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Abstract

Benefiting from large-scale pre-training, we have wit-
nessed significant performance boost on the popular Visual
Question Answering (VQA) task. Despite rapid progress,
it remains unclear whether these state-of-the-art (SOTA)
models are robust when encountering examples in the wild.
To study this, we introduce Adversarial VQA, a new large-
scale VQA benchmark, collected iteratively via an adver-
sarial human-and-model-in-the-loop procedure. Through
this new benchmark, we discover several interesting find-
ings. (i) Surprisingly, we find that during dataset collection,
non-expert annotators can easily attack SOTA VQA mod-
els successfully. (ii) Both large-scale pre-trained models
and adversarial training methods achieve far worse perfor-
mance on the new benchmark than over standard VQA v2
dataset, revealing the fragility of these models while demon-
strating the effectiveness of our adversarial dataset. (iii)
When used for data augmentation, our dataset can effec-
tively boost model performance on other robust VQA bench-
marks. We hope our Adversarial VQA dataset can shed new
light on robustness study in the community and serve as a
valuable benchmark for future work.

1. Introduction
Visual Question Answering (VQA) [4] is a task where

given an image and a question about it, the model provides
an open-ended answer. A successful VQA system can be
applied to real-life scenarios such as a chatbot that assists
visually impaired people. In these applications, the VQA
models are expected to handle diverse question types from
recognition to reasoning, and answer questions faithfully
based on the evidence in the image.

While model performance on the popular VQA
dataset [14] has been advanced in recent years [4, 19, 3,
50, 9, 43, 54], with better visual representations [18, 54],

Figure 1: Illustration of data collection examples. The workers
try to attack the VQA model for at most 5 times by asking hard
questions about the image, and succeeds at the last attempt. Green
(red) indicates a correct (wrong) answer.

more sophisticated model designs [12, 27], large-scale pre-
training [30, 41, 7, 42, 55] and adversarial training [11],
today’s VQA models are still far from being robust enough
for practical use. There are some works studying the robust-
ness of VQA models, such as their sensitivity to visual con-
tent manipulation [1], answer distribution shift [2], linguis-
tic variations in input questions [39], and reasoning capa-
bilities [13, 38]. However, current robust VQA benchmarks
mostly suffer from three main limitations: (i) designed with
heuristic rules [13, 2, 1]; (ii) focused on a single type of
robustness [38, 39, 13]; (iii) based on VQA v2 [14] images
(or questions), which state-of-the-art (SOTA) VQA models
are trained on [13, 2, 1, 38, 39]. The images [1] or ques-
tions [13, 17] are often synthesized, not provided by human.

In addition, previous data collection procedures on VQA
benchmarks are often static, meaning that the data samples
in these datasets do not evolve, and model performance can
saturate on the fixed dataset without good generalization.
For example, model accuracy on VQA v2 has been im-
proved from 50% [4] to 76% [54] since inception. Simi-
larly, on robust VQA benchmarks, a recent study [28] has
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found that pre-trained models can greatly lift state of the art.
Yet it remains unclear whether such high performance can
be maintained when encountering examples in the wild.

To build an organically evolving benchmark, we intro-
duce Adversarial VQA (AVQA), a new large-scale VQA
dataset dynamically collected with Human-And-Model-in-
the-Loop Enabled Training (HAMLET) [47]. AVQA is
built on images from different domains, including web im-
ages from Conceptual Captions [40], user-generated images
from Fakeddit [32], and movie images from VCR [52]. Our
data collection is iterative and can be perpetually going.
We first ask human annotators to create examples that cur-
rent best models cannot answer correctly (Figure 1). These
newly annotated examples expose the model’s weaknesses,
and are added to the training data for training a stronger
model. The re-trained model is subjected to the same pro-
cess, and the collection can iterate for several rounds. Af-
ter each round, we train a new model and set aside a new
test set. In this way, not only is the resultant dataset more
challenging than existing benchmarks, but this process also
yields a “moving post” target for VQA systems, rather than
a static benchmark that will eventually saturate.

With this new benchmark, we present a thorough quan-
titative evaluation on the robustness of VQA models along
multiple dimensions. First, we provide the first study on
the vulnerability of VQA models when under adversarial
attacks by human. Second, we benchmark several SOTA
VQA models on the proposed dataset to reveal the fragility
of VQA models. We observe a significant and universal per-
formance drop when compared to VQA v2 and other robust
VQA benchmarks, which corroborates our belief that ex-
isting VQA models are not robust enough. Meanwhile, this
also demonstrates the transferability of these adversarial ex-
amples – data samples collected using one set of models are
also challenging for other models. Third, as our annotators
can ask different types of questions for different types of ro-
bustness, our analyses show that SOTA models suffer across
various questions types, especially counting and reasoning.

