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Abstract

The decision-based black-box attack means to craft ad-
versarial examples with only the top-1 label of the victim
model available. A common practice is to start from a large
perturbation and then iteratively reduce it with a determin-
istic direction and a random one while keeping it adversar-
ial. The limited information obtained from each query and
inefficient direction sampling impede attack efficiency, mak-
ing it hard to obtain a small enough perturbation within a
limited number of queries. To tackle this problem, we pro-
pose a novel attack method termed Adaptive History-driven
Attack (AHA) which gathers information from all histori-
cal queries as the prior for current sampling. Moreover, to
balance between the deterministic direction and the random
one, we dynamically adjust the coefficient according to the
ratio of the actual magnitude reduction to the expected one.
Such a strategy improves the success rate of queries dur-
ing optimization, letting adversarial examples move swiftly
along the decision boundary. Our method can also integrate
with subspace optimization like dimension reduction to fur-
ther improve efficiency. Extensive experiments on both Im-
ageNet and CelebA datasets demonstrate that our method
achieves at least 24.3% lower magnitude of perturbation
on average with the same number of queries. Finally, we
prove the practical potential of our method by evaluating it
on popular defense methods and a real-world system pro-
vided by MEGVII Face++.

1. Introduction

With the rapid development and the dominant perfor-
mance, deep neural networks (DNNs) have been success-
fully deployed to improve productivity in many fields,
e.g., the voice assistant in smart speakers, image recog-
nition APIs on the cloud, and automatic pilot in vehi-
cles. Though many effort have been put into explaining the
DNNs [1, 18, 19, 43], DNNs are still far from full control-
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lable and have been proven to be vulnerable to carefully
crafted imperceptible perturbations, i.e., adversarial pertur-
bations [41], which poses threats to the application of DNNs
in security scenarios.

Therefore, many methods have been proposed to evalu-
ate the robustness of the DNNs under different settings [13,
4, 21]. Among all the settings, the black-box setting
is the most practical but challenging one since only the
corresponding outputs are available. Some attack meth-
ods [29, 38, 37] craft adversarial examples on white-box
models and transfer them to the victim model. These
transfer-based methods consume fewer resources but can
not guarantee a high attack success rate. Some adversaries
turn to query the model repeatedly. Depending on the form
of the outputs, query-based black-box attack methods can
be further divided into the score-based attack and decision-
based attack. Outputs of the former one are usually continu-
ous and floating numbers (e.g., class probabilities) respond-
ing to the change of input rapidly, which is able to guide the
perturbation generation step by step. The decision-based
attack setting is more challenging where the adversary can
only fetch the result whether the input belongs to the same
class as the target sample or not. Such a setting usually is
correlated to a target attack whose goal is to craft an adver-
sarial example classified as a target one.

The most classic decision-based attack, Boundary At-
tack [2], starts from an adversarial example and search
along two directions: the source direction towards the
source image directly for reducing perturbation and the
spherical direction randomly sampled from the normal dis-
tribution for exploring. However, this method mainly de-
pends on random sampling without utilizing information
from prior queries efficiently, resulting in an enormous
number of queries. Many methods have been proposed to
improve it. Biased Boundary Attack [3] introduces three bi-
ases to improve the efficiency of direction sampling. Evolu-
tionary Attack [10] reduces the solution space and models
the local geometry via successful queries with (1+1)-CMA-
ES optimization. However, without taking full advantage
of all information from all queries, these methods still re-
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quire a large number of queries to reduce the magnitude of
the perturbations. Moreover, the trade-off of the two direc-
tions also impacts a lot. We argue that large coefficient for
the direction reducing the perturbation brings more queries
crossing the boundary and then failing, but large coeffi-
cient for the exploring direction will increase the number
of queries. Existing methods adjust the corresponding co-
efficients based on whether the query is adversarial. Such a
binary value gives a coarse guide thereby leaving coefficient
adjustment inflexible.

