera
parameters publicly available, which allows the community
to benchmark on this dataset on an equal footing.

Dataset Description Resulting AIST++ is a large-scale
3D human dance motion dataset that contains a wide variety
of 3D motion paired with music. It has the following extra
annotations for each frame:

• 9 views of camera intrinsic and extrinsic parameters;
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Dataset Music 3D Jointpos 3D Jointrot 2D Kpt Views Images Genres Subjects Sequences Seconds
AMASS[59] 7 3 3 7 0 0 0 344 11265 145251
Human3.6M[39] 7 3 3 3 4 3.6M 0 11 210 71561
Dance with Melody[79] 3 3 7 7 0 0 4 - 61 5640
GrooveNet [5] 3 3 7 7 0 0 1 1 2 1380
DanceNet [96] 3 3 7 7 0 0 2 2 2 3472
EA-MUD [78] 3 3 7 7 0 0 4 - 17 1254
AIST++ 3 3 3 3 9 10.1M 10 30 1408 18694

Table 1: 3D Dance Datasets Comparisons. The proposed AIST++ dataset is the largest dataset with 3D dance motion paired
with music. We also have the largest variety of subjects and genres. Furthermore, our dataset is the only one that comes with
image frames, as other dance datasets only contain motion capture dataset. We include popular 3D motion dataset without
any music in the first two rows for reference.

• 17 COCO-format[70] human joint locations in both
2D and 3D;

• 24 SMPL [57] pose parameters along with the global
scaling and translation.

Besides the above properties, AIST++ dataset also contains
multi-view synchronized image data unlike prior 3D dance
dataset, making it useful for other research directions such
as 2D/3D pose estimation. To our knowledge, AIST++ is
the largest 3D human dance dataset with 1408 sequences,
30 subjects and 10 dance genres with basic and advanced
choreographies. See Table. 1 for comparison with other 3D
motion and dance datasets. AIST++ is a complementary
dataset to existing 3D motion dataset such as AMASS [59],
which contains only 17.8 minutes of dance motions with no
accompanying music.

Owing to the richness of AIST, AIST++ contains 10
dance genres: Old School (Break, Pop, Lock and Waack)
and New School (Middle Hip-hop, LA-style Hip-hop,
House, Krump, Street Jazz and Ballet Jazz). Please see
the Appendix for more details and statistics. The motions
are equally distributed among all dance genres, covering
wide variety of music tempos denoted as beat per minute
(BPM)[61]. Each genre of dance motions contains 85%
of basic choreographies and 15% of advanced choreogra-
phies, in which the former ones are those basic short danc-
ing movements while the latter ones are longer movements
freely designed by the dancers. However, note that AIST is
an instructional database and records multiple dancers danc-
ing the same choreography for different music with varying
BPM, a common practice in dance. This posits a unique
challenge in cross-modal sequence-to-sequence generation.
We carefully construct non-overlapping train and val sub-
sets on AIST++ to make sure neither choreography nor mu-
sic is shared across the subsets.

4. Music Conditioned 3D Dance Generation
Here we describe our approach towards the problem of

music conditioned 3D dance generation. Specifically, given
a 2-second seed sample of motion represented as X =
(x1, . . . , xT ) and a longer conditioning music sequence

represented as Y = (y1, . . . , yT ′), the problem is to gen-
erate a sequence of future motion X′ = (xT+1, . . . , xT ′)
from time step T + 1 to T ′, where T ′ � T .

Preliminaries Transformer [84] is an attention based net-
work widely applied in natural language processing. A ba-
sic transformer building block (shown in of Figure 3 (a)) has
multiple layers with each layer composed of a multi-head
attention-layer (Attn) followed by a feed forward layer (FF).
The multi-head attention-layer embeds input sequence X
into an internal representation often referred to as the con-
text vector C. Specifically, the output of the attention layer,
the context vector C is computed using the query vector Q
and the key K value V pair from input with or without a
mask M via,

C = FF(Attn(Q,K,V,M))

= FF(softmax

(
QKT +M√

D

)
V),

Q = XWQ,K = XWK ,V = XWV (1)

where D is the number of channels in the attention layer
and W are trainable weights. The design of the mask func-
tion is a key parameter in a transformer. In natural language
generation, causal models such as GPT [66] uses an upper
triangular look-ahead mask M to enable causal attention
where each token can only look at past inputs. This allows
efficient inference at test time, since intermediate context
vectors do not need to be recomputed, especially given the
large context window in these models (2048). On the other
hand, models like BERT [17] employ full-attention for fea-
ture learning, but rarely are these models employed in an
auto-regressive manner, due to its inefficiency at test time.