Our main contributions are summarized as follows. (i)
For better evaluation of VQA model robustness, we intro-
duce a new VQA benchmark dynamically collected with
a Human-and-Model-in-the-Loop procedure. (ii) Despite
rapid advances on VQA v2 and robust VQA benchmarks,
the evaluation on our new dataset shows that SOTA models
are far from being robust. In fact, they are extremely vulner-
able when attacked by human annotators, who can succeed
within 2 trials on average. (iii) We provide a thorough anal-
ysis to share insights on the shortcomings of current models
as well as comparison with other robust VQA benchmarks.

2. Related Work
Robust VQA Benchmarks There has been a growing in-
terest in building new benchmarks to study the robustness

of VQA models. VQA-CP [2], the first robust VQA bench-
mark constructed via reshuffling examples in VQA v2 [14],
is proposed to evaluate question-oriented language bias in
VQA models. GQA-OOD [22] improves from VQA-CP,
and proposes to evaluate the performance differences be-
tween in-distribution and out-of-distribution split. Besides
language bias, VQA-Rephrasings [39] exposes the brittle-
ness of VQA models to linguistic variations in questions
by collecting human-written rephrasings of VQA v2 ques-
tions. Causal VQA [1] studies robustness against semantic
image manipulations, and tests for prediction consistency
to questions on clean images and corresponding edited im-
ages. Further studies investigate robustness against rea-
soning. For instance, [38] collects perception-related sub-
questions per question for a new reasoning split of VQA
dataset. [13] tests model’s ability to logical reasoning
through logical compositions of yes/no questions in VQA
v2. GQA [17] provides large-scale rule-based questions
from ground-truth scene graphs, that can test VQA model’s
ability on positional reasoning and relational reasoning.

Despite the continuous efforts in evaluating robustness
of VQA models, these works mostly focus on a single type
of robustness, and are based on the original VQA v2 dataset
via either another round of question collection given the ex-
isting VQA examples, or automatic transformation or ma-
nipulation of current examples. In comparison, we use dif-
ferent image sources, and collect a new challenging VQA
benchmark by allowing human annotators to directly attack
current state-of-the-art VQA models.

Model-in-the-Loop Data Collection Dataset collection
with a model-in-the-loop setting has received increasing at-
tention in recent years in the NLP community. In this set-
ting, models are used in the collection process to identify
wrongly predicted, thus more challenging examples. These
models are used either as a post-processing filter [53, 5] or
directly during annotation [49, 34, 5]. In ANLI [34], the
model-in-the-loop strategy is extended to a Human-And-
Model-in-the-Loop Enabled Training (HAMLET) setting,
where the data collection happens in multiple rounds, and
in each round, the models are updated to stronger versions
by training with examples collected from previous rounds.
The goal of ANLI is to create a natural language infer-
ence (NLI) dataset that can grow along with the rapid ad-
vance of model capabilities [10, 29, 48, 24]. In contrast
to static datasets that will eventually saturate as models be-
come stronger, datasets created with the HAMLET proce-
dure are dynamic – if the test set saturates with a more pow-
erful model, one can use this more powerful model to assist
the collection of a new set of difficult examples, leading to a
never-ending challenge for the community. Meanwhile, the
adversarial nature of the HAMLET procedure also helps to
identify the weaknesses and vulnerabilities of existing mod-
els, and the biases or annotation artifacts [15, 35, 26] in ex-
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Figure 2: Overview of our adversarial data collection process, for a single round. The process can be considered as a game played by two
parties, a human annotator and a well-trained model. Given an image, the annotator tries to attack the model by writing a tricky question
(step 1), the model then predicts an answer to the question (step 2). Next, the human annotator judges the correctness of the model answer
(step 3). If the model answer is judged as “definitely wrong” 7, meaning the attack is successful, then we verify the question and collect
more answers for it (step 3.1). Otherwise, the attack is failed, the annotator needs to write another question to attack the model (step 3.2).
The val and test splits contain only successfully attacked questions, while train split contains also the failed questions.

isting datasets [6, 46, 26]. Beyond its application to the NLI
task, the HAMLET procedure is also proved to be useful
in collecting more challenging examples for the video-and-
language future prediction task [26].

3. Adversarial VQA Dataset
In this section, we introduce the AVQA dataset in de-

tail. Sec. 3.1 explains the data collection pipeline. Sec. 3.2
and Sec. 3.3 present data statistics and the comparison with
other datasets.

