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Abstract

Recently, deep learning-based image denoising meth-
ods have achieved significant improvements over tradi-
tional methods. Due to the hardware limitation, most deep
learning-based image denoising methods utilize cropped
small patches to train a convolutional neural network to
infer the clean images. However, the real noisy images
in practical are mostly of high resolution rather than the
cropped small patches and the vanilla training strategies
ignore the cross-patch contextual dependency in the whole
image. In this paper, we propose Cross-Patch Net (CPNet),
which is the first deep- learning-based real image denois-
ing method for HR (high resolution) input. Furthermore,
we design a novel loss guided by the noise level map to ob-
tain better performance. Compared with the vanilla patch-
based training strategies, our approach effectively exploits
the cross-patch contextual dependency. Besides, owing to
the difficulty in capturing real noisy and noise-free image
paired training data, we propose an effective method to gen-
erate realistic sRGB noisy images from their corresponding
clean sRGB images for denoiser training. Denoising exper-
iments on real-world sRGB images show the effectiveness
of the proposed method. More importantly, our method
achieves state-of-the-art performance on practical sRGB
noisy image denoising.

1. Introduction

Since image denoising can help downstream computer
vision tasks [44, 28, 43, 27, 26, 32], it has attracted ex-
tensive interest in related fields. The majority of denois-
ing methods take the cropped small patches as the train-
ing dataset due to the hardware storage limitation like GPU
memory. However, these methods trained with the cropped
patches may fail when denoising the real noisy images in
the practical situation. Nowadays, the images captured by
the cameras always have high-resolution and there exists
context consistency between the patches in a whole image.
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Figure 1. An example of the patch-wise noise consistency in SIDD
[1]. The four similar patches have almost the same NLFs (βs and
βr for noise level function – see Section 3.1). The NLFs and the
Gaussian noise level are estimated by using the method proposed
by [13]and [8], respectively.

A large number of denoising methods can achieve consid-
erable performance when they adopt the cropped real noisy
image patches as training data set dealing with the Gaussian
noise. Nevertheless, there exist virtual differences between
the Gaussian noise and the real noise. The noise levels of
patches in a Gaussian noisy image are the same which is the
fixed variance. Therefore, it is unnecessary to consider the
context consistency between Gaussian noisy patches.

It is quite different from the real noise. The real sRGB
noise is generated by the raw image noise through the image
processing pipeline (ISP). The raw noise can be divided into
two categories: shot noise and read noise[13, 29], which
obey Poisson distribution and Gaussian distribution respec-
tively. Poisson noise is highly relevant to the image pixel
values. Besides, the noise on each pixel is affected by the
pixels in the adjacent region when the raw image is con-
verted to an sRGB image. As a result, similar patches gener-
ate similar noise distribution. Figure 1 gives an example of
this phenomenon, illustrating that the high-resolution noisy
images consist of a series of similar patches, and the noise
level functions (NLFs) are almost the same (shot noise σs

and read noise σr). All the NLFs are estimated by using
the SIDD[1] raw noisy images with the NLFs estimation
method [13]. Therefore, It is essential to take the cross-
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patch consistency into account dealing with the real noise.
To obtain better real image denoising performance, noise

level maps are widely used as inputs in nowadays denoising
methods[18, 4, 42]. Noise level map consists of not only
the original image pixel values information but also the real
noise distribution information of each pixel. Both the real
noise and the noise level map record these two kinds of in-
formation mentioned above. But unlike the noise level map,
the real noise is accompanied by uncertainty and random-
ness, which makes it difficult to extract the original pixel
values and the noise levels. Although the noise level map
has superior properties, most existing methods only con-
catenate it with the noisy image as the network input and do
not leverage it efficiently.

In addition to the cross-patch consistency, the real image
denoising performance is limited by the lack of real image
training data. Due to the difficulties during image capturing
(object movement, camera motion, and lighting changes),
all these real noisy image data sets[1, 34, 3, 39, 31] have
limited numbers of scenes and images. For example, the
largest data set SIDD has only 10 scenes and 160 training
image pairs. Each real HR noisy image can be cropped into
multiple noisy patch training pairs, but the real noise pa-
rameters of each image are fixed which makes a large num-
ber of training pairs share the same real noise parameters.
However, there is a wide range of noise parameters in the
practical situation so that the lack of real noise parameters
in the training images affects the robustness of denoiser to
unknown noise parameters. Different from Gaussian noise,
the noise of the real image is often complex and difficult
to simulate. To tackle this issue, we propose a method to
synthesize realistic sRGB noisy images from clean images.