In this paper, towards obtaining perturbations with
smaller magnitude under fewer queries, we propose the
Adaptive History-driven Attack (AHA) which makes use
of information from all queries with an adaptive coefficient
adjustment strategy. Following the boundary attack, AHA
starts from a large perturbation, and then reduces it itera-
tively with a determinate direction (i.e., source direction)
and a random direction. Instead of randomly sampling from
a standard normal distribution for the random direction, we
gather information from historical queries and apply it as
the prior for current sampling. Such a method is simple
yet efficient without extra computation cost added. To bal-
ance between the source direction and the direction driven
by historical queries, considering that the purpose of coef-
ficient adjusting is to reduce the magnitude of the perturba-
tions as much as possible, we dynamically adjust the coeffi-
cient based on the ratio of the actual reduction on perturba-
tion’s magnitude to the expected one. This strategy reduces
the chance of getting stuck into the decision boundary. Be-
sides, the optimization method is orthogonal to the existing
subspace method like dimension reduction. These methods
can be integrated to further improve performance. We con-
duct extensive experiments on various models including a
real-world online system to demonstrate the efficiency of
the proposed AHA. We conclude our contributions as:

• We propose a simple yet efficient decision-based at-
tack method, termed Adaptive History-driven Attack
(AHA), which utilizes information of both success-
ful and failed historical queries as the prior for cur-
rent sampling without complex optimization and extra
computation cost added.

• To balance between two directions during the opti-
mization process, we design a novel strategy to ad-
just the coefficient dynamically. Instead of on how
often the optimization successes, the coefficient is ad-
justed based on the degree of the actual reduction on
the magnitude compared with the expected one, which
increases the probability of finding valid queries.

• Finally, we evaluate AHA on models for natural im-
ages and human faces. The perturbations generated by
AHA are smaller than the state-of-the-art method with

the same number of queries. Furthermore, the effec-
tiveness of AHA on the real-world system, i.e., face
verification API from MEGVII Face++, is also veri-
fied with 24.9% smaller perturbations than baseline.

2. Related Work
Score-based Attack. Due to the fact that outputs fetched

are continuous and floating numbers, every small change in
input will give an instant response. It is natural to estimate
the value of the gradient, and then perform the white-box at-
tack. ZOO [6] estimates the value of the gradient using the
finite-difference method. With such a dimension-wise way,
it takes 2d queries each time to estimate the gradient. In-
stead of the finite-difference method, NES [20] utilizes the
natural evolutionary strategy with random vectors sampled
from the normal distribution to reduce the required num-
ber of queries. BanditsTD [21] method further introduces
a data-dependent and a time-dependent prior to improve
the efficiency of gradient estimation. Instead of gradient
estimation, some methods adopt random search strategies.
SimBA [15] crafts a set of orthonormal vectors first, then
randomly picks one from the set and adds or subtracts it
if the objective function decreases. PPBA [24] reduces the
dimension with low-frequency constraint and performs ran-
dom walk optimization on the low dimension space.

Decision-based Attack. Unlike the score-based attack,
the outputs of models in the decision-based attack are only
the labels. Such a hard-label setting increases the difficulty
since the tiny change of the input may not reflect on the out-
put. Opt-Attack [7] re-formulates this problem as a contin-
uous optimization problem w.r.t the direction and distance
to the decision boundary, and performs gradient estimation
on it. However, this method is ineffective since the distance
calculation and gradient estimation on the large dimension
will consume an enormous number of queries. HSJA [5]
directly performs the gradient estimation on the decision
boundary with binary outputs. And QEBA [23] further
improves the performance by adopted subspace on HSJA.
However, hundreds of queries are needed for one time gra-
dient estimation, which makes these methods still ineffi-
cient. Boundary attack [2] starts from a large adversarial
perturbation and simultaneously reduces it with source di-
rection and spherical direction. It bases on random walk op-
timization and rejects updating when not adversarial. This
method is simple but the usage of standard normal distri-
bution impedes efficiency. Biased Boundary Attack [3] in-
troduces some biases to improve the boundary attack. In-
stead of the normal distribution, the Perlin distribution is
adopted for low-frequency constraint, and the difference be-
tween the adversarial example and the source image is used
as the weight for pixels. This method reduces the solution
space, but it is not enough. Evolutionary method [10] re-
places the normal distribution with a custom variance. The
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variance is updated with (1+1)-CMA-ES when sampling is
successful to model the weight for each pixel. However,
the variance is sign-independent, which makes the sam-
pling unstable. CAB [32] uses the square of the difference
between the adversarial example and the source image as
variance and accumulates the directions when failed for the
mean. SurFree [28] tries to move along diverse directions
guided by the geometrical properties of the decision bound-
ary. Though these optimization methods are well-designed,
they are complex and still not efficient enough.