3.1. Data Collection Pipeline

The HAMLET data collection procedure can be consid-
ered as a game played by two parties: a human annotator
and a well-trained model. The human annotator competes
against the model as an adversary and tries to design adver-
sarial examples to identify its vulnerabilities. After collect-
ing enough examples, the model augments its training with
the collected data to defend similar attacks. For VQA, we
define the adversarial example as an adversarial question on
a natural image that the model answers incorrectly.

As shown in Figure 2, given an image, the human anno-
tator tries to write a tricky question that the VQA model may
fail. Once the question is submitted, an online model pre-
diction will be displayed immediately to the workers. The
model answer is then judged by the same annotator as ei-
ther “definitely correct”, “definitely wrong”, or “not sure”.
If the model prediction is “definitely wrong”, then the attack
is successful, and we further ask the annotator to provide a
correct answer. Otherwise, the annotator needs to write an-
other question until the model predicts a wrong answer, or
the number of tries exceeds a threshold (5 tries). To avoid
obviously invalid questions caused by the annotator taking
shortcuts (e.g., untruthful judgement on model predictions,
questions irrelevant to the image content), we also launch
an answer annotation task. Successfully attacked questions
are provided to 9 other annotators to collect extra answers,

as well as their confidence level (“confident”, “maybe” and
“not confident”) of their answer. The questions that re-
ceive less than 6 “confident” answers and have no agree-
ment in answers among 10 annotators are removed during
post-processing. In the end, each image is presented to 3
workers for question collection, and each image-question
pair is shown to 10 annotators for answer collection.

This procedure can be continuously deployed for mul-
tiple rounds. At each round, we strengthen the models as
we re-train them with extra data collected from previous
rounds. This “dynamic” evolution of attacked models al-
lows the collection of “harder” questions in the later rounds.
In our setup, we launch the data collection for 3 rounds on
Amazon Mechanical Turk. However, this data collection
can be a never-ending process, as we can always replace the
attacked model with a stronger model trained on newly col-
lected data or better architectures developed in the future.
Round 1 (R1) For the first round, we employ VQA models
trained on examples from VQA v2 [14] and VGQA [23] as
our starting point. To avoid the collected questions overfit-
ting to the vulnerabilities of a single model or a single ar-
chitecture, for each user question, we randomly sample one
model from LXMERT [43], UNITER-B [9] and UNITER-
L [9] as the attacked model to generate the answer. We
choose LXMERT and UNITER as representatives of two-
stream and single-stream pre-trained V+L models, due to
their strong performance on VQA v2. We use images sam-
pled from Conceptual Captions [40] for annotation. In total,
we collected 38.7K verified1 questions and 28.2K unverfied
questions over 13.7K images, and split the verified exam-
ples into 60%/10%/30% for train/val/test splits. All unveri-
fied examples are also added to the training split.
Round 2 (R2) For the second round, we re-train our mod-
els with questions from VQA v2, VGQA and R1’s train
split, and select the best model checkpoints of LXMERT,

1Verified questions are all successfully attacked questions.
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Dataset Image Source #Image IsCollected
#IQ Model error rate (%) #Tries Time (sec.) Data Split

Total/Verified Total/Verified Mean/Median per verified ex. Train/Val/Test

Previous Robust VQA Datsets
VQA-Reph.

COCO

- 3 162K/- - - - -/162K/-
VQA-Intro. - 3 238K/- - - - 222K/-/93K
VQA-LOL Comp. - 7 1.25M/- - - - 916M/43K/291K
VQA-LOL Supp. - 7 2.55M/- - - - 1.9M/9k/669K
VQA-CP v2 - 7 -/- - - - 438K/-/220K
IV-VQA

COCO† 357K 7 376K/- - - - 257K/11.6K/108K
CV-VQA 18.0K 7 12.7K/- - - - 8.5K/0.4K/3.7K

Ours
R1 CC 13.7K 3 93.1K/45.6K 48.9/35.2 1.6/1 71.0 53.6K/3.3K/10.0K
R2 CC 13.1K 3 70.4K/37.8K 56.1/49.0 1.5/1 54.2 42.8K/2.7K/8.3K
R3 Various 11.1K 3 79.5K/40.3K 50.7/34.4 1.6/1 57.3 45.9K/2.7K/8.1K
AVQA Various 37.9K 3 243.0K/123.7K 50.9/38.1 1.6/1 61.3 142.1K/8.7K/26.4K

Table 1: Data statistics. ‘Model error rate’ is the percentage of examples that the model gets wrong; ‘Verified’ is the questions with 10
answer annotations. Images for R3 are from various domains: Conceptual Captions (CC) [40], VCR [52] and Fakeddit [32]. We compare
our dataset against previous robust VQA datasets, based on COCO [8] images. For number of image-question pairs (#IQ) and images
(#Image), we only report the number of new examples generated/collected in each dataset. † indicates that the images are not natural, but
edited. ‘IsCollected’ indicates whether the data is collected via crowdsourcing.

