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Figure 1. High resolution image generation conditioned on a segmentation map (yellow inset). Our base model (1st column) generates
more realistic results than SPADE [24] (4-5th column). We further improve the quality of results by using our class-specific generators to
generate foreground objects or parts and compose them on the image generated by our base model. The segmentation maps in 2nd column
(blue insets) show the parts that are modified by our bank of GANs and the zoomed-in results are shown next to each image.

Abstract
We propose a new approach for high resolution seman-

tic image synthesis. It consists of one base image generator
and multiple class-specific generators. The base genera-
tor generates high quality images based on a segmentation
map. To further improve the quality of different objects, we
create a bank of Generative Adversarial Networks (GANs)
by separately training class-specific models. This has sev-
eral benefits including – dedicated weights for each class;
centrally aligned data for each model; additional training
data from other sources, potential of higher resolution and
quality; and easy manipulation of a specific object in the
scene. Experiments show that our approach can generate
high quality images in high resolution while having flexibil-
ity of object-level control by using class-specific generators.

1. Introduction

Image generation has been explored extensively in both
the unconditional [8, 18, 19, 32] and conditional [15, 37,

33, 17, 3, 24] settings. In the unconditional setting, an
image is generated by randomly sampling a latent code.
With the advent of StyleGAN2 [32], for some classes such
as faces, the generated images are almost indistinguish-
able from real images. In the conditional setting, an im-
age is generated based on some input conditioning signal
such as another image, a segmentation map, or other pri-
ors. Most notably, SPADE [24] (i.e., spatially-adaptive nor-
malization) significantly boosted image quality for seman-
tic image generation. This normalization and its variants
have been used as standard building blocks in many follow-
ing works [35, 25, 31, 30]. However, the image quality of
conditional GANs is still inferior to that of unconditional
GANs, especially StyleGAN2. Also, most approaches out-
put 256× 256 resolution images, which is not high enough
for many real world applications, and their generation qual-
ity is inferior for higher resolutions.

In this work, we target high resolution image generation
conditioned on input segmentation maps (yellow insets in
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Fig. 1, first column). Contrary to most prior work which
typically follow the SPADE architecture design, we explore
a new direction. First, we develop a conditional version
of StyleGAN2. Our generator backbone builds upon the
original StyleGAN2 architecture, which can generate better
quality images and is more easily scaled to high resolutions.
Specifically, we use an encoder to extract hierarchical fea-
ture representations from the input segmentation map and
use it to modulate the StyleGAN2 generator. The resulting
generator is less memory intensive and faster to train com-
pared to SPADE based approaches.

Second, instead of using a single generator, we use multi-
ple class-specific generators to improve the quality of small
foreground objects. There are several advantages of using
different models for different classes: (i) Class-specific gen-
erators with dedicated weights learned for each foreground
class have the capability to generate more details. Imagine a
bedroom filled with objects of different scales such as bed,
lamp, table, chair, chest and others (Fig. 1, first row). A
single GAN might allocate most of its capacity toward gen-
erating larger content such as floor, walls and bed since they
contribute most to the overall realism, and therefore neglect
the details of smaller objects such as lamps and chests. Us-
ing separate generators for smaller objects result in more
textural details and better shape integrity in those regions
(Fig. 1, columns 2-3). (ii) Class-specific generators can be
trained with image crops that always align the objects to the
center. As shown in [19, 32], spatial alignment is often cru-
cial for high quality generation. On the other hand, a single
GAN generating an entire scene at once needs to deal with
objects appearing in arbitrary locations which is more diffi-
cult to learn. (iii) Class-specific generators can benefit from
more training data, which is especially important for more
rare classes. Other than the scene training set from which all
foreground objects are extracted, one can leverage separate
class-specific datasets for training each foreground genera-
tor. (iv) Class-specific generators enable more applications.
For example, we can generate out-of-distribution scene im-
ages such as a car on a sidewalk (Fig. 8), and we can also
easily change the appearance of one object instance in the
scene without modifying the rest of it (Fig. 7).