4.1. Full Attention Cross-Modal Transformer

We propose Full Attention Cross-Modal Transformer
(FACT) model for the task of 3D dance motion generation.
Given the seed motion X and audio features Y, FACT first
encodes these inputs using a motion transformer fmot and
audio transformer faudio into motion and audio embeddings
hx

1:T and hy
1:T ′ respectively. These are then concatenated
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Transformer Network

Figure 3: FACT Model Details. (a) The structure of the audio/motion/cross-modal transformer with N attention layers. (b)
Attention and supervision mechanism as a simplified two-layer model. Models like GPT [66] and the motion generator of [55]
use causal attention (left) to predict the immediate next output for each input nodes. We employ full-attention and predict n
future from the last input timestamp m (right). The dots on the bottom row are the input tensors, which are computed into
context tensors through causal (left) and full (right) attention transformer layer. The output (predictions) are shown on the
top. We empirically show that these design choices are critical in generating non-freezing, more realistic motion sequences.

and sent to a cross-modal transformer fcross, which learns
the correspondence between both modalities and generates
N future motion sequences X′, which is used to train the
model in a self-supervised manner. All three transformers
are jointly learned in an end-to-end manner. This process is
illustrated in Figure 2. At test time, we apply this model in
an auto-regressive framework, where we take the first pre-
dicted motion as the input of the next generation step and
shift all conditioning by one.

FACT involves three key design choices that are critical
for producing realistic 3D dance motion from music. First,
all of the transformers use full-attention mask. We can still
apply this model efficiently in an auto-regressive framework
at test time, since our context window is not prohibitively
large (240). The full-attention model is more expressive
than the causal model because internal tokens have access
to all inputs. Due to this full-attention design, we train our
model to only predict the unseen future after the context
window. In particular, we train our model to predict N fu-
tures beyond the current input instead of just 1 future mo-
tion. This encourages the network to pay more attention to
the temporal context, and we experimentally validate that
this is a key factor training a model that does not suffer
from motion freezing or diverging after a few generation
steps. This attention design is in contrast to prior work that
employ transformers for the task of 3D motion [3] or dance
generation [55], which applies GPT [66] style causal trans-
former trained to predict the immediate next future token.
We illustrate this difference in Figure 3 (b).

Lastly, we fuse the two embeddings early and employ a
deep 12-layer cross-modal transformer module. This is in
contrast to prior work that used a single MLP to combine
the audio and motion embeddings [55], and we find that
deep cross-modal module is essential for training a model
that actually pays attention to the input music. This is par-
ticularly important as in dance, similar choreography can be
used for multiple music. This also happens in AIST dataset,
and we find that without a deep cross-modal module, the
network is prone to ignoring the conditioning music. We

experimentally validate this in Section 5.2.3.

5. Experiments

5.1. AIST++ Motion Quality Validation

We first carefully validate the quality of our 3D motion
reconstruction. Possible error sources that may affect the
quality of our 3D reconstruction include inaccurate 2D key-
points detection and the estimated camera parameters. As
there is no 3D ground-truth for AIST dataset, our validation
here is based-on the observation that the re-projected 2D
keypoints should be consistent with the predicted 2D key-
points which have high prediction confidence in each im-
age. We use the 2D mean per joint position error MPJPE-
2D, commonly used for 3D reconstruction quality measure-
ment [46, 39, 65]) to evaluate the consistency between the
predicted 2D keypoints and the reconstructed 3D keypoints
along with the estimated camera parameters. Note we only
consider 2D keypoints with prediction confidence over 0.5
to avoid noise. The MPJPE-2D of our entire dataset is 6.2
pixels on the 1920×1080 image resolution, and over 86% of
those has less than 10 pixels of error. Besides, we also cal-
culate the PCKh metric introduced in [6] on our AIST++.
The PCKh@0.5 on the whole set is 98.7%, meaning the
reconstructed 3D keypoints are highly consistent with the
predicted 2D keypoints. Please refer to the Appendix for
detailed analysis of MPJPE-2D and PCKh on AIST++.

