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Abstract

Semi-supervised learning has been an effective

paradigm for leveraging unlabeled data to reduce the

reliance on labeled data. We propose CoMatch, a new

semi-supervised learning method that unifies dominant

approaches and addresses their limitations. CoMatch

jointly learns two representations of the training data,

their class probabilities and low-dimensional embeddings.

The two representations interact with each other to jointly

evolve. The embeddings impose a smoothness constraint

on the class probabilities to improve the pseudo-labels,

whereas the pseudo-labels regularize the structure of the

embeddings through graph-based contrastive learning.

CoMatch achieves state-of-the-art performance on multiple

datasets. It achieves substantial accuracy improvements

on the label-scarce CIFAR-10 and STL-10. On ImageNet

with 1% labels, CoMatch achieves a top-1 accuracy

of 66.0%, outperforming FixMatch [32] by 12.6%.

Furthermore, CoMatch achieves better representation

learning performance on downstream tasks, outper-

forming both supervised learning and self-supervised

learning. Code and pre-trained models are available at

https://github.com/salesforce/CoMatch/.

1. Introduction

Semi-supervised learning (SSL) – learning from few la-
beled data and a large amount of unlabeled data – has
been a long-standing problem in computer vision and ma-
chine learning. Recent state-of-the-art methods mostly fol-
low two trends: (1) using the model’s class prediction to
produce a pseudo-label for each unlabeled sample as the
label to train against [19, 2, 1, 32]; (2) unsupervised or
self-supervised pre-training, followed by supervised fine-
tuning [5, 14, 13, 3] and pseudo-labeling [6].

However, existing methods have several limitations.
Pseudo-labeling (also called self-training) methods heav-
ily rely on the quality of the model’s class prediction, thus
suffering from confirmation bias where the prediction mis-
takes would accumulate. Self-supervised learning methods
are task-agnostic, and the widely adopted contrastive learn-

ing [5, 14] may learn representations that are suboptimal
for the specific classification task. Another branch of meth-
ods explore graph-based semi-supervised learning [24, 17],
but have yet shown competitive performance especially on
larger datasets such as ImageNet [9].

We propose CoMatch, a new semi-supervised learning
method that addresses the existing limitations. A concep-
tual illustration is shown in Figure 1. In CoMatch, each
image has two compact representations: a class probability
produced by the classification head and a low-dimensional
embedding produced by the projection head. The two rep-
resentations interact with each other and jointly evolve in a
co-training framework. Specifically, the classification head
is trained using memory-smoothed pseudo-labels, where
pseudo-labels are refined by aggregating information from
nearby samples in the embedding space. The projection
head is trained using contrastive learning on a pseudo-label
graph, where samples with similar pseudo-labels are trained
to have similar embeddings. CoMatch unifies dominant
ideas including consistency regularization, entropy mini-
mization, contrastive learning, and graph-based SSL.

We perform experiments on multiple datasets and
compare with state-of-the-art semi-supervised and self-
supervised methods. CoMatch substantially outperforms all
baselines across all benchmarks, especially in label-scarce
scenarios. On CIFAR-10 with 4 labeled samples per class,
CoMatch outperforms FixMatch [32] by 6.11% in accuracy.
On STL-10, CoMatch outperforms FixMatch by 13.27%.
On ImageNet with only 1% of labels, CoMatch achieves a
top-1 accuracy of 66.0% (67.1% with self-supervised pre-
training), whereas the best baseline (MoCov2 [7] followed
by FixMatch [32]) has an accuracy of 59.9%. Furthermore,
we demonstrate that CoMatch achieves better representa-
tion learning performance on down-stream image classifi-
cation and object detection tasks, outperforming both su-
pervised learning and self-supervised learning.

2. Background

To set the stage for CoMatch, we first introduce exist-
ing SSL methods, mainly focusing on current state-of-the-
art methods that are relevant. More comprehensive reviews
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Figure 1: Conceptual illustration of different methods that leverage unlabeled data. (a) Task-specific self-training: the model predicts
class probabilities for the unlabeled samples as the pseudo-label to train against [19, 2, 1, 32]. (b) Task-agnostic self-supervised learning:
the model projects samples into low-dimensional embeddings, and performs contrastive learning to discriminate embeddings of different
images [35, 5, 14]. (c) CoMatch: class probabilities and embeddings interact with each other and jointly evolve in a co-training framework.
The embeddings impose a smoothness constraint on the class probabilities to improve the pseudo-labels. The pseudo-labels are used as the
target to train both the classification head with a cross-entropy loss, and the projection head with a graph-based contrastive loss.