3. Proposed Method
Throughout this paper, we focus on reducing the mag-

nitude of the perturbations within limited queries under the
decision-based target black-box attack setting. Based on the
boundary attack, we perform the random walk optimization
with historical queries as prior as detailed in Sec. 3.2. Coef-
ficients of the two search directions play an important role
as to move towards the source input more or to learn from
the history more. To balance them, a novel adaptive ad-
justing strategy is proposed in Sec. 3.3. The optimization
method can be further improved with the help of the sub-
space optimization as in Sec. 3.4. In the rest of this section,
we will first introduce the preliminary knowledge and then
give a thorough description of our proposed method.

3.1. Preliminaries

Suppose we have a source input sample xs, a tar-
get one xt, and a deep neural network based function
f(x1,x2) : X × X 7→ Y to determine whether the two in-
put sample belong to the same class, where X = [0, 1]d is
the space for images with d-dimension and Y = {0, 1} (1
denotes the two inputs share the same class). The aim of
decision-based target attack is to find an adversarial exam-
ple x′ that close to the source input xs as far as possible
while keep f(x′,xt) = 1. We have a objective function as:

min
x′

L(x′) = D(x′,xs) + λ · (1− f(x′,xt)), (1)

where λ is a very large number to make sure L(x′) large
enough when the adversarial objective is unsatisfied, and
D(·, ·) is the distance function. In this paper, we select L2

norm as the distance function, i.e.,D(x′,xs) = ‖x′−xs‖2.
Following the common practice [2, 10], we start from an

adversarial sample (with the same class as the target one),
e.g., the target sample xt, and then move it close to the orig-
inal sample xs as much as possible iteratively with a con-
straint on the number of queries. A common update formula
can be represented as:

xk+1 = xk + α · xs − xk

‖xs − xk‖2
+ β · η

‖η‖2
,η ∼ N (0, I) (2)

where xk is the adversarial example at the k-th steps and xs
is the source input, (xs − xk) and η are the source direc-

tion and spherical direction, respectively. α and β are the
corresponding coefficients. The update value can be further
multiplied by the distance between the current sample and
the original sample to reduce the update value iteratively for
better convergence:

xk+1 = xk + (α · xs − xk
‖xs − xk‖2

+ β · η

‖η‖2
) · ‖xs − xk‖2

= xk + α · (xs − xk) + β · η

‖η‖2
· ‖xs − xk‖2.

(3)

Here a query is called a successful query if the xk+1 is
still adversarial, and it will be called a failed one otherwise.
Note that in some previous works, xk+1 will be accepted
only if L(xk+1) is less than or equal to L(xk) as the com-
mon practice in the random walk optimization. To avoid
falling into the local optimum, we only reject failed sam-
ples. If the xk+1 is rejected, then we set xk+1 = xk for
the ease of representation.

3.2. Historical Prior Based Optimization

Reexamining Eq. 3 carefully, the only uncertainty lies in
the random direction which influences the efficiency of the
optimization method greatly. Previous methods also made
efforts on it. The key question is that how to make the
random direction sampled more efficiently. Some previ-
ous works have proven that the decision boundaries of deep
neural networks have a quite small curvature in the vicin-
ity of data samples [12], which indicates that the decision
boundary at the neighborhood of adversarial example can
be approximated locally with a hyperplane [25, 30]. Since
the boundary is flat, we can confidently assume the cur-
rent random direction and one of the last iteration or even
more early iterations are consistent to some degree. Also,
there are some previous works showing that historical in-
formation is helpful for current sampling [10, 21, 24, 32].
However, we argue that the exist methods utilizing histor-
ical prior is complicate and not thoroughgoing. For ex-
ample, Evolutionary Attack [10] utilizes only successful
queries while CAB [32] utilizes only failed queries, and
BanditsTD [21] utilizes all queries but does not distinguish
successful and failed queries well.

The flat boundaries and the lack of making the best of
historical information motivate us to use a more simple but
efficient way to guide the random direction. As [2, 10],
we treat the historical prior as a custom gaussian distribu-
tion. Though the variance of the distribution can model
the importance of each pixel naturally, modifying the vari-
ance also introduces instability since the variance is sign-
independent which can not guide the direction well. Instead
of variance, we focus on the mean µ of the distribution and
embed the information of both successful historical queries
and failed ones in it. For the successful query xk+1 where
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f(xk+1,xt) = 1, as talked above, the next direction will
succeed with a high probability if they share similar direc-
tion since the decision boundary is flat. While for the failed
query, as stated in [32], it also contains information about
the decision boundary since the failed query crosses through
the boundary. Similar to [32], its opposite direction is con-
sidered. In particular, we update the mean µ with:

µ =

{
(1− γ) · µ+ γ · η, f(xk+1,xt) = 1
(1− γ) · µ− γ · η, f(xk+1,xt) = 0

, (4)

where γ ∈ (0, 1) is a coefficient to control how fast to forget
the older information since the geometry properties of the
decision boundary will change along with the shift of the
adversarial example. Since the direction is driven by the
historical queries, we named it the history-driven direction.