5.2. Music Conditioned 3D Motion Generation

5.2.1 Experimental Setup

Dataset Split All the experiments in this paper are con-
ducted on our AIST++ dataset, which to our knowledge is
the largest dataset of this kind. We split AIST++ into train
and test set, and report the performance on the test set only.
We carefully split the dataset to make sure that the music
and dance motion in the test set does not overlap with that
in the train set. To build the test set, we first select one mu-
sic piece from each of the 10 genres. Then for each music
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Motion Quality Motion Diversity Motion-Music Corr User Study
FIDk ↓ FIDg ↓ Distk ↑ Distg ↑ BeatAlign ↑ FACT WinRate↓

AIST++ – – 9.057 7.556 0.292 –
AIST++ (random) – – – – 0.213 25.4%
Li et al. [55] 86.43 20.58 6.85* 4.93 0.232 80.6%
Dancenet [96] 69.18 17.76 2.86 2.72 0.232 71.1%
DanceRevolution [36] 73.42 31.01 3.52 2.46 0.220 77.0%
FACT (ours) 35.35 12.40 5.94 5.30 0.241 –

Table 2: Conditional Motion Generation Evaluation on AIST++ dataset. Comparing to the three recent state-of-the-art
methods, our model generates motions that are more realistic, better correlated with input music and more diversified when
conditioned on different music. *Note Li et al. [55]’s generated motions are discontinuous making its average kinetic feature
distance (FIDk) abnormally high.

piece, we randomly select two dancers, each with two dif-
ferent choreographies paired with that music, resulting in
total 40 unique choreographies in the test set. The train set
is built by excluding all test musics and test choreographies
from AIST++, resulting in total 329 unique choreographies
in the train set. Note that in the test set we intentionally
pick music pieces with different BPMs so that it covers all
kinds of BPMs ranging from 80 to 135 in AIST++.

Implementation Details In our main experiment, the in-
put of the model contains a seed motion sequence with 120
frames (2 seconds) and a music sequence with 240 frames
(4 seconds), where the two sequences are aligned on the
first frame. The output of the model is the future motion se-
quence with N = 20 frames supervised by L2 loss. During
inference we continually generate future motions in a auto-
regressive manner at 60 FPS, where only the first predicted
motion is kept in every step. We use the publicly available
audio processing toolbox Librosa [60] to extract the music
features including: 1-dim envelope, 20-dim MFCC, 12-dim
chroma, 1-dim one-hot peaks and 1-dim one-hot beats, re-
sulting in a 35-dim music feature. We combine the 9-dim
rotation matrix representation for all 24 joints, along with a
3-dim global translation vector, resulting in a 219-dim mo-
tion feature. Both these raw audio and motion features are
first embedded into 800-dim hidden representations with
linear layers, then added with learnable positional encod-
ing, before they were input into the transformer layers. All
the three (audio, motion, cross-modal) transformers have 10
attention heads with 800 hidden size. The number of atten-
tion layers in each transformer varies based on the exper-
iments, as described in Sec. 5.2.3. We disregard the last
linear layer in the audio/motion transformer and the posi-
tional encoding in the cross-modal transformer, as they are
not necessary in the FACT model. All our experiments are
trained with 16 batch size using Adam [45] optimizer. The
learning rate starts from 1e−4 and drops to {1e−5, 1e−6}
after {60k, 100k} steps. The training finishes after 300k,
which takes 3 days on 4 TPUs. For baselines, we compare
with the latest work on 3D dance generation that take mu-
sic and seed motion as input, including Dancenet [96] and

Li et al. [55]. For a more comprehensive evaluation we also
compare with the recent state-of-the-art 2D dance genera-
tion method DanceRevolution [36]. We adapt this work to
output 3D joint locations which can be directly compared
with our results quantitatively, though joint locations do not
allow immediate re-targeting. We train and test these base-
lines on the same dataset with ours using the official code
provided by the authors.