can be found in [42, 34]. In the following, we refer to a
deep encoder network (a convolutional neural network) as
f(·), which produces a high-dimensional feature f(x) given
an input image x. A classification head (a fully-connected
layer followed by softmax) is defined as h(·), which outputs
a distribution over classes p(y|x) = h(f(x)). We also de-
fine a non-linear projection head (a MLP) g(·), which trans-
forms a feature f(x) into a normalized low-dimensional
embedding z(x) = g(f(x)).
Consistency regularization is a crucial piece for many
state-of-the-art SSL methods. It utilizes the assumption that
a classifier should output the same class probability for an
unlabeled sample even after it is augmented. In the simplest
form, prior works [31, 18] add the following consistency
regularization loss on unlabeled samples:

kp(y|Aug(x))� p(y|Aug(x))k22 , (1)

where Aug(·) is a stochastic transformation that does not
alter the label of the image. Mean Teacher [33] replaces
one of the terms in eq.(1) with the output of an EMA
model. VAT [26] uses an adversarial transformation in place
of Aug. MixMatch [2] averages predictions across mul-
tiple augmentations to produce p(y). UDA [36], ReMix-
Match [1], and FixMatch [32] use a cross-entropy loss in
place of the squared error, and apply stronger augmentation.
Entropy minimization is a common method in many
SSL algorithms, which encourages the classifier’s decision
boundary to pass through low-density regions of the data
distribution. It is either achieved explicitly by minimizing
the entropy of p(y|x) on unlabeled samples [12], or im-
plicitly by constructing low-entropy pseudo-labels on unla-
beled samples and using them as training targets in a cross-
entropy loss [19, 2, 1, 32]. Some methods [36, 2, 1] post-
process the “soft” pseudo-labels with a sharpening function
to reduce entropy, whereas FixMatch [32] produces “hard”
pseudo-labels for samples whose largest class probability
fall above a predefined threshold. Most methods [32, 1, 36]
use weakly-augmented samples to produce pseudo-labels

and train the model on strongly-augmented samples. How-
ever, since the pseudo-labels purely rely on the classifier,
such self-training strategy suffers from the confirmation
bias problem, where the error in the pseudo-labels would
accumulate and harms learning.
Self-supervised contrastive learning has attracted much
attention, due to its ability to leverage unlabeled data for
model pre-training. The widely adopted contrastive learn-
ing [35, 28, 5, 6, 14, 20] optimizes for the task of instance
discrimination, and formulates the loss using the normal-
ized low-dimensional embeddings z:

� log
exp(z(Aug(xi)) · z(Aug(xi))/t)PN
j=1 exp(z(Aug(xi)) · z(Aug(xj))/t)

(2)

where Aug(·) is a stochastic transformation similar as in
eq.(1), and xj include xi and N � 1 other images (i.e. neg-
ative samples). Self-supervised contrastive learning can be
interpreted as a form of class-agnostic consistency regular-
ization, which enforces the same image with different aug-
mentations to have similar embeddings, while different im-
ages have different embeddings. Among recent methods,
SimCLR [5] uses images from the same batch to calculate
pairwise similarity, whereas MoCo [14] maintains a queue
of embeddings from an EMA model.

Self-supervised pre-training followed by supervised
fine-tuning has shown strong performance on semi-
supervised learning tasks [5, 14, 13, 21, 3]. SimCLR v2 [6]
further utilizes larger models for distillation. However,
since self-supervised learning is a task-agnostic process, the
contrastive loss in eq.(2) optimizes for an objective that par-
tially contradicts with task-specific learning. It enforces im-
ages from the same class to have different representations,
which is undesirable for classification tasks.
Graph-based semi-supervised learning defines the simi-
larity of data samples with a graph and encourages smooth
predictions with respect to the graph structure [40, 41]. Re-
cent works use deep networks to generate graph represen-
tations. [17, 22] perform iterative label propagation and
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network training. [24, 4] connect data samples that have
the same pseudo-labels, and perform metric learning to en-
force connected samples to have similar representations.
However, these methods define representations as the high-
dimensional feature f(x), which leads to several limita-
tions: (1) since the features are highly-correlated with the
class predictions, the same types of errors are likely to ex-
ist in both the feature space and the label space; (2) due
to the curse of dimensionality, Euclidean distance becomes
less meaningful; (3) computation cost is high which harms
the scalability of the methods. Furthermore, the loss func-
tions in [24, 4] consider the absolute distance between pairs,
whereas CoMatch optimizes for relative distance.