3.3. Coefficient Adaptive Adjusting

Another significant issue is how to balance between the
source direction and the history-driven direction. A large
coefficient α for source direction is helpful to reduce the
magnitude of the perturbations quickly, while it raises the
probability to hit the decision boundary and thereby lead-
ing to a failed query. On the contrary, a small α allows
the optimization method to explore the decision boundary
much, while it will decelerate the progress of approaching
the source input and increase the number of queries. There-
fore, an adaptive adjusting strategy is needed.

Previous methods also noticed such a problem and put
effort into it. The boundary attack method samples more
points with orthogonal directions to test the success rate,
and reduce the coefficient if the success rate is much
lower or increase it if the success rate is close to 50%
or higher. The Biased Boundary Attack uses large coef-
ficients at the beginning and decreases it when the num-
ber of failed queries increased. The coefficients are reset
when a successful query occurs. As a evolution strategy,
the evolutionary method utilizes a traditional method for
hyper-parameter control in evolution strategies termed 1/5th
success rule [31] to update the coefficient by multiplying
exp(Psuccess − 1/5), where Psuccess denotes the success rate
of several past iterations. Note that the existing methods are
all based on the success rate, and every query can only offer
coarse binary feedback (i.e., successful or not).

Considering that the purpose of coefficient adjusting is
to reduce the magnitude of the perturbations as much as
possible, it motivates us to consider how the magnitude of
perturbations is reduced. Therefore, instead of considering
the success rate, we adjust the coefficient α based on the
ratio of the actual magnitude reduction to the expected one.
The actual magnitude reduction can be calculated straightly

with the difference between the two distance as:

Ractual = D(xk,xs)−D(xk+1,xs)

= ‖xk − xs‖2 − ‖xk+1 − xs‖2. (5)

For the expected reduction, we then view the length of the
projection of update part on the source direction as the ex-
pected reduction:

Rexpected

=
(
α · (xs − xk) + β · η

‖η‖2
‖xs − xk‖2

)T xs − xk
‖xs − xk‖2

=α · ‖xs − xk‖2 + β · η
T(xs − xk)

‖η‖2
. (6)

Depending on the value of Ractual, there are three situa-
tions. When Ractual = 0, we know that a failed query oc-
curs and we should explore more by reducing α. When
Ractual > 0, we are moving towards the source sample
and now 0 < Ractual ≤ Rexpected. So the larger the
Ractual/Rexpected is, the more important the source direc-
tion is, and the larger the corresponding coefficient, i.e., α,
should be. When Ractual < 0, it is most likely that the op-
timization method gets stuck in local optimum, and should
turn away from the source sample to escape it. In such a
situation, Ractual ≤ Rexpected < 0. We calculate the ratio as
Rexpected/Ractual for a value belonging to [0, 1]. Similarly,
we prefer small α for a small ratio to help escape from the
local optimum and large α for a large ratio to prevent the
optimization method from keeping moving away from the
source sample. Based on above discussion, we unify the
ratio ofRactual andRexpected as:

r =
min

(
abs(Ractual), abs(Rexpected)

)
max

(
abs(Ractual), abs(Rexpected)

) . (7)

Note that the ratio r ∈ [0, 1], and we should increase the
coefficient αwhen r is large and decrease α otherwise. And
for the failed query where xk+1 = xk, the Ractual and the
ratio r are equal to zero. Therefore, we can find that the
success rate based method is just a particular case of our
method when r is mapped as sign(r). Note that too small
α may result in forever exploring. So we reset the value of
α when it is less than a threshold. Finally, we update the
coefficient α as:

α = α · h(r̄), α =

{
α, α > αthreshold
αinitial, otherwise , (8)

where r̄ is the mean of ratios r’s over several past iterations,
h(·) : [0, 1] 7→ R+ is a function that maps the ratio to a suit-
able value, αthreshold is the value preventing too small α, and
αinitial is the initial value for α. h(·) should be monotoni-
cally increasing with 0 < h(0) < 1 and h(1) > 1. In this
paper, we experimentally select h(·) as h(r̄) = (r̄ + 0.8)2.
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Algorithm 1: Adaptive History-driven Attack
Input: Victim model f(·, ·), source image xs, target

image xt, maximum number of queries Q,
initial direction coefficients α and β,
coefficients γ, and interval i.