5.2.2 Quantitative Evaluation

In this section, we evaluate our proposed model FACT on
the following aspects: (1) motion quality, (2) generation di-
versity and (3) motion-music correlation. Experiments re-
sults (shown in Table 2) show that our model out-performs
state-of-the-art methods [55, 36, 96], on those criteria.

Motion Quality Similar to prior works [55, 36], we eval-
uate the generated motion quality by calculating the distri-
bution distance between the generated and the ground-truth
motions using Frechet Inception Distance (FID) [32] on
the extracted motion features. As prior work used motion-
encoders that are not public, we measure FID with two well-
designed motion feature extractors [62, 63] implemented in
fairmotion [29]: (1) a geometric feature extractor that pro-
duces a boolean vector zg ∈ R33 expressing geometric re-
lations between certain body points in the motion sequence
X ∈ RT×N×3, (2) a kinetic feature extractor [63] that maps
a motion sequence X to zk ∈ R72, which represents the
kinetic aspects of the motion such as velocity and acceler-
ations. We denote the FID based on these geometric and
kinetic features as FIDgand FIDk, respectively. The metrics
are calculated between the real dance motion sequences in
AIST++ test set and 40 generated motion sequences each
with T = 1200 frames (20 secs). As shown in Table 2, our
generated motion sequences have a much closer distribution
to ground-truth motions compared with the three baselines.
We also visualize the generated sequences from the base-
lines in our supplemental video.
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Generated 3D Dance Motion

Seed Motion

Figure 4: Diverse Generation Results. Here we visualize
4 different dance motions generated using different music
but the same seed motion. On the left we illustrate the 2
second seed motion and on the right we show the gener-
ated 3D dance sequences subsampled by 2 seconds. For
rows top to bottom, the genres of the conditioning music
are: Break, Ballet Jazz, Krump and Middle Hip-hop. Note
that the seed motion come from hip-hop dance.Our model
is able to adapt the dance style when given a more modern
dance music (second row: Ballet Jazz). Please see more
results in the supplementary video.

Generation Diversity We also evaluate our model’s abil-
ity to generate diverse dance motions when given various
input music compared with the baseline methods. Similar
to the prior work [36], we calculate the average Euclidean
distance in the feature space across 40 generated motions on
the AIST++ test set to measure the diversity. The motion
diversity in the geometric feature space and in the kinetic
feature space are noted as Distmand Distk, respectively. Ta-
ble 2 shows that our method generates more diverse dance
motions comparing to the baselines except Li et al. [55],
which discretizes the motion, leading to discontinuous out-
puts that results in high Distk. Our generated diverse mo-
tions are visualized in Figure 4.

Motion-Music Correlation Further, we evaluate how
much the generated 3D motion correlates to the input mu-
sic. As there is no well-designed metric to measure this
property, we propose a novel metric, Beat Alignment Score
(BeatAlign), to evaluate the motion-music correlation in
terms of the similarity between the kinematic beats and mu-
sic beats. The music beats are extracted using librosa [60]
and the kinematic beats are computed as the local minima of
the kinetic velocity, as shown in Figure 5. The Beat Align-
ment Score is then defined as the average distance between
every kinematic beat and its nearest music beat. Specifi-
cally, our Beat Alignment Score is defined as:

BeatAlign =
1

m

m∑
i=1

exp(−
min∀tyj∈By ||txi − t

y
j ||2

2σ2
) (2)

where Bx = {txi } is the kinematic beats, By = {tyj} is the
music beats and σ is a parameter to normalize sequences

time

kinetic velocity music beats kinematic beats

Figure 5: Beats Alignment between Music and Gener-
ated Dance. Here we visualize the kinetic velocity (blue
curve) and kinematic beats (green dotted line) of our gener-
ated dance motion, as well as the music beats (orange dot-
ted line). The kinematic beats are extracted by finding local
minima from the kinetic velocity curve.