In this paper, we propose CPNet, a novel patch-based
deep learning method for real image denoising. Specifi-
cally, we crop an input image into patches and a primary
patches selection is made according to the semantic rele-
vance among them. Then we construct a cross-patch graph
and propose Cross-Patch Graph Convolutional Network.
we aggregate both the local and non-local information to the
decoder to obtain the predicted clean image. Cross-Patch
GCN explicitly captures cross-patch long-range contextual
dependency. For each given patch to be estimated (query
patch), CPNet aggregates other patches which are highly
relevant to the query one. Then CPNet ensembles those cor-
related features towards a more faithful predicted clean im-
age. To solve the problem of insufficient training data set,
we propose an effective method to generate realistic sRGB
noisy images from their corresponding clean sRGB images
for denoiser training.

In summary, our contributions are as follows:

• We propose a cross-patch strategy to explore the
contextual consistency between patches in a high-
resolution real noisy image.

• We propose a novel loss to leverage the noise level
map. Instead of merely regarding the noise level map
as the input in previous work, we further use it to su-
pervise the network training.

• We design an effective pipeline to generate realistic
sRGB noisy images from their corresponding clean
sRGB images for denoiser training.

• We propose a graph convolutional network CPNet to
practical HR real image denoising under hardware re-
sources constraints. Through extensive experiments on
different datasets, we show that the proposed method
is able to achieve state-of-the-art performance.

2. Related Work

Image denoising has attracted wide interest in computer
vision. There are two main approaches to denoise an image.
One is a classic technique that uses hand-engineered algo-
rithms to model the image priors which play an essential
role in image denoising from a Bayesian viewpoint. These
methods include, but are not limited to, non-local self-
similarity (NSS) models [6], sparse models [11], gradient
models [33], and Markov random field (MRF) models [23].
Self-similarity-driven techniques are still popular in recent
methods such as BM3D [10] and WNNM [17]. Despite the
progress in image denoising, the process is time-consuming
as a result of complicated optimization in the test stage. Be-
sides, the classic technique involves a number of manually
chosen parameters that have a significant effect on denois-
ing performance. Due to these two issues, CNN-based de-
noising methods come to power [22, 41, 12, 9, 25, 35, 7].
Benefited from the modeling capability of CNNs, these
methods generally achieve state-of-the-art performance for
blind denoising of images with simulated Gaussian noise in
the sRGB space. Nevertheless, owing to the unsatisfactory
denoising performance in real noisy images, denoising of
real images has been the focus of recent research in image
denoising [4, 18, 42]. All of them use noise level maps to
help denoising.

Cross-patch consistency has been widely considered in
image restoration. Similar patches frequently recur in a nat-
ural image inherently, leading to many classical methods,
e.g., non-local means [6] and BM3D[10] aggregate similar
patches to infer clean images. Nevertheless, the majority
of deep learning-based denoising methods ignore the cross-
patch consistency.

Since the noise level map contains abundant real noise
information, a large number of methods regard the noise
level map as additional input, such as[4, 40]. But they only
take the noise map as part of the input. There do not ex-
ist subsequent processing on it which leads to insufficient
utilization of the real noise parameters.
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Graph convolutional network[21, 19, 14, 15] has been
successfully applied in image restoration. GCDN[37] intro-
duce a lightweight Edge-Conditioned Convolution that ad-
dresses vanishing gradient and over-parameterization issues
of this particular graph convolution for image denoising.
IGNN[45] propose a graph network that explores the in-
ternal recurrence property for image super-resolution. The
graph network learns the repetitive textures, corners and
edges from the real image. We use GCN for three reasons:
Firstly, there exist a number of small similar structures in
the real noisy image. They are suitable to be modeled as
graph data to learn informative representations for nodes
based on the original node features and the structure infor-
mation. Secondly, the relevance between similar patches
can just be represented by the edge weights of the two nodes
in GCN. Thirdly, the traditional non-local approaches in-
volve many manually chosen parameters that affect denois-
ing performance, while GCN learns the parameters adap-
tively and boosts the denoising performance.

There are plenty of real image data set[1, 34, 3, 39, 31,
5]. However, making a high-quality training data set is
highly expensive[1] so that the number of the images and
scenes is limited. Because of the difficulty of capturing
a large amount of real noisy and noise-free image pairs,
some methods[4, 40] synthesize realistic sRGB noisy im-
ages based on modeling the key components of the ISP
pipeline for denoiser training. However, the generated noisy
images are not realistic enough since there are some non-
invertible ISP components such as demosaicing[30]. We
design a network to learn non-invertible components in ISP
for realistic sRGB noisy image generation.