UNITER-B and UNITER-L based on R1’s val set. Sim-
ilarly, we randomly sample one model at a time for the
workers to attack. A new set of non-overlapping Concep-
tual Captions images are used. In total, we collected 23.5K
verified questions and 19.3K unverified question over 13.1K
images, and split the data in a similar manner to R1.

Round 3 (R3) For the third round, we include more di-
verse images from different domains: (i) web images
from Conceptual Captions [40]; (ii) user-generated images
from Fakeddit [32]; and (iii) movie frame images from
VCR [52]. The attacked model is still randomly sampled
from LXMERT, UNITER-B and UNITER-L, but we add
the training set from R1 and R2 to the training data.

Summary Finally, combining data collected in R1, R2
and R3 produces our proposed AVQA dataset. In the end,
we collected 243.0K questions over 37.9K images, with
142.1K/8.7K/26.4K images in the train/val/test split.

3.2. Data Statistics

The data statistics of the new dataset are summarized
in Table 1. The number of examples we collected per im-
age varies per round, starting with approximately 6.8 ques-
tions/image for R1, to around 5.4 for R2 and 7.2 for R3. Un-
der the same image domain for R1 and R2, we suspect that
the annotators learn to identify model vulnerabilities more
rapidly than the models learn to defend itself from the ad-
versarial examples. We provide analyses in Sec. 4.1 and 4.4
for further investigation. On the one hand, the annotators
are getting better at identifying vulnerabilities of these mod-
els. Analyses of question types per round in Sec. 4.4 show
that the workers tend to ask more questions in certain cat-
egories, such as “count”, “OCR” and “commonsense rea-
soning”, that the model is more likely to fail. On the other
hand, although the attacked model is strengthened through

data augmentation, the model does not seem to learn from
the adversarial examples effectively.

For each round, we report the model error rate, both on
verified and all examples. The model error rate reported
under “Total” captures the percentage of examples where
the writer disagrees with the model’s answer during ques-
tion collection, but where we are not yet sure that the ex-
ample is correct. The verified model error rate is the per-
centage of model errors from examples that we further col-
lected 9 additional answers from other workers. We observe
an increase in model error rate from R1 to R2. Assuming
constant image domain difficulty in R1 and R2, the higher
model rate suggests that the models in the later rounds are
not significantly stronger, or the annotators are getting bet-
ter at fooling the state-of-the-art models. In R3, where we
included images from more diverse domains, the model er-
ror rate decreases from 49.0% to 34.4%. We suspect it is
because the movie images from VCR are mostly human-
centric, which is commonly observed in COCO.

We also report the average number of attempts (“#Tries”
in Table 1) that a worker needed to complete the annotation
process for each image, i.e., to successfully attack the model
or exceed the limits on number of tries. Surprisingly, al-
though the VQA models used in the later rounds are trained
with more data, the number of tries needed to successfully
attack them does not increase. On average, it takes less than
2 tries to successfully attack a VQA model. Similarly, the
average time needed per successful attack decreases by 15
seconds as data collection progresses.

3.3. Comparison with Other Datasets

Our Adversarial VQA dataset sets a new benchmark
for evaluating the robustness of VQA models. It improves
upon existing robust VQA benchmarks in several ways.
First, the dataset by design is more difficult than previous
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Model Training Data
R1 R2 R3 AVQA VQA v2 ∆(v2, AVQA)

val/test val/test val/test val/test test-dev test-dev, test

BUTD
VQA v2 +VGQA 20.80/19.28 18.77/18.85 20.63/21.10 20.12/19.71 67.60 47.89
ALL 24.96/22.11 22.62/22.78 23.92/23.61 23.91/22.78 67.52 44.74

UNITER-B

VQA v2 +VGQA 20.60/17.91 17.86/18.55 20.71/20.17 19.79/18.81 72.70 53.89
+R1 26.03/22.94 17.30/17.36 20.56/20.61 21.62/20.47 72.98 52.51
+R1+R2 26.60/24.76 23.21/23.86 19.26/18.73 23.26/22.62 72.75 50.13
ALL 26.85/24.93 23.38/23.92 24.48/23.27 25.04/24.10 72.66 48.56