with different FPS. We set σ = 3 in all our experiments
as the FPS of all our experiments sequences is 60. A sim-
ilar metric Beat Hit Rate was introduced in [51, 36], but
this metric requires a dataset dependent handcrafted thresh-
old to decide the alignment (“hit”) while ours directly mea-
sure the distances. This metric is explicitly designed to be
uni-directional as dance motion does not necessarily have
to match with every music beat. On the other hand, every
kinetic beat is expected to have a corresponding music beat.
To calibrate the results, we compute the correlation met-
rics on the entire AIST++ dataset (upper bound) and on the
random-paired data (lower bound). As shown in Table 2,
our generated motion is better correlated with the input mu-
sic compared to the baselines. We also show one example
in Figure 5 that the kinematic beats of our generated motion
align well with the music beats. However, when comparing
to the real data, all four methods including ours have a large
space for improvement. This reflects that music-motion cor-
relation is still a challenging problem.

5.2.3 Ablation Study

We conduct the following ablation experiments to study
the effectiveness of our key design choices: Full-Attention
Future-N supervision, and early cross-modal fusion. Please
refer to our supplemental video for qualitative comparison.
The effectiveness of different model architectures is mea-
sured quantitatively using the motion quality (FIDk, FIDg)
and the music-motion correlation (BeatAlign) metrics, as
shown in Table 4 and Table 3.

Full-Attention Future-N Supervision Here we dive
deep into the attention mechanism and our future-N super-
vision scheme. We set up four different settings: causal-
attention shift-by-1 supervision, and full-attention with
future-{1, 10, 20} supervision. Qualitatively, we find that
the motion generated by the causal-attention with shift-by-
1 supervision (as done in [55, 66, 3]) starts to freeze after
several seconds (please see the supplemental video). Sim-
ilar problem was reported in the results of [3]. Quantita-
tively (shown in the Table 3), when using causal-attention
shift-by-1 supervision, the FIDs are large meaning that the
difference between generated and ground-truth motion se-
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Attn-Supervision FIDk ↓ FIDg ↓ BeatAlign ↑
Causal-Attn-Shift-by-1 111.69 21.43 0.217
Full-Attn-F1 (FACT-1) 207.74 19.35 0.233
Full-Attn-F10 (FACT-10) 35.10 15.17 0.239
Full-Attn-F20 (FACT-20) 35.35 12.39 0.241

Table 3: Ablation Study on Attention and Supervision
Mechanism. Causal-attention shift-by-1 supervision tends
to generate freezing motions in the long-term. While Full-
attention supervised more future frames boost the ability of
generating more realistic dance motions.

motion attention music attention

(a)

(b)

low

high

Figure 6: Attention Weights Visualization. We compare
the attention weights from the last layer of the (a) 12-layer
cross-modal transformer and (b) 1-layer cross-modal trans-
former. Deeper cross-modal transformer pays equal atten-
tion to motion and music, while a shallower one pays more
attention to motion.

quences is substantial. For the full-attention with future-
1 supervision setting, the results rapidly drift during long-
range generation. However, when the model is supervised
with 10 or 20 future frames, it pays more attention to the
temporal context. Thus, it learns to generate good quality
(non-freezing, non-drifting) long-range motion.

Early Cross-Modal Fusion Here we investigate when to
fuse the two input modalities. We conduct experiments in
three settings, (1) No-Fusion: 14-layer motion transformer
only; (2) Late-Fusion: 13-layer motion/audio transformer
with 1-layer cross-modal transformer; (3) Early-Fusion: 2-
layer motion/audio transformer with 12-layer cross-modal
transformer. For fair comparison, we change the number
of attention layers in the motion/audio transformer and the
cross-modal transformer but keep the total number of the
attention layers fixed. Table 4 shows that the early fusion
between two input modalities is critical to generate motions
that are well correlated with input music. Also we show
in Figure 6 that Early-Fusion allows the cross-model trans-
former pays more attention to the music, while Late-Fusion
tend to ignore the conditioning music. This also aligns
with our intuition that the two modalities need to be fully
fused for better cross-modal learning, as contrast to prior
work that uses a single MLP to combine the audio and mo-
tion [55].