However, naı̈vely training separate generators and com-
bining their results does not generate satisfactory results.
It can lead to appearance inconsistency among generated
objects in the same scene; e.g., a generated foreground ob-
ject might not have compatible colors and perspective with
its background or in the context of other objects. Training
all models together based on shared global information will
address the inconsistency issue, but it is extremely compu-
tationally demanding and cannot scale. Instead, we provide
the result of our single GAN base model as input to each
class-specific generator since it captures the global knowl-
edge of the scene and constrains the foreground object ap-

pearance to be harmonious with each other. Although our
focus is on generating complex scenes, our approach can
also be used to generate a single object class with multi-
ple complex parts like humans (Fig. 1, second row). We
demonstrate this by training separate class-specific genera-
tors for faces and shoes.

Contributions. (1) A general framework for high quality
conditional generation of complex scenes by training mul-
tiple class-specific generators; (2) A powerful StyleGAN2-
based conditional base generator; (3) We demonstrate state-
of-the-art image quality synthesized by our model against
existing methods and show some potential applications.

2. Related work
High Resolution Semantic Image Generation. GANs [9]
have become one of the most promising models to gener-
ate photorealistic images. Many different architectures [4,
39, 37, 33, 18, 3, 19, 32] and training techniques [1, 11, 23]
have been proposed to explore different tasks [4, 39, 37, 33],
improve generation quality [3, 19, 32], and stabilize train-
ing [1, 11, 23]. There are also many great works exploring
conditional image generation [37, 33, 17, 3, 24, 31, 30]. In
particular, segmentation map to image generation [33, 24,
31, 30] is popular due to its wide applications like flex-
ible content creation for image editing. Although these
works generate impressive results at lower resolutions, their
higher resolution results for complex settings such as indoor
scenes or full human bodies are often inferior and less de-
tailed. Even at lower resolutions, the quality of foreground
objects can be low due to the model focusing more on the
background, which typically has more pixels than the fore-
ground. The current state-of-the-art method for high res-
olution image generation is StyleGAN2 [19, 32]. How-
ever, it is an unconditional model which lacks controllabil-
ity over the image generation process. Some recent con-
current works [20, 27] modify the StyleGAN2 architecture
for conditional image generation for the specific domain of
human bodies. In contrast, we propose a general purpose
approach to condition StyleGAN2 on segmentation map in-
puts of various scene categories (e.g., bedrooms and street
scenes) and complex objects (e.g., humans).

Image generation through unshared weights. Most im-
age generation models have a monolithic architecture [33,
18, 3, 24, 19, 32], which outputs a final image without
specialized weights for different classes or semantic re-
gions. Others [36, 14, 21, 10, 13, 29, 31] model an im-
age via different components, e.g., by having global and
local branches [14, 21, 10, 13] with the local branch be-
ing specialized for different objects/parts. However, these
models are usually face specific [14, 21, 10]. The work
of [13, 36, 29] propose to separate background and fore-
ground generation. But they can only generate single object
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Figure 2. The common architecture used for both the base
model and the class-specific models We modify the StyleGAN2
architecture by replacing its input constant with the output from
the encoder. z is also conditioned on the encoder output.

images and do not have dedicated generators for specific
foreground categories. [31] shares a similar idea with us.
However, instead of having separate modules for different
classes, it only has a few separate convolution layers for
each class at the end of the generator, which means that it is
deprived of our advantages of aligning training data, having
an entire network dedicated to a class, and using data from
other sources. Moreover, the model is very memory exten-
sive and time consuming to train, as all the classes have to
be trained together in an end-to-end fashion. In contrast, our
class-specific generators can be trained for selected classes
independently on separate GPUs in parallel.

3. Approach

We aim to generate high-quality scene images based on
input segmentation maps by using a powerful base genera-
tor that generates an entire scene without differentiating ob-
jects and parts, and multiple class-specific generators that
improve the appearances of small foreground objects. Both
types of generators use the same architecture design with
minor changes. We first introduce our new architecture
(Section 3.1). Then, we describe our training (Section 3.2)
and inference pipelines (Section 3.3).