Output: Adversarial example x′.
1 Initialize q ← 0, qlast ← 0,x′ ← xt,µ← 0, r̄ ← 0
2 while q < Q do
3 Sample η ∼ N (µ, I)
4 Upscale η to the same dimension of x′ for η′

5 xtemp ← x′+α·(xs−x′)+β · η′

‖η′‖2 ·‖xs−x
′‖2

6 if f(xtemp,x
′) = 1 then

7 x′ ← xtemp
8 µ← (1− γ) · µ+ γ · η
9 else

10 µ← (1− γ) · µ− γ · η
11 Calculate r according to Eq. 7
12 // Calculate the running mean
13 r̄ ← q−qlast

q−qlast+1 · r̄ + 1
q−qlast+1 · r

14 if q − qlast = i then
15 Update α by Eq. 8
16 qlast ← q
17 r̄ ← 0

18 q ← q + 1

19 end
20 return x′

3.4. Subspace Sampling

The large solution space is most blamed in black-box
attacks, and many methods including dimension reduc-
tion [21, 10, 23] and low-frequency constraints [3, 24] have
been proposed to reduce it and these methods do accelerate
the attack process. These subspace optimization methods
are orthogonal to our method and can be integrated to fur-
ther improve the performance. Considering that dimension
reduction with bilinear interpolation is more simple and fast
compared with the other methods, we sample the direction
η in the low dimensional space and then upscale it with bi-
linear interpolation to original input space. Following [23],
the dimension of low space will be 1/16 of the original one.

We refer to the method combining the three parts men-
tioned above as Adaptive History-driven Attack (AHA), and
conclude the details in Alg. 1.

4. Experiments
4.1. Experimental Setups

Datasets and Victim Models. We mainly evaluate the
effectiveness on the natural image dataset ImageNet [8] and
human face dataset CelabA [26]. For the ImageNet dataset,

we select the widely used pre-trained models including
VGG-16 [33], ResNet50 [17], and Inception-V3 [35] as the
victim models. We randomly select 100 pairs of images
from the validation set for evaluation. The images in each
pair are from different classes and are classified correctly by
all three models. The input image size is 224× 224× 3 for
VGG-16 and ResNet50, and 299 × 299 × 3 for Inception-
V3, respectively. For the CelebA dataset, we evaluate the
attack methods on state-of-the-art face recognition models,
i.e., CosFace [36] and ArcFace [9]. Both models are trained
on MS1M dataset [16] with Inception-ResNet-152 [34] as
backbone1. Similar to the ImageNet dataset, we also ran-
domly select 100 pairs of faces from 200 different peo-
ple that are distinguished well by the two models. These
face images are pre-processed by MTCNN [42] with size
of 112 × 112 × 3. For defense methods, we perform at-
tacks on 100 images randomly sampled from the CIFAR-10
dataset [22] with the Wide ResNets [40] as the target model.
For the online model, we test the robustness of the face ver-
ification API proposed by Face++2. We choose 10 pairs of
face images randomly from the CelebA with the same set-
tings as the offline face verification experiments.

Evaluation Metrics. To judge how efficient an attack
method is, we mainly check the mean L2-norm of the final
adversarial perturbations under the same number of queries
since the adversarial example is guaranteed to be adversar-
ial. The smaller the L2-norm is, the more efficient the at-
tack method is. To show how fast the optimization method
can find a small perturbation, we depict the curve of the
mean L2-norm versus the number of queries. For quan-
titative comparison, we calculate the area under the curve
(AUC), where the lower value denotes better performance.
The attack success rate (ASR) is also a common metric for
the adversarial attack. Considering that dimensions of the
input image and degree of difficulty for different tasks are
different, we define a successful adversarial example with
dimension d as the one whose L2-norm of the perturba-
tion is less than

√
0.001 · d for the ImageNet dataset and√

0.0001 · d for the CelebA dataset. We report the attack
success rate on the final adversarial examples.