5.2.4 User Study

Finally, we perceptually evaluate the motion-music corre-
lation with a user study to compare our method with the
three baseline methods and the “random” baseline, which
randomly combines AIST++ motion-music. (Refer to the
Appendix for user study details.) In this study, each user

Cross-Modal Fusion FIDk ↓ FIDg ↓ BeatAlign ↑
No-Fusion 45.66 13.27 0.228*
Late-Fusion 45.76 14.30 0.234
Early-Fusion 35.35 12.39 0.241

Table 4: Ablation Study on Cross-modal Fusion. Early
fusion of the two modalities allows the model to generate
motion sequences align better with the conditioning music.
*Note this number is calculated using the music paired with
the input motion.

is asked to watch 10 videos showing one of our results and
one random counterpart, and answer the question “which
person is dancing more to the music? LEFT or RIGHT” for
each video. For user study on each of the four baselines, we
invite 30 participants, ranging from professional dancers to
people who rarely dance. We analyze the feedback and the
results are: (1) 81% of our generated dance motion is better
than Li et al. [55]; (2) 71% of our generated dance motion is
better than Dancenet [96]; (3) 77% of our generated dance
motion is better than DanceRevolution [36]; (4) 75% of the
unpaired AIST++ dance motion is better than ours. Clearly
we surpass the baselines in the user study. But because the
“random” baseline consists of real advanced dance motions
that are extremely expressive, participants are biased to pre-
fer it over ours. However, quantitative metrics show that our
generated dance is more aligned with music.

6. Conclusion and Discussion
In this paper, we present a cross-modal transformer-

based neural network architecture that can not only learn
the audio-motion correspondence but also can generate non-
freezing high quality 3D motion sequences conditioned on
music. We also construct the largest 3D human dance
dataset: AIST++. This proposed, multi-view, multi-genre,
cross-modal 3D motion dataset can not only help research
in the conditional 3D motion generation research but also
human understanding research in general. While our results
shows a promising direction in this problem of music condi-
tioned 3D motion generation, there are more to be explored.
First, our approach is kinematic based and we do not reason
about physical interactions between the dancer and the floor.
Therefore the global translation can lead to artifacts such as
foot sliding and floating. Second, our model is currently
deterministic. Exploring how to generate multiple realistic
dance per music is an exciting direction.

7. Acknowledgement
We thank Chen Sun, Austin Myers, Bryan Seybold and

Abhijit Kundu for helpful discussions. We thank Emre Ak-
san and Jiaman Li for sharing their code. We also thank
Kevin Murphy for the early attempts on this direction, as
well as Peggy Chi and Pan Chen for the help on user study
experiments.

13408



References
[1] Mixamo. https://www.mixamo.com/. 1, 3
[2] Hyemin Ahn, Jaehun Kim, Kihyun Kim, and Songhwai Oh.

Generative autoregressive networks for 3d dancing move
synthesis from music. IEEE Robotics and Automation Let-
ters, 5(2):3500–3507, 2020. 3

[3] Emre Aksan, Peng Cao, Manuel Kaufmann, and Otmar
Hilliges. Attention, please: A spatio-temporal trans-
former for 3d human motion prediction. arXiv preprint
arXiv:2004.08692, 2020. 2, 3, 5, 7

[4] Emre Aksan, Manuel Kaufmann, and Otmar Hilliges. Struc-
tured prediction helps 3d human motion modelling. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 7144–7153, 2019. 2, 3

[5] Omid Alemi, Jules Françoise, and Philippe Pasquier.
Groovenet: Real-time music-driven dance movement gen-
eration using artificial neural networks. networks, 8(17):26,
2017. 3, 4

[6] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and
Bernt Schiele. 2d human pose estimation: New benchmark
and state of the art analysis. In Proceedings of the IEEE Con-
ference on computer Vision and Pattern Recognition, pages
3686–3693, 2014. 5

[7] Okan Arikan and David A Forsyth. Interactive motion gen-
eration from examples. ACM Transactions on Graphics
(TOG), 21(3):483–490, 2002. 2

[8] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer. Scheduled sampling for sequence prediction with
recurrent neural networks. In Advances in neural informa-
tion processing systems, 2015. 3

[9] Uttaran Bhattacharya, Nicholas Rewkowski, Abhishek
Banerjee, Pooja Guhan, Aniket Bera, and Dinesh Manocha.
Text2gestures: A transformer-based network for generating
emotive body gestures for virtual agents. arXiv preprint
arXiv:2101.11101, 2021. 3