UNITER-L

VQA v2 +VGQA 25.04/23.72 17.82/17.49 19.63/19.77 21.12/20.55 73.82 53.27
+R1 29.31/26.63 19.34/18.66 19.78/18.99 23.25/21.78 73.89 52.11
+R1+R2 30.13/28.15 23.11/23.54 17.35/17.05 23.97/23.29 73.77 50.48
ALL 30.80/28.45 22.95/23.11 24.08/21.97 26.27/24.78 74.15 49.37

LXMERT

VQA v2 +VGQA 19.76/18.15 18.98/18.79 21.08/21.27 19.93/19.31 72.31 53.00
+R1 23.89/22.65 19.01/17.91 21.64/21.42 21.68/20.78 72.51 51.73
+R1+R2 26.76/24.86 23.28/24.11 19.39/19.57 23.38/23.00 72.61 49.61
ALL 26.35/24.55 23.84/24.02 25.27/23.71 25.24/24.13 72.42 48.29

Table 2: Model performance of various models under different settings. AVQA / ALL refers to R1+R2+R3 / VQA v2+VGQA+AVQA.

datasets. During collection, we do not constrain the worker
to ask questions that only fall into a single robustness type
(Sec. 4.4). As a result, our dataset is helpful in defending
model robustness against several robust VQA benchmarks
(Sec. 4.3). Second, most robust VQA datasets are based on
VQA v2 validation set, which state-of-the-art models use
for training or hyper-parameter tuning. Thus, it is difficult
to analyze the robustness of the best-performing models due
to this data leakage. Our dataset is built on non-overlapping
images from diverse domains, which naturally resolves it.
Lastly, our dataset is composed of human-written ques-
tions on natural images, rather than rule-based questions in
[13, 17] or manipulated images in [1]. A detailed compari-
son on data statistics is provided in Table 1.

Our work is inspired by ANLI [34]. While ANLI focuses
on the pure text task of natural language inference, our work
targets at the multi-modal task of visual question answering.
However, due to the open-ended nature of VQA problem,
the construction of AVQA is more challenging. Instead of
giving the worker a target label when collecting adversar-
ial questions, we first ask the worker to judge whether the
model prediction is correct, then provide a ground-truth an-
swer. Our verification process is also different from ANLI.
In order to evaluate model performance under the same cri-
teria as VQA v2 [14], we collect 10 answers from workers
in total. Unlike the observations on ANLI, where the adver-
sarial robustness of NLI models can be improved in a large
extent through data augmentation of ANLI, our analysis on
AVQA in Sec. 4 will show that it is more difficult to defend
against adversarial attacks for VQA models.

4. Experiments and Analysis
In this section, we conduct extensive experiments to

study the AVQA dataset. Specifically, Sec. 4.1 and Sec. 4.2
evaluate different model architectures with different modal-
ity inputs on AVQA; Sec. 4.3 examines how AVQA can

help over other popular robust VQA benchmarks; Sec. 4.4
explores the question types that can fool the models; and
Sec. 4.5 compares our data collection with automatic adver-
sarial attack methods both qualitatively and quantitatively.

4.1. Model Evaluation

Table 2 reports the main results. In addition to UNITER-
B, UNITER-L [9] and LXMERT [43], we also include
BUTD [3] as an example of task-specific model with differ-
ent model architecture, prior to the large-scale pre-training
era. We show performance on the AVQA test sets per round,
the total AVQA test set, and VQA v2 test-dev set. Our key
observations are summarized as follows.
O1: Adversarial examples are transferrable across mod-
els. Both LXMERT and UNITER are variants of Trans-
former [45] architecture. We use BUTD as an example
to investigate whether the adversarial examples are trans-
ferrable among the three models. The ∼20 performance
of BUTD (trained on VQA v2+VGQA) on test set of each
round indicates that workers did not find vulnerabilities spe-
cific to a single model architecture, but generally applicable
ones across different model architectures.
O2: The difficulty level of rounds does not decrease.
Under the same training data, we observe that the model
achieves comparable or even lower performance on later
rounds. As aforementioned in data statistics, the increased
model error rates and the decreased average tries annotators
needed suggest that the later rounds contain more difficult
examples.
O3: Training with more rounds help defend robustness...
Generally, our results indicate that training on more rounds
improves model performance.
...but data augmentation alone is not effective. To inves-
tigate how much improvements are from adversarial exam-
ples, we show comparison of UNITER-B results on verified
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Data R1 R2 R3
Verified 25.63 22.84 23.63
Combined 26.85 22.82 24.38

Table 3: Comparison of verified and combined data. Results are
reported on val split from UNITER-B trained on training data of
each round, VQA v2 and VGQA.