In this paper, we utilize the GCN to capture the cross-
patch contextual dependency and optimize the training loss
to exploit the properties of the noise level map. Besides,
we design a network to enlarge the training dataset when
training the CPNet.

3. Our method
In image denoising, we crop an input image and its noise

level map (Sec. 3.1) into patches for training our network.
Given a query patch, we find image patches similar to the
query patch in the whole image (Sec. 3.2). To lever-
age cross-patch information efficiently, we propose a novel
Cross-Patch GCN (Sec. 3.3). Besides, we propose a new
loss to efficiently exploit the properties of the noise level
map (Sec. 3.4). Then, we describe the details of our net-
work (Sec. 3.5). The proposed procedure is shown in Fig-
ure 2. Finally, we design a noisy image generation network
to circumvent the lack of the training dataset (Sec. 3.6).

3.1. Background of Noise Level Map

Noise level map, an image containing original pixel val-
ues and real noise parameters information, is widely used

in nowadays image denoising methods[18, 4, 42]. We can
obtain noise level map n by Eqn.1:

n = βs ∗ L + βr,

L = f−1(i),
(1)

where i is the clean image and f is the camera response
function (CRF)[30]. βs: the signal-dependent multiplica-
tive component of the shot noise. βr:the independent addi-
tive Gaussian component of the read noise.

The raw noise model can be presented as [13]:

y = x+N (0, σ (x)) , σ2 (x) = βsx+ βr, (2)

x and y represent the clean and noisy raw images, respec-
tively. From above we can see that even though all the
patches in one image share the same NLFs (βs and βr),
most patches have different noise levels due to the differ-
ence of the original pixel values. As for similar patches,
the real noise is unlikely the same owing to the random-
ness of the noise, but the noise distribution and noise level
is most likely the same. Consequently, the cross-patch con-
sistency is worthy to be studied in the real image denoising
task. Empirically, we follow [4] and define f−1 as the in-
verse ISP for computation simplification without sacrificing
the accuracy. Each noise level map and the noisy image are
concatenated as the input.

3.2. Cross-Patch Sampling

We assume the l × l query patch as Iq . Our goal is to
find patches similar to query patch Iq in the whole image.
Instead of using all the copped patches in the whole im-
age, we only sample N candidates Iic, i ≤ N by the stride
s1 and then select top-K neighboring patches to save com-
putation without sacrificing the accuracy. Specifically, we
cropped the whole noisy image concatenated with its noise
level map into patches Iic. To find the K neighboring fea-
ture patches, we first extract the semantic features Eq and
Ei
c of Iq and Iic by the encoder. We find K l × l nearest

neighboring patches Ei
n, i ≤ K according to the Euclidean

distance between the query feature map Eq and other candi-
dates Ei

c. The smaller distance indicates that the candidate
patch is more correlated to the query patch, and thus should
play a more essential role in information propagation. Em-
pirically, we find that K = 3 can already achieve comparable
accuracy compared to utilizing all N context patches.

3.3. Cross-Patch GCN

To further relieve the computation burden of the GCN,
we set stride s2 to extract d × d patches E1

qj and Ei
nj

from
Eq and Ei

n. As illustrated in Figure 3, for each E1
qj , the

Euclidean distances between the feature E1
qj and all of the

feature of Ei
nj

are computed and an edge is drawn between
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Figure 2. The architecture of CPNet. The whole image concatenated with its noise level map is taken as the encoder input. Given a
query patch, the similar context patches will be found by cross-patch sampling. The following framework comprises two branches: local
and non-local networks. For the former, the branch extracts the correlation of the inner patch. For the latter, Cross-Patch GCN extracts
patch-wise consistency. Then we aggregate the local and non-local features as the input of the decoder. Finally, a residual connection is
applied to help generate the clean image.

E1
qj and the K Ei

nj
with smallest distance. As verified in

[46], there are plenty of recurring patches in the whole im-
age, hence we can assume K patches Ei

nj
are similar to E1

qj .
The connections between cross-patches can be well con-

structed as a graph G(V, E) , where every patch is a vertex
V and edge E = V × V is a similarity-weighted connection
of two vertices. In this work, we assume G as a labeled di-
rected graph without self-loops. The graph is constructed
as a K−nearest neighbor graph in the feature space. We
also assume that each edge has its label, and set the edge
labeling function as the difference between the two features
at layer m: d(m, i, j) = Em

qj − Ei
nj

.
Inspired by the Edge-Conditioned Convolution [36], we

aggregate k patches Ei
nj

and the non-local aggregation at
layer m is computed as :

Em
qj =

1

Sm
j

∑
i

exp(Fmd(m, i, j)Ei
nj
)),

Sm
j =

∑
i

exp(Fmd(m, i, j)),
(3)

where Fm is a fully connected edge conditioned convo-
lutional layer at layer m that takes as input the edge labels.
exp(·) denotes the exponential function. Sm

j represent the
normalization factor. In our Cross-Patch GCN, convolu-
tional layers M = 3 are performed. The K−nearest neigh-
bor in the graph is only calculated once. The rest two con-
volutional layers share the same vertices. By exploiting the
edge labels, the proposed GCN aggregates K semantic sim-
ilar features robustly and flexibly.