3. Method

3.1. Overview

In this section, we introduce our proposed semi-
supervised learning method. Different from most existing
semi-supervised and self-supervised learning methods, Co-
Match jointly learns the encoder f(·), the classification head
h(·), and the projection head g(·). Given a batch of B la-
beled samples X = {(xb, yb)}Bb=1 where yb are one-hot la-
bels, and a batch of unlabeled samples U = {ub}µBb=1 where
µ determines the relative size of X and U , CoMatch jointly
optimizes three losses: (1) a supervised classification loss
on labeled data Lx, (2) an unsupervised classification loss
on unlabeled data Lcls

u , and (3) a graph-based contrastive
loss on unlabeled data Lctr

u . Specifically, Lx is defined as
the cross-entropy between the ground-truth labels and the
model’s predictions:

Lx =
1

B

BX

b=1

H(yb, p(y|Augw(xb))), (3)

where H(y, p) denotes the cross-entropy between two dis-
tributions y and p, and Augw refers to weak augmentations.

The unsupervised classification loss Lcls
u is defined as

the cross-entropy between the pseudo-labels qb and the
model’s predictions:

Lcls
u =

1

µB

µBX

b=1

(max qb � ⌧)H(qb, p(y|Augs(ub))),

(4)
where Augs refers to strong augmentations. Following Fix-
Match [32], we retain pseudo-labels whose largest class
probability are above a threshold ⌧ . Different from Fix-
Match, our soft pseudo-labels qb are not converted to hard
labels for entropy minimization. Instead, we achieve en-
tropy minimization by optimizing the contrastive loss Lctr

u .
Section 3.2 explains the details of pseudo-labelling and con-
trastive learning.

Our overall training objective is:

L = Lx + �clsLcls
u + �ctrLctr

u , (5)

where �cls and �ctr are scalar hyperparameters to control
the weight of the unsupervised losses.

3.2. CoMatch

In CoMatch, the high-dimensional feature of each sam-
ple is transformed to two compact representations: its class
probability p and its normalized low-dimensional embed-
ding z, which reside in the label space and the embedding
space, respectively. Given a batch of unlabeled samples
U , we first perform memory-smoothed pseudo-labeling on
weak augmentations Augw(U) to produce pseudo-labels.
Then, we construct a pseudo-label graph W q which defines
the similarity of samples in the label space. We use W q as
the target to train an embedding graph W z , which measures
the similarity of strongly-augmented samples Augs(U) in
the embedding space. An illustration of CoMatch is shown
in Fig 2, and a pseudo-code is given in the appendix. Next,
we first introduce the pseudo-labeling process, then we de-
scribe the graph-based contrastive learning algorithm.
Memory-smoothed pseudo-labeling aims to mitigate con-
firmation bias by leveraging the structure of the embeddings
to refine pseudo-labels. Given each sample in X and U , we
first obtain its class probability. For a labeled sample, it is
defined as the ground-truth label: pw = y. For an unla-
beled sample, it is defined as the model’s prediction on its
weak-augmentation: pw = h�f(Augw(u)). Following [1],
we perform distribution alignment (DA) on unlabeled sam-
ples: pw = DA(pw). DA prevents the model’s prediction
from collapsing to certain classes. Specifically, we main-
tain a moving-average p̃w of pw during training, and ad-
just the current pw with pw = Normalize(pw/p̃w), where
Normalize(p)i = pi/

P
j pj renormalizes the scaled result

to a valid probability distribution.
For each sample in X and U , we also obtain its em-

bedding zw by forwarding the weakly-augmented sample
through f and g. Then, we create a memory bank to store
class probabilities and embeddings of the past K weakly-
augmented samples: MB = {(pwk , zwk )}Kk=1. The memory
bank contains both labeled samples and unlabeled samples
and is updated with first-in-first-out strategy.

For each unlabeled sample ub in the current batch with
pwb and zwb , we generate a pseudo-label qb by aggregating
class probabilities from neighboring samples in the memory
bank. Specifically, we optimize the following objective:

J(qb) = (1� ↵)
KX

k=1

ak kqb � pwk k
2
2 + ↵ kqb � pwb k

2
2 (6)

The first term is a smoothness constraint which encourages
qb to take a similar value as its nearby samples’ class prob-
abilities, whereas the second term attempts to maintain its
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Figure 2: Framework of the proposed CoMatch. Given a batch of unlabeled images, their weakly-augmented images are used to produce
memory-smoothed pseudo-labels, which are used as targets to train the class prediction on strongly-augmented images. A pseudo-label
graph with self-loop is constructed to measure the similarity between samples, which is used to train an embedding graph such that images
with similar pseudo-labels have similar embeddings. sg means stop-gradient. � means that two functions are applied consecutively.

original class prediction. ak measures the affinity between
the current sample and the k-th sample in the memory, and
is computed using similarity in the embedding space:

ak =
exp(zwb · zwk /t)PK
k=1 exp(z

w
b · zwk /t)

, (7)

where t is a scalar temperature parameter.
Since ak is normalized (i.e. ak sums to one), the mini-

mizer for J(qb) can be derived as:

qb = ↵pwb + (1� ↵)
KX

k=1

akp
w
k . (8)

Graph-based contrastive learning aims to learn represen-
tations guided by a pseudo-label graph. Given the pseudo-
labels {qb}µBb=1 for the batch of unlabeled samples, we build
the pseudo-label graph by constructing a similarity matrix
W q of size µB ⇥ µB:

W q
bj =

8
><

>:

1 if b = j

qb · qj if b 6= j and qb · qj � T

0 otherwise
(9)

Samples with similarity lower than a threshold T are not
connected, and each sample is connected to itself with the
strongest edge of value 1 (i.e. self-loop).