Training Lang. R1 R2 R3 VQA v2

Data Only test test test test-dev
VQA v2+VG 7 17.91 18.55 20.17 72.70
AVQA-only 7 25.66 24.91 24.75 59.99
ALL 7 24.93 23.92 23.27 72.66
VQA v2+VG 3 17.82 17.03 21.32 45.81
AVQA-only 3 20.37 21.49 22.89 38.21
ALL 3 19.75 20.75 22.81 46.23

(a) Language-only model performance.

Model
AVQA VQA-CP v2

val test
BUTD 23.91 40.62 (38.82 [44])
+ [44] 23.79 43.96
UNITER-B 25.04 47.02 (46.93 [28])
+ [44] 24.70 47.12

(b) Model performance with a VQA-CP baseline from [44].

Table 4: Analysis on language bias.

and combined data in Table 3. In addition to verified data,
the combined data include examples that the worker thinks
the model has answered correctly. Even with almost dou-
bled data size, results on combined data are not significantly
better. This implies that simply training on more examples
that the model correctly answers can hardly help the model
be robust to adversarial attacks.
O4: Large model does not possess a clear advantage. Al-
though outperforming UNITER-B and LXMERT on R1,
UNITER-L does not show a clear advantage over R2 and
R3. Overall, these three models achieve similar perfor-
mance across rounds and on AVQA. When trained with
“ALL” data, the performance gain from UNITER-L over
BUTD is only +2.00 on AVQA, even though UNITER-L
is pre-trained with extensive amount of image-text pairs.

4.2. Key Factor Analysis

We dive deeper into the key factors behind the low per-
formance of state-of-the-art models on AVQA, and try to
answer the following questions.
Q1: Is the language in AVQA biased? Starting from VQA-
CP [2], concerns have been raised about the propensity of
models to pick up on spurious artifacts that are present just
in the co-occurrence of question-answer pairs, without ac-
tually paying attention to the image content. We compare
full models trained with both images and questions to mod-
els trained only on questions by zeroing out image features
in Table 4a. The results show that language-only mod-
els perform poorly on AVQA, and similarly on VQA v2.

Model Training Data
AVQA VQA v2

test test-dev

UNITER-B
VQA v2 +VGQA 18.81 72.70
ALL 24.10 72.66

ClipBERT
VQA v2 +VGQA 21.16 69.08
ALL 24.35 69.17

VILLA-B
VQA v2 +VGQA 19.68 73.37
ALL 26.08 74.28

Table 5: Evaluation of grid-feature-based method ClipBERT [25],
and adversarial-training-based method VILLA [11]. ‘ALL’ refers
to VQA v2+VGQA+AVQA.

Language-only model performance decreases over rounds
for AVQA. However, UNITER-B is not much better than
language-only on AVQA. Obviously, without manual inter-
vention, some bias remains in how annotators phrase ques-
tions. For example, there might be more counting questions
with answers other than 2, which is the majority answer in
VQA v2. Therefore, models trained on AVQA only per-
forms slightly higher for both UNITER-B and Language-
only model. However, we also observe the significant drop
in VQA v2 performance is out of proportion to the slight
performance improvement on AVQA.

We further investigate if the low performance is due to
the difference in answer distribution between training and
testing split. Due to the large number of answer candidates
(more than 3000 for VQA v2), it is impossible to evenly
balance the possibility of each answer. Therefore, we test
out this hypothesis by adopting a simple yet effective base-
line method on VQA-CP [44]: adding a regularization term
by replacing the image with a randomly sampled one. The
intuition is that the answer to a question corresponding to
a given image is very unlikely to be correct for a randomly
sampled image. As reported in Table 4b, although effective
on VQA-CP, adding such regularization hurts the perfor-
mance on AVQA for both BUTD and UNITER-B. In ad-
dition, when applied to a stronger model on VQA-CP, i.e.,
UNITER-B, the regularization term is less effective.

Q2: Is AVQA transferrable to different visual features?
The AVQA dataset is collected with the assistance of mod-
els trained on Faster R-CNN [36] region features [3]. To in-
vestigate whether these collected adversarial examples are
transferrable to different image features, we conduct exper-
iments using another type of feature, i.e., grid features [18]
from CNNs, which have shown to be effective for VQA
tasks [18, 16, 33, 25]. Specifically, we consider Clip-
BERT [25], an end-to-end pre-trained model that directly
takes in raw images and questions, and the images are repre-
sented by grid features as in [18]. Meanwhile, ClipBERT’s
end-to-end training strategy may also help to defend po-
tential attacks to fixed feature representations widely used
in previous work [9, 43, 3]. Table 5 compares ClipBERT
against UNITER-B. The poor performance of ClipBERT
on AVQA suggests that adversarial examples in AVQA
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Model Training Data
VQA-Rep.