Despite the non-local operation of the Cross-Patch GCN,
a classical local convolution processes the local neighboring

Cross-Patch Sampling

Patch 

Aggregation

Graph 

Cross-Patch Graph 
Convolutional Layer

Times

Cross-Patch 
GCN Output

Figure 3. An illustration of the Cross-Patch GCN. Ei
n, i ≤ K are

the candidates similar to the query patch Eq
n, which can be ob-

tained from Cross-Patch Sampling. Then we crop Eq
n and candi-

dates Ei
n into smaller patches such as E1

qj and its nearest neighbors
Ei

nj
to construct the graph G, After the processing of the GCN, the

output is embedded with cross-patch contextual consistency.

to provide the output feature. Empirically, we design three
layers 3×3 convolution network. Finally, we combine both
the local feature and the non-local feature to generate the
output feature D as the input of the decoder.

3.4. Losses

3.4.1 L2 Loss

At a first glance, the network has a global input-output
residual connection whereby the network learns to estimate
the noise rather than successively clean the image. This has
been shown [41] to improve training convergence for the
denoising problem. Following the traditional methods like
[41], we adopt the L2-norm loss function which is the mean
squared error (MSE) between the denoised patch output by
the network and the ground truth.
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3.4.2 NLF Loss

We assume that the irradiance of the ground truth, noisy in-
put and predicted clean image as ỹ, x, y. We have the real
noise in input :ni = x− ỹ, with ni ∼ N (0, σx). We also de-
fine the noise in output as :no = y− ỹ, with no ∼ N (0, σy).
We have |σx| ≫ |σy| ≈ 0 owing to that y is closer to ỹ
than x. Considering a new variable nv = x − y, it has
nv ∼ N (0, σx + σy). For a given position k, xk, yk,nvk are
C × 1 vectors (C = 1 for gray level image and 3 for color
image), and σxk , σyk is a C × C covariance matrix. If we
ignore the noise channel correlation, the covariance matrix
turns into a diagonal matrix.

Motivated by [38], we take the sum of negative log-
likehood of nvk as the NLF loss:

LNLF =
∑
k

{
1

2
(yk − xk)

T (
σxk + σyk

)−1
(yk − xk)

+
1

2
log

∣∣σxk + σyk

∣∣},

(4)
where |·| indicates the determinant of a matrix. We take

the approximation |σxk | ≫
∣∣σyk

∣∣ ≈ 0 into account, and
the log term can be approximated by its first order Taylor
expansion at the point |σxk |: log

∣∣σxk + σyk

∣∣ ≈ log |σxk | +
tr
(
(σxk)

−1
σyk

)
, where tr (·) indicates the trace of a ma-

trix. The irradiance of x and y is obtained by using the
inverse ISP (Sec.3.6) to convert the noisy input and the pre-
dicted clean image. The noise level σx is provided by the
real noisy dataset SIDD and DND. The noise level σy is
estimated by [8]. By citing the conclusion of the [8], the es-
timated order of magnitude of σy is accurate. According to
the approximation, σy + σx ≈ σx and the trace of (σx)

−1
σy

can be well estimated. Thus, the total loss can boost the
performance.

Finally, the following NLF loss is employed to supervise
the training process:

LNLF =
∑
k

{
1

2
(yk − xk)

T (
σxk + σyk

)−1
(yk − xk)

+
1

2
log |σxk |+

1

2
tr
(
(σxk)

−1
σyk

)}
.

(5)
The total loss can be written as:

Ltotal = L2 + λLNLF. (6)

3.5. Network Structure

The encoder consists of 16 residual blocks which are
proposed by [24]. The decoder consists of 16 residual

blocks. The Cross-Patch GCN is inserted after the encoder
and is a quite small network only containing three convolu-
tional layers for both efficiency and accuracy.