3.1. Architecture

Fig. 2 shows our architecture, which is used by both our
class-specific models and the base model. It consists of an
encoder (blue module) and a decoder (green module). The
encoder takes in input (e.g., a semantic and edge map in our
base model, more details of the content of the input will be
introduced in the section 3.2) and processes it into a latent
code z and a spatial feature tensor ϕ′. The ϕ′ is next pro-
cessed by the feature cropping model and fed into decoder
together with z to synthesize realistic images. Next, we will
introduce details of the encoder, the feature cropping, and
the decoder.

In the encoder, we first have a several of conv and down-
sampling layers (Encoder1) , then we extend its backbone
at the last N layers (refer E2

BU and E2
TD in the Fig. 2) with

a feature pyramid [22], enhancing higher resolution features
(that are more accurately localized to the input) with lower
resolution features (that are more semantic and has larger
receptive field to capture global information). For example,
if the input was a segmentation map then the higher reso-
lution features would be more aligned with the input lay-
out whereas the lower resolution features would have more
global information about all the classes present in the seg-
mentation map. As shown in the Fig. 2, the second part
of the encoder, E2, consists of two pathways: bottom-up
(E2

BU ) for downsampling and top-down (E2
TD) for upsam-

pling and merging features from E2
BU . The output of E2

TD

is ϕ′. Note that z is the output of E2
BU without being pro-

cessed by E2
TD.

Next, the spatial feature tensor ϕ′ is fed into the feature
cropping module, a fixed operation without learnable pa-
rameters. In class-specific models, the feature cropping is
predefined to crop class instance regions from the ϕ′ to get
the starting feature tensor ϕ for the decoder. Refer the sec-
tion 3.2 for more explanations. For the base generator, the
feature cropping module is identity mapping; i.e., ϕ = ϕ′.

The green module in our architecture is the decoder
adopted from StyleGAN2 [19, 32]. In StyleGAN2, the gen-
erator backbone takes a learnt constant as input. Instead, our
generator takes the output from the feature cropping module
as input since it provides the generator features that are rel-
evant for the class at hand. As the resolution of ϕ is usually
higher than the constant used in StyleGAN2 [19, 32], thus
we skip its first K layers. More details of our architecture
can be found in the supp.

3.2. Training pipeline

Base generator. As shown in the top left of Fig. 3, the
base generator takes in segmentation map S and instance
edge map E, to generate a base image Ib that covers the
entire scene, i.e., Ib = Gb(cat(S,E)), where cat(·, ·) is a
channel-wise concatenation. Gb is our base generator in-
cluding both the encoder and the decoder architectures in
Fig. 2. Using a spatial feature tensor as input to StyleGAN2
rather than a vector [32] gives the model strong guidance
on how the generated spatial structure should look like. By
sampling different z, our model can generate different re-
sults given the same segmentation map.

Class-specific generator. To further improve the quality of
smaller object classes, we train multiple class-specific gen-
erators as shown in the top right of Fig. 3. If we generate
each object instance without taking into account their con-
text, the generated instances might look great on their own,
but the final result after compositing multiple instances may
look inharmonious due to inconsistent orientation, color, or
lighting among different objects. For example, without con-
text, our lamp-specific generator will generate lamps that
do not look compatible with the lighting environment of the
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Figure 3. Our Approach. During training, our base generator is trained to generate an entire image, whereas our class-specific generators
take in the cropped real image with object information removed (shaded region is filled with either zeros or low frequency information of
the object) and cropped segmentation map as context information to generate the instance for the corresponding class. During inference,
the base generator first generates the entire image and then the class-specific generators sequentially generate specific regions of the image
while considering the previous generations as context. c&r means the cropping and instance information removing operation. Note that we
do not show cropped semantic map as input of class-specific models in the inference pipeline for simplicity.