Compared Methods and Hyper-parameters Settings.
We mainly compare our proposed AHA with four popular
decision-based attack methods, i.e., HSJA [5], QEBA [23],
Biased Boundary Attack (BBA) [3], Evolutionary At-
tack [10], and SurFree [28]. For all the baselines, we use the
source code kindly provided by the authors and the default
parameters announced in their papers. Note that for a fair
comparison, we do not utilize any extra surrogate model for
all methods, thereby no surrogate model bias for the BBA.
We believe all methods can benefit from the extra surrogate

1These models are trained following https://github.com/
ZhaoJ9014/face.evoLVe.PyTorch

2https://www.faceplusplus.com/face-comparing/
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Methods VGG-16 ResNet50 Inception-V3
mean L2 AUC ASR mean L2 AUC ASR mean L2 AUC ASR

HSJA 11.833 580609.2 75% 12.009 613671.2 65% 32.145 1161506.0 19%
QEBA 11.350 430284.8 67% 12.074 441363.8 57% 19.807 710941.6 27%
BBA 15.141 660683.2 70% 13.183 523421.3 64% 20.328 746100.3 57%
Evolutionary 8.305 445020.9 93% 8.238 451534.7 89% 14.494 725262.1 64%
SurFree 6.579 564050.6 93% 8.451 607074.5 81% 14.081 810286.5 71%
Ours 6.013 386623.6 96% 6.203 389357.9 96% 10.976 616167.4 91%

Table 1. Results of our proposed AHA and baselines on the ImageNet dataset. Note that the AUC denotes the area under the curve of
L2-norm versus the number of queries and ASR denotes the attack success rate of the final adversarial example.
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Figure 1. The curves of mean L2-norm versus the number of queries for the ImageNet dataset. (Lower is better)
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Figure 2. The curves of attack success rate versus the number of queries for the ImageNet dataset. (Higher is better)

model. And we select QEBA-S for QEBA due to its best
performance as shown in their paper. For hyper-parameters
in our AHA, we set both the α and β to 0.01 initially fol-
lowing [2, 10]. We also set γ as 0.01 and the interval i as 30.
Following [5, 23], we set the maximum number of queries
as 20, 000 for ImageNet and CelabA models. The maxi-
mum number of queries for the defense methods is set as
50, 000. Considering that querying real-world online sys-
tems is costly and time-consuming, we limit the maximum
number of queries for the online system to 5, 000.

4.2. Results on ImageNet and CelabA Models

We evaluate the performance of our proposed AHA
along with the baselines in Tab. 1 for the ImageNet dataset
and in Tab. 2 for the CelebA dataset, respectively. As in
the Tab. 1 for the ImageNet dataset, we can find that our

proposed AHA achieves the best performance on all three
widely-used models. Particularly, the mean L2-norm of
perturbations found by our method is 27.6%, 24.7%, and
24.3% less than the second-best method, i.e., the Evolu-
tionary attack, on the VGG-16, ResNet50, and Inception-
V3 respectively. The value of AUC represents how fast
the optimization method can reduce the magnitude of the
perturbation. It is worth noting that though the final mean
L2 is not small enough, the AUCs of the QEBA are less
than other baselines. However, our proposed method still
achieves a smaller AUC compared with the QEBA method
with 10.1%, 11.8%, and 13.3% less. This can also be con-
cluded from Fig. 1 where the curves of our method are at
the bottom. The attack success rate represents how often
the optimization method can find a valid adversarial exam-
ple. From Tab. 1, we also find our proposed AHA achieves
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Methods CosFace ArcFace
mean L2 AUC ASR mean L2 AUC ASR

HSJA 3.517 169539.4 32% 2.506 131163.5 46%
QEBA 4.586 130791.0 2% 3.998 112046.8 6%
BBA 3.101 119237.1 30% 2.540 87663.5 43%
Evolutionary 2.960 137222.0 21% 2.604 120543.8 26%
Ours 1.909 109084.4 58% 1.436 93046.4 78%

Table 2. Results on the CelebA dataset.