VQA-LOL
Comp.

VQA-LOL
Supp.

VQA-Intro. CV-VQA IV-VQA

Acc. ↑ Acc. ↑ Acc. ↑ MX SX ↑ #flips ↓ #flips ↓
Previous models VQA v2 Train 56.59 [39] 49.88 [13] 50.54 [13] 50.05 [38] 7.53 [1] 78.44 [1]
UNITER-B [28] VQA v2 Train 64.66 54.16 49.89 56.69 8.47 40.67

UNITER-B (ours)
VQA v2 Train 64.56 54.54 50.00 56.80 8.44 39.97
+AVQA 65.42 55.10 51.36 57.93 8.43 38.40

Table 6: Model performance on recent robust VQA benchmarks.

Round Count OCR
Reasoning Visual Concept Recognition

Position Relation
Common-

sense
Other

Low-
level

Action
Small
Object

Occlusion Abstract

R1 23.3% 10.7% 14.7% 8.3% 17.3% 0.7% 9.7% 4.3% 13.3% 14.7% 6.3%
R2 30.0% 22.7% 12.0% 27.7% 20.0% 4.3% 12.7% 9.3% 22.7% 10.0% 15.3%
R3 35.3% 13.0% 13.0% 28.3% 25.0% 6.3% 11.7% 4.3% 20.0% 20.0% 6.0%
Ave. 29.6% 15.4% 13.2% 21.4% 20.8% 3.8% 11.3% 6.0% 18.7% 14.9% 9.2%

Table 7: Analysis of 300 randomly sampled AVQA examples per round and on average. Low-level visual concepts include color, shape,
and texture. A question may belong to multiple different categories.

are transferrable to different image representations. How-
ever, ClipBERT performs comparably to UNITER-B on
AVQA, although it significantly under-performs UNITER-
B on VQA v2, which suggests that VQA v2 may not be
reliable for evaluating model robustness.
Q3: How effective is adversarial training on AVQA? We
examine the effectiveness of adversarial training by adopt-
ing PGD-based adversarial training method VILLA in [11].
VILLA-B is both adversarially pre-trained on large-scale
image-text data and adversarially finetuned on the respec-
tive dataset. We compare its performance against UNITER-
B on both AVQA and VQA v2 in Table 5. Adversarial train-
ing brings slight performance improvement. However, the
performance gap between AVQA and VQA v2 is still very
significant. Note that VILLA-B crafts adversarial exam-
ples during training by adding adversarial perturbations to
the embedding space. These adversarial perturbations can
hardly change the intrinsic statistics of training data, such
as the distribution of question types and relevant objects in
the image. Our analysis of question types and visual recog-
nition concepts in Sec. 4.4 will show that AVQA is hard
because it requires the model to have the ability to reason,
count and recognize different visual concepts.

4.3. Evaluation on Other Datasets

We also test models on recent robust VQA benchmarks
including: VQA-Rephrasings [39] for linguistic variations,
VQA-LOL [13] Complement/Supplement for logical rea-
soning, VQA-Introspect [38] for consistency of model pre-
dictions in perceptual sub-questions and main reasoning
questions, CV-VQA [1] and IV-VQA [1] for model robust-
ness to image manipulations. Results are summarized in
Table 6. We observe that UNITER-B can already outper-
form previous models for most of the benchmarks, which
is consistent with observations in [28]. Training on AVQA

is helpful in improving model performance on robustness
benchmarks. Particularly, AVQA helps to boost model rea-
soning capability across 3 datasets. It is likely that AVQA
exposes the model training to more diverse question tem-
plates, hence improves on VQA-Rephrasings. On IV-VQA,
which focuses on counting questions, AVQA helps to im-
prove performance despite of the significant performance
gain UNITER-B has already achieved.

4.4. Analysis on Question Types

We manually annotate 300 randomly sampled examples
from each round to investigate: which types of questions do
workers employ to fool the models, and how they evolve as
the rounds progress.