scene and shadows on the wall as shown in Fig. 6.
To address that, we provide some context information

around the target instance as input to our class-specific gen-
erators. Specifically, we use the enlarged (2 times in both
dimensions) box of an instance to crop both the real image
Ireal scene and its segmentation map S to get the cropped
real image Ci and the cropped segmentation map Cs for
this instance. Next, we use two different ways to remove
the instance information from the Ci before providing it
for the generation (the shaded region in Fig. 3 top-right).
The first one is to mask out the foreground region with ze-
ros. The second approach is to blur the foreground region
to retain only the low frequency information, in which case
we hope the generated result will roughly follow the orig-
inal instance color theme. The Ci (with instance informa-
tion removed) and Cs are concatenated and used as con-
text C = cat(Ci, Cs) for the class-specific generator Gc to
generate a specific instance Ic = Gc(C). Note that Ci is
not cropped from Ib, but from the real image during train-
ing. The reason is that the real image provides the perfect
groundtruth to supervise the hallucination of the foreground
object from the context while the generated Ib may con-
tain artifacts. The feature cropping module (See Fig. 2) in-
side Gc is used to crop the spatial feature ϕ′ to obtain the
ϕ which is corresponding to the instance region only. The
cropping box is calculate such that the final object is tightly
generated within Ic. In this way, we can fully take advan-
tage of decoder’s capacity without generating any context
outside the instance box.

To force the model to use C, we apply the perceptual
loss [16] between the generated instance and the target in-

stance, Ireal ins, which is directly cropped from the real
image Ireal scene using the instance box without being en-
larged. As the background pixels in Ireal ins already exist in
C (i.e., Ci), the generator will autoencode the background
region. In this way, the generator learns to gather hints from
the surrounding context of the target instance and generates
foreground pixels that look consistent with the background.
Also, this loss can help our model maintains the low level
frequency information provided in the Ci (the second case
of removing instance information).
Training losses. We use the adversarial loss as well regu-
larizations used in StyleGAN2 [32] and refer to all of them
combined as Lstylegan. For adversarial loss, the real dis-
tributions are {Ireal scene} and {Ireal ins} for our base and
class-specific generator respectively. To regularize our en-
coder, we apply KL-Divergence [7] to the output of encoder
z forcing it to follow normal distribution to support multi-
modal synthesis during inference, Lkl. We also use percep-
tual loss [16]: Lperceptual =

∑
l

||Vl(Igen) − Vl(Ireal)||1
where Vl(·) is output of lth layer of a pretrained VGG net-
work [28]. Igen is Ib and Ic; Ireal is Ireal scene and Ireal ins
in our base and class-specific model, respectively. To sum-
marize our overall training loss is: L = Lstylegan + λ1 ∗
Lkl + λ2 ∗ Lperceptual The loss weights and the frequency
of regularization within Lstylegan are the same as in Style-
GAN2 [32]. More details can be found in the supp.

3.3. Inference pipeline

The bottom part of Fig. 3 describes our entire pipeline
during inference. Starting from the input segmentation map
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Scene Classes Training data sources

Bedroom bed, chair, table (1)+(4)
chest, lamp, pillow (1)+(4)+(5)

Human shoes, face, upper clothes (2)

Cityscapes car (3)+(6)
person (3)+(6)+(7)

Table 1. We can flexibly combine datasets to train our class-
specific generators.

and instance edge map, we use our base model to generate
the base image Ib. Then, the generated base image plays the
role of providing context for each class-specific generator.
Once an instance is generated by a class-specific genera-
tor, its result is composited into the base image. The new
composited image becomes the new base image for the next
instance. This process continues until all instances are gen-
erated. In practice, we generate instances based on their
size (largest first) as larger objects are more likely to serve
as context for smaller ones.

For better composition quality, we dilate and soften
boundaries of both the generated instances and the instance
masks before applying alpha blending. More details about
the composition can be found in the supp. Though different
from training where real images are used to provide context,
we find that using the generated base image Ib to provide
context at inference time also leads to good results.

4. Experiments
We perform quantitative and qualitative evaluations

comparing our base model and CollageGAN model (com-
bining results of class-specific generators) with prior arts.