the highest attack success rate among the attack methods,
which demonstrates most of the adversarial examples found
by AHA are valid. For example, for Inception-V3, our
method achieves a 91% attack success rate, which is 27%
higher than the state-of-the-art method. To give a more
direct comparison, we draw the curves of attack success
rates versus the number of queries in Fig. 2. At the begin-
ning, the BBA method works well. And then after nearly
10, 000 queries, with enough historical accumulation, the
attack success rate of our proposed AHA increases steeply
and is higher than baselines. We also test the performance
on the CelebA dataset in the Tab. 2. From the Tab. 2, we can
conclude that AHA is not just efficient on the natural image
dataset but also efficient on the human face dataset. Though
the AUC on the ArcFace model of our AHA is larger than
the one of the BBA method, our proposed method still
achieves nearly the best performance over the three metrics.
Also, we find that the CosFace model is more robust than
the ArcFace against such a hard-label black-box attack. It is
also interesting that the AUC of the QEBA method is lower
than the HSJA while the mean L2-norm and attack success
rate of QEBA show no superiority for both datasets. Note
that the QEBA can be viewed as the HSJA combined with
the subspace optimization. We conclude that the subspace
optimization helps faster convergence but leads to subopti-
mal results. So an adaptive subspace optimization will be
helpful and we leave it as future work.

4.3. Attack Against Defense Methods

Along with the development of the attack methods, many
studies proposed defense methods to protect their models.
To verify the effectiveness of our AHA method under this
setting, we evaluate the performance of AHA along with
some baselines on 100 images randomly sampled from the
CIFAR-10 test set with 10 images per class. For each im-
age, we randomly select another image from the 100 im-
ages as the target. And we use the Wide ResNets architec-
ture with 28 layers and a width multiplier of 10 (denoted
as WRN-28-10) as the target model. For defense methods,
we utilize widely used bit-depth reduction [39], JPEG com-
pression [11] and adversarial training [27]. The resutls are
presented in Tab. 3 where None denotes the vanilla model
without defense. We can conclude that our proposed AHA
still works well for all defense methods. For example, for
the adversarial training model, the mean L2-norm of our
perturbations is 1.8825, which is 28.5% less than HSJA and

None Bit Depth JPEG Adv. Training

L
2

no
rm

HSJA 0.2677 6.1930 5.1632 2.6342
QEBA 0.7554 2.8148 2.4491 2.3248
BBA 0.5367 1.2898 2.7022 2.5145

Evolutionary 0.5491 1.0516 2.2334 2.9410
Ours 0.3185 1.0207 2.2166 1.8825

A
U

C

HSJA 23480.4 356472.4 299518.1 155950.6
QEBA 42989.6 180617.4 191778.3 127246.0
BBA 37163.5 163392.1 173135.0 293148.1

Evolutionary 40127.3 143257.6 179670.6 173135.0
Ours 36881.7 141574.3 171625.6 143037.2

Table 3. Results for different defense methods. None denotes
vanilla model without defense.

Evolutionary

L2=9.754 L2=6.640 L2=5.512 L2=5.052Target L2=4.928

AHA

L2=18.149 L2=16.890 L2=14.809 L2=13.340 L2=12.899

1000 queries 2000 queries 3000 queries 4000 queriesOriginal 5000 queries

Figure 3. The example of AHA and Evolutionary on Face++ API.
(Best view zoomed in)

36.0% less than Evolutionary.

4.4. Results on Online System

Turning attention to the robustness of real-world sys-
tems, we finally test the effectiveness of our method against
the online system, i.e., face verification API provided by
MEGVII Face++. This API allows users to upload two face
images and then returns a similarity score of them along
with some thresholds. And two faces are recognized as
the same person to some degree when the similarity score
is higher than the corresponding threshold. Here we use
the highest threshold returned and the attack method can
only obtain whether the two faces belong to the same iden-
tity or not instead of the similarity score. Considering the
querying is costly, we only attack this API using the Evo-
lutionary and AHA on 10 pairs randomly selected and set
the maximum query time to 5, 000. The final mean L2-
norm of the perturbations for the Evolutionary and ours are
14.544 and 10.910, respectively. We also give visual exam-
ples in Fig. 3 showing adversarial face images with different
queries. Such results demonstrate that AHA is practical for
real-world systems.

4.5. Ablation Study

In this subsection, we will examine how much the coeffi-
cient adaptive adjusting strategy and the subspace optimiza-
tion contribute to the final performance. For the coefficient
adjusting strategy, we compare the 1/5th Success Rule with
our strategy on AHA. To save computing resources, we se-
lect some simple formulas for h(·) as listed in Tab. 4. We
first find that with the 1/5th Success Rule, AHA is still more
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Strategies ResNet50 Inception-V3
mean L2 AUC mean L2 AUC

1/5th Success Rule 6.638 404310.2 11.507 643280.9
h(r̄) = exp(r̄ − 0.2) 6.154 398307.0 11.222 641313.8
h(r̄) = r̄ + 0.8 6.168 393999.3 10.751 620673.0
h(r̄) = (r̄ + 0.6)2 20.813 652617.2 29.989 953790.4
h(r̄) = (r̄ + 0.7)2 8.329 427764.1 13.654 660240.3
h(r̄) = (r̄ + 0.8)2 6.203 389357.9 10.976 616167.4
h(r̄) = (r̄ + 0.9)2 9.643 506123.7 16.604 782229.9
h(r̄) = (r̄ + 0.8)3 6.396 400115.1 11.211 628122.4

Table 4. Results for different coefficient adjusting strategies.