Results are summarized in Table 7. Questions are cate-
gorized into 4 meta-categories: counting, OCR, reasoning,
and visual concept recognition. Although OCR and count-
ing can be considered as visual concept and quantitative rea-
soning, we separate them out as they contribute a large por-
tion per round, to almost 50% in the later rounds. There
are three main reasoning questions: positional reasoning
(i.e., the relative/absolute position of an object), relational
reasoning (i.e., semantic relationship between two or more
objects), and commonsense reasoning (i.e., visual common-
sense reasoning, e.g., “Is the water more likely to be a lake
or an ocean”, given an image showing a body of water sur-
rounded by mountains.). Other reasoning questions include
comparative reasoning (e.g., “which person is taller?”) and
logical reasoning (e.g., negation). For visual concept recog-
nition, we roughly divide them into low-level visual con-
cepts (e.g., color, shape, texture), action (e.g., “what is the
person doing”), small objects, occluded objects, and ab-
stract objects (e.g., objects in painting).

We observe that annotators rely heavily on counting
questions to attack the models – nearly 30% of the sampled
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(a) Visualization of examples collected per round in AVQA. Each ground-truth answer (VQA score) is collected from 10 workers.

(b) Visualization of examples generated via textual adversarial attack methods. Blue indicates the changes made in adversarial questions.

Figure 3: Illustration of adversarial examples from (a) AVQA and (b) textual adversarial attack methods: Sears [37], Textfooler [20] and
Sememe+PSO [51]. Green (red) indicates a correct (wrong) answer.

Method #Tries Error Rate Orig. Acc. Adv. Acc.
Sears [37] 3.0 11.6% 69.1 63.0
Textfooler [20] 39.5 1.4% 69.1 67.8
Sememe+PSO [51]† 35.9 88.6% 84.9 12.5
AVQA 1.6 38.1% - -

Table 8: Comparison to adversarial attack methods. Orig. Acc.
(Adv. Acc.) is the accuracy on original (adversarial) examples.
(†) Note that Sememe+PSO only attacks questions longer than 10
words, so 94.8% examples are not being attacked.

questions across all rounds fall into this category. While
R1 questions are mostly on objects that are of normal sizes
and less occluded, we found that the counting questions be-
come harder in R2 and R3 as many of them are about small
and occluded objects. There is also a surge in abstract and
OCR questions for R2, due to the increase in the number of
abstract images and images that contain scene text. The per-
centage of reasoning questions, especially relational reason-
ing and commonsense reasoning, increases drastically from
R1 to R2 and R3. Visualizations in Figure 3a show that
questions in later rounds are indeed more complicated, with
more detailed relational and positional descriptions when
referring to an object. Overall, these findings are compati-
ble with the idea that VQA models are not robust enough to
various types of questions.

4.5. Why Human-in-the-Loop?

Textual adversarial attack methods [31, 20, 51] have
been widely explored in NLP. The goal is to alter model pre-
dictions with minor changes to the input textual queries, so
that adversarial examples can be generated and model vul-
nerabilities can be identified automatically. We investigate
whether we can directly apply these methods to generate
adversarial examples in high quality and compare the gen-
erated examples to AVQA. In total, we consider 3 different
textual adversarial attack methods, including Sears [37] via

bask-translation for sentence-level attacks, Textfooler [20]
and Sememe+PSO [51] by replacing words with its syn-
onyms or words that share the same sememe annotations for
word-level attacks. The adversarial attacks are performed
to all questions on 5000 images in the Karpathy split [21].
We visualize examples in Figure 3b. Without human-in-
the-loop, the generated adversarial questions share similar
problems: (i) the adversarial question does not share the
same answer with the original question, therefore additional
answer annotations may need to be collected; (ii) model
prediction to the adversarial question is not necessarily in-
correct when it is different from answers to the original
question; (iii) word similarity may not hold when it needs
to be grounded to the image (e.g., window vs. skylights).
In addition, we compare these methods against the AVQA
dataset quantitatively in Table 8. Generally, humans take
much fewer tries and have a higher successful rate when at-
tacking VQA models. How to design effective adversarial
attack methods to generate high-quality VQA examples can
be an interesting future research direction.

5. Conclusion
In this work, we collect a new benchmark Adversarial

VQA (AVQA) to evaluate the robustness of VQA models.
It is collected iteratively for 3 rounds via a human-and-
model-in-the-loop enabled training paradigm, on images
from different domains. AVQA questions cover diverse ro-
bustness types, enabling a more comprehensive evaluation
on model robustness. Our analysis shows that state-of-the-
art models cannot maintain decent performance on AVQA,
despite of large-scale pre-training, adversarial training, so-
phisticated model architecture design, and stronger visual
features. AVQA brings a new challenge to the community
on how to design more robust VQA models that are ready
to deploy in real-life applications.
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