[10] Richard Bowden. Learning statistical models of human mo-
tion. In IEEE Workshop on Human Modeling, Analysis and
Synthesis, CVPR, volume 2000, 2000. 2

[11] Matthew Brand and Aaron Hertzmann. Style machines. In
Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, pages 183–192, 2000.
2
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[62] Meinard Müller, Tido Röder, and Michael Clausen. Efficient
content-based retrieval of motion capture data. In ACM SIG-
GRAPH 2005 Papers, pages 677–685. 2005. 6

[63] Kensuke Onuma, Christos Faloutsos, and Jessica K Hodgins.
Fmdistance: A fast and effective distance function for mo-
tion capture data. In Eurographics (Short Papers), pages 83–
86, 2008. 6

[64] Katherine Pullen and Christoph Bregler. Animating by
multi-level sampling. In Proceedings Computer Animation
2000, pages 36–42. IEEE, 2000. 2

[65] Haibo Qiu, Chunyu Wang, Jingdong Wang, Naiyan Wang,
and Wenjun Zeng. Cross view fusion for 3d human pose
estimation. In International Conference on Computer Vision
(ICCV), 2019. 5

[66] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative
pre-training, 2018. 4, 5, 7

[67] Xuanchi Ren, Haoran Li, Zijian Huang, and Qifeng Chen.
Music-oriented dance video synthesis with pose perceptual
loss. arXiv preprint arXiv:1912.06606, 2019. 3

[68] Xuanchi Ren, Haoran Li, Zijian Huang, and Qifeng Chen.
Self-supervised dance video synthesis conditioned on music.
In Proceedings of the 28th ACM International Conference on
Multimedia, pages 46–54, 2020. 3

[69] Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou
Zhao, and Tie-Yan Liu. Fastspeech: Fast, robust and con-
trollable text to speech. In Advances in Neural Information
Processing Systems, pages 3171–3180, 2019. 3

[70] Matteo Ruggero Ronchi and Pietro Perona. Benchmarking
and error diagnosis in multi-instance pose estimation. In The
IEEE International Conference on Computer Vision (ICCV),
Oct 2017. 4

[71] Takaaki Shiratori, Atsushi Nakazawa, and Katsushi Ikeuchi.
Dancing-to-music character animation. In Computer Graph-
ics Forum, volume 25, pages 449–458. Wiley Online Library,
2006. 3

[72] Eli Shlizerman, Lucio Dery, Hayden Schoen, and Ira
Kemelmacher-Shlizerman. Audio to body dynamics. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 7574–7583, 2018. 3

[73] Sebastian Starke, He Zhang, Taku Komura, and Jun Saito.
Neural state machine for character-scene interactions. ACM
Trans. Graph., 38(6):209–1, 2019. 3

[74] Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Za-
man. Local motion phases for learning multi-contact char-
acter movements. ACM Transactions on Graphics (TOG),
39(4):54–1, 2020. 3

[75] Statista. https://www.statista.
com/statistics/249396/
top-youtube-videos-views/, 2020. Accessed:
2020-11-09. 1

[76] Chen Sun, Fabien Baradel, Kevin Murphy, and Cordelia
Schmid. Learning video representations using contrastive
bidirectional transformer. arXiv preprint arXiv:1906.05743,
2019. 3

[77] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and
Cordelia Schmid. Videobert: A joint model for video and
language representation learning. In Proceedings of the IEEE
International Conference on Computer Vision, pages 7464–
7473, 2019. 3

[78] Guofei Sun, Yongkang Wong, Zhiyong Cheng, Mohan S
Kankanhalli, Weidong Geng, and Xiangdong Li. Deepdance:
Music-to-dance motion choreography with adversarial learn-
ing. IEEE Transactions on Multimedia, 2020. 3, 4

[79] Taoran Tang, Jia Jia, and Hanyang Mao. Dance with melody:
An lstm-autoencoder approach to music-oriented dance syn-
thesis. In Proceedings of the 26th ACM international confer-
ence on Multimedia, pages 1598–1606, 2018. 3, 4

[80] Graham W Taylor and Geoffrey E Hinton. Factored con-
ditional restricted boltzmann machines for modeling motion
style. In Proceedings of the 26th annual international con-
ference on machine learning, pages 1025–1032, 2009. 2