The pseudo-label graph serves as the target to train an
embedding graph. To construct the embedding graph, we
first perform two strong augmentations on each unlabeled
sample ub 2 U , and obtain their embeddings zb = g �

f(Augs(ub)), z0b = g � f(Aug
0
s(ub)). Then we build the

embedding graph W z as:

W z
bj =

(
exp(zb · z0b/t) if b = j

exp(zb · zj/t) if b 6= j
(10)

We aim to train the encoder f and the projection head
g such that the embedding graph has the same structure
as the pseudo-label graph. To this end, we first normal-
ize W q and W z with Ŵbj = Wbj/

P
j Wbj , so that each

row of the similarity matrix sums to 1. Then we minimize
the cross-entropy between the two normalized graphs. The
contrastive loss is defined as:

Lctr
u =

1

µB

µBX

b=1

H(
ˆW q
b , Ŵ

z
b ) (11)

H(
ˆW q
b , Ŵ

z
b ) can be decomposed into two terms:

�Ŵ q
bb log(

exp(zb·z0
b/t)PµB

j=1 Ŵ z
bj

)�
µBP

j=1,j 6=b
Ŵ q

bj log(
exp(zb·zj/t)PµB

j=1 Ŵ z
bj

)

(12)
The first term is a self-supervised contrastive loss that
comes from the self-loops in the pseudo-label graph. It en-
courages the model to produce similar embeddings for dif-
ferent augmentations of the same image, which is a form
of consistency regularization. The second term encourages
samples with similar pseudo-labels to have similar embed-
dings. It gathers samples from the same class into clusters,
which achieves entropy minimization.

During training, a natural curriculum would occur from
CoMatch. The model would start with producing low-
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confidence pseudo-labels, which leads to a sparse pseudo-
label graph. As training progresses, samples are gradually
clustered, which in turns leads to more confident pseudo-
labels and more connections in the pseudo-label graph.

Another advantage of CoMatch appears in open-set
semi-supervised learning, where the unlabeled data con-
tains out-of-distribution (ood) samples. Due to the smooth-
ness constraint, ood samples would have low-confidence
pseudo-labels. Therefore, they are less connected to in-
distribution samples, and will be pushed further away from
in-distribution samples by the proposed contrastive loss.

3.3. Scalable learning with an EMA model

In order to build a meaningful pseudo-label graph, the
unlabeled batch of data should contain a sufficient num-
ber of samples from each class. While this requirement
can be easily satisfied for datasets with a small number
of classes (e.g. CIFAR-10), it becomes difficult for large
datasets with more classes (e.g. ImageNet) because a large
unlabeled batch would exceed the memory capacity of 8
commodity GPUs (e.g. NVIDIA V100). Therefore, we im-
prove CoMatch for SSL on large-scale datasets.

Inspired by MoCo [14] and Mean Teacher [33], we in-
troduce an EMA model {f̄ , ḡ, h̄} whose parameters ✓̄ are
the moving-average of the original model’s parameters ✓:

✓̄  m✓̄ + (1�m)✓. (13)

The advantage of the EMA model is that it can evolve
smoothly as controlled by the momentum parameter m.

We also introduce a momentum queue which stores the
pseudo-labels and the strongly-augmented embeddings for
the past K unlabeled samples: MQ = {(q̄k, z̄k = ḡ �
f̄(Augs

0
(uk)))}Kk=1, where q̄k and z̄k are produced using

the EMA model. Different from the memory bank, the mo-
mentum queue only contains unlabeled samples.

We modify the pseudo-label graph W q to have a size
of µB ⇥ K. It defines the similarity between each sam-
ple in the current batch and each sample in the momen-
tum queue (which also contains the current batch). Differ-
ent from eqn.(9), the similarity is now calculated as q̄b · q̄j ,
where b = {1, ..., µB} and j = {1, ...,K}.

The embedding graph W z is also modified to have a size
of µB ⇥ K, where the similarity is calculated using the
model’s output embedding zb and the momentum embed-
ding z̄j : W z

bj = exp(zb · z̄j/t). Since gradient only flows
back through zb, we can use a large K with only a small
increase in GPU memory usage and computation time.

Besides the contrastive loss, we also leverage the EMA
model for memory-smoothed pseudo-labeling, by forward-
ing the weakly-augmented samples through the EMA
model instead of the original model. A graphical illustra-
tion of the memory bank and the momentum queue is given
in the appendix.