Datasets. For baseline comparisons, we conduct experi-
ments on the following datasets.
(1) Bedroom. We combine two existing datasets to get
74318 training images in total. We use the training set of
bedroom category from ADE20k [2]. Additionally, we use
the bedroom and hotel room categories from places [38]
and apply a segmentor [34] trained on ADE20K to get
pseudo annotation. We use test set from the bedroom cate-
gory from ADE20K for evaluation.
(2) Full human body dataset. We collected 67560 high
resolution images on full human body and annotated them
with 24 common classes such as faces, upper-clothes, left
shoes, right shoes. We randomly select 1/10 of the images
as testing images (6757). We blur out the background re-
gion to focus the network capacity on generating the human
instead of the complex background.
(3) Cityscapes [5]. It contains street scene images in Ger-
man cities. The number of training and testing images are
3000 and 500, respectively.

We use all three datasets to train our base model and
baselines. Our base model usually performs well for the
classes of large extent in the scene, for example beds in the
bedroom scene or large background categories like walls
and floors. Hence, in order to show the impact of our Col-

Datasets SPADE OASIS LGGAN Ours
Bedroom 45.84 39.13 NA 34.41
Human 38.53 8.65 NA 7.51

Cityscapes 59.68 50.90 61.46 47.07
Table 2. FID (lower is better). Our base model has consistently
lower FID than the baselines.

lageGAN, we train class-specific generators on classes of
objects that are usually small and not synthesized well by
our base model and baselines.

Since we have separate models for different classes,
we can use the following datasets as extra training data
sources for generating bedrooms and cityscapes. For
bedroom, we use (4) iMaterialist [6] and (5) Indoor
dataset (childs room, dining room and living room
from places dataset [38]). For cityscapes, we use (6)
Cityscapes extra [5] and (7) Caltech Pedestrian [26]
dataset. More details about these additional data can be
found in the supp. Table 1 summarizes the classes we
choose and their training sources. We trained all the base
models to generate 512 × 512 resolution images for bed-
room and human dataset, and 1024 × 512 images for the
cityscapes dataset. Since the resolution of each class varies,
the class-specific generators are trained at 128 × 128 or
256 × 256 depending on average size of each class. For
quantitative evaluation, We train all classes, except for per-
son category in cityscapes, with blurred foreground region
such that the model can try to maintain the color tone of in-
stances in the base image during inference time. Our base
model generates lower quality persons in cityscapes, hence
blurred region wasn’t very useful and we simply mask in-
stead. More implementation details are in the supp.

4.1. Base model results

We compare our base model with SPADE [24] and its
recent variants LGGAN [31] and OASIS [30] which are
state-of-the-art for the segmentation map to image gener-
ation task. As we are targeting higher resolution than previ-
ous approaches (256× 256 for ADE20K and 512× 256 for
cityscapes), we train their models at higher resolution and
also provide them instance map for fair comparison. We
trained them using their default parameters and verified the
result quality of SPADE with the original authors. During
training, all SPADE-based approaches are very memory de-
manding. For example, SPADE and OASIS takes around 16
GB per image to train 512×512 bedroom images while our
model takes only 4 GB. LGGAN cannot fit a single image
on a 32 GB V100 GPU for the bedroom dataset as it has a
huge number of parameters due to the separate conv layers
for each class. We are able to run LGGAN for the datasets
with fewer classes like human and cityscapes (takes around
32 GB per image) but training is extremely slow; it would
take more than a month for the human dataset with eight 32
GB V100 GPUs. Hence we only compare against LGGAN
on cityscapes which is faster to train due to fewer images.

14422



Ours BaseSPADE OASIS SPADE OASIS Ours Base

Figure 4. Visual comparison of segmentation map to image synthesis results on the ADE20K bedroom (512x512), full human body
(512x512), and Cityscapes (1024x512) datasets. Our base model generates much more realistic images compared to SPADE and OASIS.