[81] Purva Tendulkar, Abhishek Das, Aniruddha Kembhavi, and
Devi Parikh. Feel the music: Automatically generating a
dance for an input song. arXiv preprint arXiv:2006.11905,
2020. 3

[82] Shuhei Tsuchida, Satoru Fukayama, Masahiro Hamasaki,
and Masataka Goto. Aist dance video database: Multi-genre,
multi-dancer, and multi-camera database for dance informa-
tion processing. In Proceedings of the 20th International
Society for Music Information Retrieval Conference, ISMIR
2019, pages 501–510, Delft, Netherlands, Nov. 2019. 2, 3

[83] Jean-Marc Valin and Jan Skoglund. Lpcnet: Improving neu-
ral speech synthesis through linear prediction. In ICASSP
2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5891–5895.
IEEE, 2019. 3

[84] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 3,
4

[85] Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Don-
ahue, Raymond Mooney, Trevor Darrell, and Kate Saenko.
Sequence to sequence-video to text. In Proceedings of the
IEEE international conference on computer vision, pages
4534–4542, 2015. 3

13411



[86] Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Mar-
cus Rohrbach, Raymond Mooney, and Kate Saenko. Trans-
lating videos to natural language using deep recurrent neural
networks. arXiv preprint arXiv:1412.4729, 2014. 3

[87] Ruben Villegas, Jimei Yang, Duygu Ceylan, and Honglak
Lee. Neural kinematic networks for unsupervised motion
retargetting. In CVPR, 2018. 3

[88] Borui Wang, Ehsan Adeli, Hsu-kuang Chiu, De-An Huang,
and Juan Carlos Niebles. Imitation learning for human pose
prediction. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 7124–7133, 2019. 3

[89] Haoming Xu, Runhao Zeng, Qingyao Wu, Mingkui Tan,
and Chuang Gan. Cross-modal relation-aware networks for
audio-visual event localization. In Proceedings of the 28th
ACM International Conference on Multimedia, pages 3893–
3901, 2020. 3

[90] Nelson Yalta, Shinji Watanabe, Kazuhiro Nakadai, and Tet-
suya Ogata. Weakly-supervised deep recurrent neural net-
works for basic dance step generation. In 2019 International
Joint Conference on Neural Networks (IJCNN), pages 1–8.
IEEE, 2019. 3

[91] Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas,
Christopher Pal, Hugo Larochelle, and Aaron Courville. De-
scribing videos by exploiting temporal structure. In Proceed-
ings of the IEEE international conference on computer vi-
sion, pages 4507–4515, 2015. 3

[92] Zijie Ye, Haozhe Wu, Jia Jia, Yaohua Bu, Wei Chen, Fanbo
Meng, and Yanfeng Wang. Choreonet: Towards music to
dance synthesis with choreographic action unit. In Proceed-
ings of the 28th ACM International Conference on Multime-
dia, pages 744–752, 2020. 3

[93] Haonan Yu, Jiang Wang, Zhiheng Huang, Yi Yang, and Wei
Xu. Video paragraph captioning using hierarchical recurrent
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4584–4593,
2016. 3

[94] He Zhang, Sebastian Starke, Taku Komura, and Jun Saito.
Mode-adaptive neural networks for quadruped motion con-
trol. ACM Transactions on Graphics (TOG), 37(4):1–11,
2018. 3

[95] Luowei Zhou, Yingbo Zhou, Jason J Corso, Richard Socher,
and Caiming Xiong. End-to-end dense video captioning with
masked transformer. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8739–
8748, 2018. 3

[96] Wenlin Zhuang, Congyi Wang, Siyu Xia, Jinxiang Chai, and
Yangang Wang. Music2dance: Music-driven dance genera-
tion using wavenet. arXiv preprint arXiv:2002.03761, 2020.
3, 4, 6, 8

[97] Wenlin Zhuang, Yangang Wang, Joseph Robinson, Con-
gyi Wang, Ming Shao, Yun Fu, and Siyu Xia. Towards
3d dance motion synthesis and control. arXiv preprint
arXiv:2006.05743, 2020. 3

13412