4. Experiment

4.1. CIFAR-10 and STL-10

First, we conduct experiments on CIFAR-10 and STL-10
datasets. CIFAR-10 contains 50,000 images of size 32⇥ 32

from 10 classes. We vary the amount of labeled data and fo-
cus on the label-scarce scenario where few labels are avail-
able. We evaluate on 5 runs with different random seeds.
STL-10 contains 5,000 labeled images of size 96⇥ 96 from
10 classes and 100,000 unlabeled images including ood
samples. We evaluate on the 5 pre-defined folds. Follow-
ing [2, 32], we report the performance of an EMA model.
Baseline methods. For fair comparison, we improve the
current state-of-the-art method FixMatch [32] with distri-
bution alignment [1] to build a stronger baseline. We also
compare with the original FixMatch and MixMatch [2].
We omit previous methods such as ⇧-model [30], Pseudo-
Labeling [19], and Mean Teacher [33] due to their poorer
performance as reported in [32]. Following [27], we reim-
plemented the baselines and performed all experiments us-
ing the same model architecture, the same codebase (Py-
Torch [29]), and the same random seeds.
Implementation details. For CIFAR-10, we use a Wide
ResNet-28-2 [37]. For STL-10, we use a ResNet-18 [16]
due to its lower computation cost compared to the WRN-
37-2 used in [32]1. The projection head is a 2-layer MLP
which outputs 64-dimensional embeddings. The models are
trained using SGD with a momentum of 0.9 and a weight
decay of 0.0005. We follow the original papers [2, 32] and
train the baselines for 1024 epochs, using an learning rate of
0.03 with a cosine decay schedule. We train CoMatch for
only 512 epochs to demonstrate its efficiency in learning.
For the hyperparameters in CoMatch that also exist in [32],
we follow [32] and set �cls = 1, ⌧ = 0.95, µ = 7, B = 64.
For other hyperparameters, we fix ↵ = 0.9, K = 2560, t =
0.2, T = 0.8, and �ctr = 1 for all CIFAR-10 experiments,
and only changes �ctr to 5 for STL-10.
Augmentations. CoMatch uses one “weak” augmentation
Augw, and two “strong” augmentations Augs and Aug

0
s.

The weak augmentation for all experiments is the standard
crop-and-flip. For strong augmentations, we follow [32]
and uses RandAugment [8] as Augs. For Aug

0
s, we fol-

low the augmentation strategy in SimCLR [5] which applies
random color jittering and grayscale conversion.
Results. Table 1 shows the results. CoMatch outperforms
the best baseline across all settings. The improvement is
more substantial when fewer labeled samples are available.
For example, CoMatch achieves an average accuracy of
93.09% on CIFAR-10 with only 4 labels per class, whereas
FixMatch (w. DA) has a lower accuracy of 86.98% and a

1The forward-pass GFLOPs/image is 0.34 for ResNet-18 and 2.58 for
WRN-37-2. Compared to ResNet-18, WRN-37-2 takes 3⇥GPU memory
and 7⇥training time per epoch.
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Method CIFAR-10 STL-10
20 labels 40 labels 80 labels 250 labels 1000 labels

MixMatch [2] 27.84±10.63 51.90±11.76 80.79±1.28 88.97±0.85 38.02±8.29
FixMatch [32] 82.32±9.77 86.12±3.53 92.06±0.88 94.90±0.67 65.38±0.42
FixMatch [32] w. DA [1] 83.81±9.35 86.98±3.40 92.29±0.86 94.95±0.66 66.53±0.39
CoMatch 87.67±8.47 93.09±1.39 93.97±0.62 95.09±0.33 79.80±0.38

Table 1: Accuracy for CIFAR-10 and STL-10 on 5 different folds. All methods are tested using the same data and codebase.

larger variance. On STL-10, CoMatch also improves Fix-
Match (w. DA) by 13.27%.

4.2. ImageNet

We evaluate CoMatch on ImageNet ILSVRC-2012 to
verify its efficacy on large-scale datasets. Following [38, 5],
we randomly sample 1% or 10% of images with labels in a
class-balanced way (13 or 128 samples per-class, respec-
tively), while the rest of images are unlabeled. Our results
are not sensitive to different random seeds hence we use a
fixed random seed.
Baseline methods. The baselines include (1) semi-
supervised learning methods and (2) self-supervised pre-
training followed by fine-tuning. Furthermore, we construct
a state-of-the-art baseline which combines FixMatch (w.
DA) with self-supervised pre-training using MoCov2 [7]
(pre-trained for 800 epochs). Self-supervised methods re-
quire additional model parameters during training due to
the projection network. We count the number of training
parameters as those that require gradient update. We also
report the performance of SimCLRv2 [6]. However, Sim-

CLRv2 uses a substantially (33⇥) larger pre-trained teacher
model (which is itself distilled from a teacher of the same
size) to produce pseudo-labels for distillation. Hence Co-
Match should not be directly compared to SimCLRv2.