Datasets Ours vs SPADE Ours vs OASIS Ours vs LGGAN
Bedroom 90.0% 73.2% NA
Human 82.4% 63.2% NA

Cityscapes 59.2% 35.2% (83.6%) 62.0%
Table 3. Percent of times users preferred our base model over
baselines. Our base model is consistently preferred over baselines
except for cityscapes when compared with OASIS. But our Col-
lageGAN model is preferred 83.6% times over OASIS.

Quantitative results and human evaluation. In Table 2,
we compare FID [12] of our base model with all the other
approaches. Our base model gets the lowest FID on all three
datasets.We also conduct user studies on Amazon Mechan-
ical Turk (AMT). Specifically, we show the segmentation
map and two generated images (ours vs one baseline) side-
by-side to the AMT workers. We employ a two-alternative
forced choice option for workers by forcing them to choose
one image which looks more realistic. We showed 250 im-
age pairs for each comparison and asked 5 unique workers
to judge each pair. Table 3 shows our human evaluation
results. Users strongly favored our approach over the base-
lines except for OASIS on the cityscapes dataset. The rea-
son is that our base model sometimes generates less details
for smaller objects when the training set is small (cityscapes
has only has 3000 images). We can overcome this issue
by using our CollageGAN consisting of class-specific gen-
erators for the smaller objects like car and person in the
cityscape dataset. We then compared the results of our Col-
lageGAN model against that of OASIS and found users pre-
ferred our approach 83.6% times. Please note that for a fair

scenes Bedroom Cityscapes Human
classes chest chair pillow lamp table car person face shoe

FID (base) 146.15 165.24 127.67 88.20 125.48 44.50 98.88 15.71 33.33
FID (CollageGAN) 132.12 155.52 136.79 80.12 119.44 30.42 82.34 13.54 29.87

User Favor 71% 70% 33% 62% 60% 94% 89% 84% 69%

Table 4. Per class FID and user preference. For most classes,
our CollageGAN model is preferred over our base model.

FID ↓ User study ↑
I: Base II: w/o extra III: w/ extra I vs. II I vs. III

car 44.50 36.71 30.42 23% / 77% 6% / 94%
person 98.88 88.47 82.34 13% / 87% 11% / 89%

Table 5. Additional data ablation study. I is our base model. II
and III are CollageGAN models without and with extra data.

comparison we did not use any additional training data for
the CollageGAN model in this case.
Qualitative results. In Figure 4, we compare our base
model against SPADE and OASIS. Our generated images
look more realistic and detailed. For example, the bed sheet
in generated bedrooms contain more textures and clothes on
generated humans contain more wrinkles. We also found
OASIS to have some boundary artifacts which can be seen
by zooming in on the OASIS generated human images. Our
model can also generate multiple images corresponding to
the same segmentation map by sampling different z. We
show these results in the supp.

4.2. CollageGAN model results

Our CollageGAN model consisting of class-specific gen-
erators can further improve the quality of the images gener-
ated by our base model which we evaluate next.

Quantitative results and human evaluation. We first
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Figure 5. Comparing our base model with our CollageGAN model. Our CollageGAN model takes advantage of class-specific genera-
tors to provide more details to specific classes in the image generated by the base model.

compute per-class FID comparing our base model with our
class-specific generators. Specifically, we crop each in-
stance from both the original base image and the compo-
sition image generated using CollageGAN, and resize them
to the average crop size over all instances in the class. We
also conduct AMT evaluation, in which workers are shown
class instances generated by our base model and by class-
specific generator, and asked to choose the more realistic
one. We show segmentation map at top with target instance
highlighted, and two images at bottom (cropped from base
and composition image). For each class, we show 100 pairs
of images and 5 unique users are asked to judge each pair.
In Table 4, we report per-class FID of our base model (first
row) and our CollageGAN model (second row) and also the
percentage of time users prefer our class-specific generator
over the base model. Our class-specific generator consis-
tently obtains lower FID and higher user preference in all
object categories except for the pillow class. We observed
that for the pillow class, the base model usually generates
a pure white color pillow (which is the most common color
in the training data) which is simple and usually looks re-
alistic. Hence, our CollageGAN model does not add much
value and any small boundary artifacts due to composition
can become more noticeable.