(a) VGG-16 (b) ResNet50

Figure 4. The curves of success rate for queries versus the num-
ber of queries. The curves are smoothed for better visualization.
Ours 1/5 denotes our historical prior with the 1/5th Success Rule.
(Best view in color)

efficient than baselines like the Evolutionary. And our coef-
ficient adjusting strategy, with proper h(·), can further im-
prove the performance. Here we select h(r̄) = (r̄+0.8)2 for
its stable AUC. To further prove the effectiveness of the pro-
posed coefficient adjusting strategy, we check how often the
optimization method can find a successful query. Therefore,
we depict the curves of success rate versus the number of
queries in Fig. 4 for the Evolutionary, our method with 1/5th
Success Rule, and our method with the proposed adjusting
strategy. For better visualization, we smooth the curves by
drawing the mean of an interval of 40. The success rate of
our proposed adjusting strategy increases sustainably and
is higher than others, which helps the optimization method
move along the decision boundary swiftly.

As mentioned in Sec. 3.4, the subspace optimization
method is orthogonal to our method and can be combined
for better performance. Note that some of the baselines also
use the subspace optimization method to improve perfor-
mance. The QEBA and the Evolutionary methods use bi-
linear interpolation for dimensionality reduction, and the
BBA uses Perlin noise for the low-frequency space con-
straint. Here we check the influence of two widely used
subspace optimization methods, i.e., bilinear interpolation
for dimensionality reduction (abbreviated as DR), and low-
pass filtering via DCT (similar to Perlin noise but more sim-
ple). Following [23, 14], we set scale factor as 4 for both DR
and DCT. The results of our proposed AHA with or with-
out subspace optimization can be found in the Tab. 5. We
can conclude that with single subspace optimization, perfor-
mance can be improved significantly, e.g., mean L2-norm

Methods ResNet50 Inception-V3
mean L2 AUC mean L2 AUC

Ours 10.823 516663.8 22.196 846070.4
Ours+DR 6.203 389357.9 10.976 616167.4
Ours+DCT 6.515 406349.5 10.788 615063.7
Ours+DCT+DR 16.200 556612.0 28.012 888257.9

Table 5. Results with/without subspace optimization.

reduced from 10.823 to 6.203. DR works similar to DCT.
However, the time DCT consumes is approximately 4 times
longer than DR, which makes DR more competitive. We
also find that combining DR and DCT results in the worst
performance, we guess that too many constraints limit the
optimization method. Based on the above observations, we
choose DR as a part of our method.

We also give a brief study on using different historial
queries. We evaluated the average of L2 norm for ResNet50
on ImageNet of two cases, i.e., only using failed queries
(6.950) and only using successful queries (7.465). Since
the success rate for queries is lower than 30% as shown in
Fig. 4 and more queries tend to be failed, the former case
utilizes more informative queries and performs better than
the latter one. Besides, our method using all queries (6.203)
is the best among them. We can conclude that utilizing more
informative queries leads to higher performance, which also
supports our motivation.

5. Conclusion

In this paper, we propose a simple yet efficient decision-
based black-box attack method termed Adaptive History-
driven Attack (AHA), which mainly utilizes information of
historical queries as a prior to improve the random walk op-
timization. To balance between two directions during opti-
mization, a novel coefficient adaptive adjusting strategy is
also proposed based on how the magnitude of the perturba-
tion is reduced. We evaluate our proposed method on both
the natural image dataset and the human face dataset and
show a higher attack performance of AHA compared with
the state-of-the-art methods. Finally, we also check the ef-
fectiveness of our proposed method against some popular
defense methods and a real-world face verification system
provided by Face++. Our work shows that though difficult,
the decision-based black-box attack is still achievable with-
out any complicated method. We hope this work can serve
as an inspiration in designing more robust models.
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