Implementation details. We use a ResNet-50 [16] model
as the encoder. Following [7, 5], the projection head is a
2-layer MLP which outputs 128-dimensional embeddings.
We train the model using SGD with a momentum of 0.9 and
a weight decay of 0.0001. The learning rate is 0.1, which
follows a cosine decay schedule for 400 epochs. For models
that are initialized with MoCov2, we use a smaller learning
rate of 0.03. The momentum parameter is set as m = 0.996.
Other hyperparameters are shown in appendix A. We use
the same strong augmentation for Augs and Aug

0
s, which

applies crop-and-flip followed by color distortion. For fair
comparison with baselines, we report the original model’s
performance instead of the EMA model’s.

Results. Table 2 shows the result, where CoMatch achieves
state-of-the-art performance. CoMatch obtains a top-1 ac-
curacy of 66.0% on 1% of labels. Compared to the the

Self-supervised
Pre-training Method #Epochs #Paramters

(train/test)

Top-1 Top-5
Label fraction Label fraction
1% 10% 1% 10%

None

Supervised baseline [38] ⇠20 25.6M / 25.6M 25.4 56.4 48.4 80.4
Pseudo-label [19, 38] ⇠100 25.6M / 25.6M - - 51.6 82.4
VAT+EntMin. [26, 12, 38] - 25.6M / 25.6M - 68.8 - 88.5
S4L-Rotation [38] ⇠200 25.6M / 25.6M - 53.4 - 83.8
UDA (RandAug) [36] - 25.6M / 25.6M - 68.8 - 88.5
FixMatch (RandAug) [32] ⇠300 25.6M / 25.6M - 71.5 - 89.1
FixMatch w. DA ⇠400 25.6M / 25.6M 53.4 70.8 74.4 89.0
CoMatch ⇠400 30.0M / 25.6M 66.0 73.6 86.4 91.6

PIRL [25]

Fine-tune

⇠800 26.1M / 25.6M 30.7 60.4 57.2 83.8
PCL [21] ⇠200 25.8M / 25.6M - - 75.3 85.6
SimCLR [5] ⇠1000 30.0M / 25.6M 48.3 65.6 75.5 87.8
BYOL [13] ⇠1000 37.1M / 25.6M 53.2 68.8 78.4 89.0
SwAV [3] ⇠800 30.4M / 25.6M 53.9 70.2 78.5 89.9

MoCov2 [7]
Fine-tune ⇠800 30.0M / 25.6M 49.8 66.1 77.2 87.9
FixMatch w. DA ⇠1200 30.0M / 25.6M 59.9 72.2 79.8 89.5
CoMatch ⇠1200 30.0M / 25.6M 67.1 73.7 87.1 91.4

SimCLRv2* [6] Fine-tune ⇠800 34.2M / 29.8M 57.9 68.4 82.5 89.2
Teacher distillation ⇠2400 829.2M / 29.8M 73.9 77.5 91.5 93.4

Table 2: Accuracy for ImageNet with 1% and 10% of labeled examples. SimCLRv2* [6] uses larger models for training and test.
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(a) (b) (c)
Figure 3: Plots of different methods as training progresses on ImageNet with 1% labels. (a) Accuracy of the confident pseudo-labels w.r.t

to the ground-truth labels of the unlabeled samples. (b) Ratio of the unlabeled samples with confident pseudo-labels that are included in
the unsupervised classification loss. (3) Top-1 accuracy on the test data.
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Figure 4: Plots of ablation studies on CoMatch. The default hyperparameter setting achieves 57.1% (ImageNet with 1% labels, trained
for 100 epochs). FixMatch with EMA pseudo-label achieves 43.9%. (a) Varying the threshold T which controls the sparsity of edges in the
pseudo-label graph. T = 1 reduces to self-supervised contrastive learning. (b) Varying the weight �ctr for the contrastive loss. �ctr = 0

removes contrastive learning. (c) Varying ↵, the weight of the EMA model’s prediction in generating pseudo-labels. ↵ = 1 reduces to
pseudo-labeling with mean teacher [33]. (d) Varying K, the number of samples in both the memory bank and the momentum queue.

best baseline (MoCov2 followed by FixMatch w. DA), Co-
Match achieves 6.1% improvement with 3⇥ less training
time. With the help of MoCov2 pre-training, the perfor-
mance of CoMatch can further improve to 67.1% on 1% of
labels, and 73.7% on 10% of labels. In Figure 3, we further
show that CoMatch produces pseudo-labels that are more
confident and accurate. Pre-training with MoCov2 helps
speed up the convergence rate.