Qualitative results.In Figure 5, we show results of com-
positing the pixels generated from our class-specific gener-
ator on top of the image generated by the base model. In the
first column, we show the segmentation mask (yellow inset)
and the corresponding image generated by our base genera-

tor. In the second column, we show our CollageGAN model
results (highlighted class instance in blue inset show com-
posited class instances). Finally, in the third column, we
show the zoomed in view of the composited class instances
which contain more details. For example, the chest in the
first row contains more structural details like box bound-
aries and handles. The face region in the second row and
the car in the last row look more realistic.

Ablation study. We first study the impact of training our
class-specific generators with additional training data. Ta-
ble 5 reports the result on cityscapes dataset (refer supp for
the bedroom dataset), we can see that our class-specific gen-
erators perform better than the base model even without us-
ing any additional data (both in terms of user preference and
FID). This shows the advantage of class-specific weights
and centrally aligned data. Using additional training data
further improves FID and user preference.

Next, we study the impact of providing context informa-
tion C as input to our class-specific generators. In Fig. 6,
our lamp generator trained with context generates lamps
that are consistent with the surrounding lighting condition
whereas the model trained without context fails to do so.
For this ablation study, our lamp generator trained with con-
text does not use blurred foreground during the training and
inference time, so the network only relies on context to de-
termine the lamp color. Similarly, the last two rows indicate
that the model may fail to infer correct gender and skin color
when trained without any context. We also observe that
sometimes our class-specific generator trained with context
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Base image w context w/o context

Figure 6. Context analysis. The last two columns show the im-
portance of context during our class-specific model training.

can correct the mistakes (like incorrect car orientations in
Figure 5 bottom row) made by our base generator. Please
see the supp for more results.

Applications. Apart from generating more detailed and re-
alistic images, class-specific generators can be used for sev-
eral interesting applications. In Fig. 7, we use our class-
specific generators to replace a single object in the real im-
age without affecting the other image parts. We mask out
the object instance we want to replace and give the remain-
ing real image as context for our class-specific generator.
In Fig. 7, we replace the shirt in the top row and the bed
in the bottom row. Our generated region looks harmonious
with the rest of the image while being different from the
original. Note that here we train new bed and upper clothes
generators by masking out foreground region as we want
the model to generate diverse textures rather than following
the original color tone in the real image.

Both our base model and SPADE-based models are
trained to generate the whole scene at once and as a result it
is difficult for them to generate objects outside their original
context. In contrast, our class-specific generator can achieve
this as they are trained to only generate a fixed class. Fig. 8,
shows that our class-specific generator can generate a car
on sidewalks instead of road while SPADE fails. Finally,
we can also use our class-specific generator to generate a
very high resolution image (4096× 4096) where important
parts like face can be generated at high resolution while the

Figure 7. Replacing class instances in the real image. Images
in the red box are real images. Here bed and uppercloth generator
is used to replace the original objects.

SPADE Ours

Figure 8. Out-of-distribution generation. Our car specific gen-
erator can generate cars on the sidewalk or on the middle of the
road, which do not exist in the training distribution.

remaining parts can still be generated at lower resolution by
our base model. Please see supp for these results.

5. Discussion and Limitations
We introduced a conditional version of StyleGAN2 ar-

chitecture as a powerful base model for high quality and
high resolution semantic image generation. We used the
idea of leveraging context-aware class-specific generators
to further enhance the quality of results, especially for small
foreground objects. Our base model generates more realis-
tic images than baselines, but does not perfectly align with
the input segmentation map. The reason is that we down-
sample the segmentation map to 32× 32 resolution (feature
tensor ϕ′) before injecting it into the decoder. We argue
that weak conditioning from the segmentation map could
give our model more freedom to generate realistic pixels
and make our results more robust to inaccurate segmenta-
tion maps due to human or algorithm mistakes. In the supp,
we provide a detailed study to evaluate the alignment be-
tween the input segmentation map and the generated images
for our base model and baseline approaches.
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