4.3. Ablation Study.

We perform extensive ablation study to examine the ef-
fect of different components in CoMatch. We use ImageNet
with 1% labels as the main experiment. Due to the number
of experiments in our ablation study, we report the top-1
accuracy after training for 100 epochs, where the default
setting of CoMatch achieves 57.1%.
Graph connection threshold. The threshold T in eqn.(9)
controls the sparsity of edges in the pseudo-label graph.
Figure 4(a) presents the effect of T . As T increases, sam-
ples whose pseudo-labels have lower similarity are discon-
nected. Hence their embeddings are pushed apart by our
contrastive loss. When T = 1, the proposed graph-based
contrastive loss downgrades to the self-supervised loss in
eqn.(2) where the only connections are the self-loops. Us-

ing the self-supervised contrastive loss decreases the perfor-
mance by 2.8%.
Contrastive loss weight. We vary the weight �ctr for the
contrastive loss Lctr

u and report the result in Figure 4(b),
where �ctr = 10 gives the best performance. With 10% of
ImageNet labels, �ctr = 2 yields better performance. We
find that in general, fewer labeled samples require a larger
�ctr to strengthen the graph regularization.
Prediction weight in pseudo-labels. Our memory-
smoothed pseudo-labeling uses ↵ to control the balance be-
tween the EMA model’s prediction and smoothness con-
straint. Figure 4(c) shows its effect, where ↵ = 0.9 re-
sults in the best performance. When ↵ = 1, the pseudo-
labels are purely generated by the EMA model, which is
the Mean-Teacher [33]. The accuracy decreases by 2.1%
due to confirmation bias. When ↵ < 0.9, the pseudo-labels
are over-smoothed. A potential improvement is to apply
sharpening [2] to pseudo-labels with smaller ↵, but is not
studied here due to the need of an extra hyperparameter.
Size of memory bank and momentum queue. K controls
both the size of the memory bank for pseudo-labeling and
the size of the momentum queue for contrastive learning.
A larger K considers more samples to enforce a structural
constraint on the label space and the embedding space. As
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Method #ImageNet labels #Pre-train epochs k=4 k=8 k=16 k=64 Full
Supervised 100% 90 73.51±2.12 79.60±0.61 82.75±0.34 85.55±0.12 87.12
MoCov2 [7] 0% 800 70.47±2.18 76.74±0.87 80.61±0.53 84.60±0.11 86.83
SwAV [3] 400 68.04±2.39 75.06±0.73 79.46±0.55 84.24±0.13 86.86
MoCov2 [7] 1% 800 71.82±2.09 77.35±0.83 81.33±0.50 84.98±0.14 87.05
CoMatch 400 72.81±1.50 79.18±0.51 82.30±0.46 85.65±0.17 87.66
MoCov2 [7] 10% 800 73.09±2.02 79.37±0.40 82.05±0.46 85.41±0.16 87.48
CoMatch 400 74.56±2.04 80.60±0.31 83.24±0.43 86.07±0.16 87.91

(a) VOC07

Method #ImageNet labels #Pre-train epochs k=4 k=8 k=16 k=64 k=256
Supervised 100% 90 27.20±0.41 32.08±0.45 35.95±0.21 41.81±0.17 45.74±0.14
MoCov2 [7] 0% 800 25.34±0.51 30.64±0.39 35.08±0.34 42.18±0.10 46.96±0.06
SwAV [3] 400 25.32±0.46 31.00±0.47 35.65±0.28 42.60±0.11 47.51±0.20
MoCov2 [7] 1% 800 26.22±0.50 31.33±0.40 35.55±0.35 42.20±0.11 46.95±0.07
CoMatch 400 27.15±0.42 32.36±0.37 36.56±0.33 42.97±0.11 47.32±0.18
MoCov2 [7] 10% 800 27.19±0.47 32.11±0.49 36.00±0.30 42.31±0.13 46.88±0.08
CoMatch 400 28.11±0.33 33.05±0.46 36.98±0.28 43.06±0.22 47.10±0.11

(b) Places

Table 3: Linear classification on VOC07 and Places using models pre-trained on ImageNet. We vary the number of examples per-class
(k) on the down-stream datasets. We report the average result with std across 5 runs.

#ImageNet 1⇥ schedule 2⇥ schedule
Method labels APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Supervised 100% 38.9 59.6 42.7 35.4 56.5 38.1 40.6 61.3 44.4 36.8 58.1 39.5
MoCo [14] 0% 38.5 58.9 42.0 35.1 55.9 37.7 40.8 61.6 44.7 36.9 58.4 39.7
CoMatch 1% 39.7 61.2 43.1 36.1 57.8 38.5 41.2 62.2 44.9 37.3 59.0 39.9
CoMatch 10% 40.5 61.5 44.2 36.7 58.3 39.2 41.5 62.5 45.4 37.6 59.5 40.3

Table 4: Transfer the pre-trained models to object detection and instance segmentation on COCO, by fine-tuning Mask-RCNN with
R50-FPN on train2017. We evaluate bounding-box AP (APbb) and mask AP (APmk) on val2017.

shown in Figure 4(d), the performance increases as K in-
creases from 10k to 30k, but plateaus afterwards. We would
also like to highlight that the memory bank and the momen-
tum queue only introduce a small computation overhead be-
cause (1) low-dimensional embeddings are stored, (2) gra-
dients are not computed w.r.t to the embeddings.

4.4. Transfer of Learned Representations

We further evaluate the quality of the representations
learned by CoMatch by transferring it to other tasks. Fol-
lowing [11, 21], We first perform linear classification on
two datasets: PASCAL VOC2007 [10] for object classifica-
tion and Places205 [39] for scene recognition. We train lin-
ear SVMs using fixed representations from ImageNet pre-
trained models. We preprocess all images by resizing them
to 256 pixels along the shorter side and taking a 224⇥224
center crop. The SVMs are trained on the global average
pooling features of ResNet-50. To study the transferabil-
ity of the representations in few-shot scenarios, we vary the
number of samples per-class (k) in the downstream datasets.

Table 3 shows the results. We compare CoMatch
with standard supervised learning, self-supervised learning

(MoCov2 [7] and SwAV [3]), and fine-tuning after self-
supervised learning. CoMatch outperforms both supervised
learning and self-supervised learning, which shows the ef-
ficacy of semi-supervised representation learning. It is in-
teresting to observe that self-supervised learning methods
do not perform well in few-shot transfer, and only catch up
with supervised learning when k increases.

In Table 4, we also show that compared to supervised
and self-supervised learning, CoMatch learns a better CNN
backbone for object detection and instance segmentation on
COCO [23]. We follow the exact same setting as [14] to
fine-tune a Mask-RCNN model [15] for 1⇥ or 2⇥ schedule.

5. Conclusion

To conclude, the success of CoMatch can be attributed
to three contributions: (1) co-training of class probabili-
ties and image embeddings, (2) memory-smoothed pseudo-
labeling to mitigate confirmation bias, (3) graph-based con-
trastive learning to learn better representations. We believe
that CoMatch will help enable machine learning to be de-
ployed in domains where labels are expensive to acquire.
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Munos, and Michal Valko. Bootstrap your own latent: A
new approach to self-supervised learning. arXiv preprint

arXiv:2006.07733, 2020. 1, 2, 6
[14] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, 2020. 1, 2, 5, 8

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.
Girshick. Mask R-CNN. In ICCV, pages 2980–2988, 2017.
8

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 5, 6

[17] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej
Chum. Label propagation for deep semi-supervised learning.
In CVPR, pages 5070–5079, 2019. 1, 2

[18] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. In ICLR, 2017. 2

[19] Dong-Hyun Lee. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural networks.
In ICML Workshop on Challenges in Representation Learn-

ing, volume 3, page 2, 2013. 1, 2, 5, 6
[20] Junnan Li, Caiming Xiong, and Steven C.H. Hoi. Mopro:

Webly supervised learning with momentum prototypes. In
ICLR, 2021. 2

[21] Junnan Li, Pan Zhou, Caiming Xiong, and Steven C.H. Hoi.
Prototypical contrastive learning of unsupervised representa-
tions. In ICLR, 2021. 2, 6, 8

[22] Suichan Li, Bin Liu, Dongdong Chen, Qi Chu, Lu Yuan, and
Nenghai Yu. Density-aware graph for deep semi-supervised
visual recognition. In CVPR, pages 13397–13406. IEEE,
2020. 2

[23] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in
context. In ECCV, pages 740–755, 2014. 8

[24] Yucen Luo, Jun Zhu, Mengxi Li, Yong Ren, and Bo Zhang.
Smooth neighbors on teacher graphs for semi-supervised
learning. In CVPR, pages 8896–8905, 2018. 1, 3

[25] Ishan Misra and Laurens van der Maaten. Self-supervised
learning of pretext-invariant representations. In CVPR, 2020.
6

[26] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and
Shin Ishii. Virtual adversarial training: A regularization
method for supervised and semi-supervised learning. IEEE

Trans. Pattern Anal. Mach. Intell., 41(8):1979–1993, 2019.
2, 6

[27] Avital Oliver, Augustus Odena, Colin Raffel, Ekin Dogus
Cubuk, and Ian J. Goodfellow. Realistic evaluation of
deep semi-supervised learning algorithms. In Samy Ben-
gio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
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