3.6. Data Augmentation

Inspired by [16, 1], as shown in Figure 4, we propose a
method to synthesize the realistic sRGB noisy images from
the clean images. It consists of three steps: transforming a
clean sRGB image to the raw space (inverse ISP), adding
Poisson-Gaussian noise to the raw image, and converting
the noisy raw image back to the sRGB space (ISP). The ISP
pipeline in order consists of white balancing, Bayer rear-
rangement, DC-Net, color space conversion, gamma trans-
form, and tone mapping. In the inverse ISP pipeline, the
input is an sRGB image and the output is a simulated raw
image which in order goes through inverse tone mapping,
inverse gamma transformation, inverse color space conver-
sion, inverse demosaicing, inverse white balancing. A net-
work called DC-Net has been designed to learn the process-
ing of the non-invertible components of ISP including de-
mosaicing.

To generate the realistic sRGB noisy images, we need
to train DC-Net in advance. First, we take the real noisy
sRGB images as the inverse ISP pipeline input to gener-
ate the simulated noisy raw images, then turn off the noise
model component, and process the raw images through the
ISP pipeline to generate realistic noisy images. The noise
of the generated sRGB images shares a similar distribution
as the original real noisy images. After the framework is
trained, turn on the noise model component, and take a large
amount of clean sRGB images as the input to generate their
corresponding sRGB noisy images. Then we can leverage
these realistic noisy images as augmentation for real image
training. More detailed implementations are provided in the
supplementary material.

4. Experiment
In this section, we examine the effectiveness of our

method for real image denoising.

4.1. Datasets

We mainly conduct experiments on a real-world dataset:
SIDD [1] which is currently the most informative dataset
captured by smartphone cameras. It releases 160 pairs of
clean and noisy images. All the images are with metadata.
We randomly select 140 clean sRGB images and the corre-
sponding synthetic noisy images to train a denoising model.
All the images are cropped into 128×128 non-overlap train-
ing query patches, of which the total number is 110810. The
rest 20 real noisy images are cropped into 16210 128×128
non-overlap patches for testing.

For more comparisons with recent methods, we also per-
form experiments on the DND[34] datasets. This dataset
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Figure 4. A flowchart illustrating the main steps of realistic noisy image generation in our procedure. A clean sRGB image is passed
through the inverse ISP module to get a raw image, and after been added noise, the raw image is pre-processed to obtain the input to the
DC-Net, which generates a pre-sRGB noisy image. Finally, the realistic noisy sRGB image is obtained by the post-processing.

consists of 50 pairs of noisy and noise-free images captured
with four consumer cameras. Since the images are of very
high-resolution, the providers extract 20 crops of size 512 ×
512 from each image, thus yielding a total of 1000 patches.
The complete dataset is used for testing because the ground
truth noise-free images are not publicly available. Quanti-
tative evaluation in terms of PSNR and SSIM can only be
performed through an online server.

We adopt DIV2K[2] as the augmentation of the real
noisy training dataset. DIV2K has 800 (relatively) clean
training images without the paired noisy ones with high
quality (2K resolution). We randomly cropped 50 non-
overlap 128×128 patches in each image thus yielding a total
of 40000 training query patches.

In the cross-patch sampling, we set the stride s1 as 200.
The number of the neighbors K is set as 3. In the Cross-
Patch GCN, we set the stride s2 as 4. The size d of the
GCN feature maps is 3.

4.2. Implementation Details

4.2.1 CPNet Settings

The model is trained for approximately 800000 iterations
with a minibatch size of 8. The Adam optimizer[20] has
been used with the settings of β1 = 0.9, β2 = 0.999,

ϵ = 10 − 8 and an exponentially decaying learning rate
between 10−4 and 10−5. The framework is implemented
on the Pytorch on 8 NVIDIA 1080Ti GPU.

4.2.2 DC-Net Settings

In the training of DC-Net, ADAM [20] is used as the opti-
mizer with a learning rate set to 5 × 10−4. The batch size
is 64. In each epoch, 30000 patches are sampled from the
whole training patches. Totally, 1000K epochs are carried
out during training. L2 loss is adopted.

4.2.3 Training Strategies

According to the difference of testing data SIDD and DND,
we use two training strategies. For SIDD testing, we adopt
SIDD noisy data as the DC-Net training data. The generated
DIV2K noisy images have similar noise distribution with
SIDD noisy images. Both of the two data sets are regarded
as the training data set for CPNet training. For DND test-
ing, we adopt DND noisy data as the DC-Net training data
and the generated noisy images share a similar distribution
with the DND noisy images. Nevertheless, DND does not
provide training pairs so that only DIV2K noisy pairs are
taken as the CPNet training input.
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(b) Real noisy image

22.12 dB
(a) Ground truth

(h)     Ours

35.55 dB

(g) CycleISP    
    35.31 dB

(f) CBDNet          
    33.52 dB

(d) FFDNet

25.64 dB

(c)      DnCNN

24.38 dB

(e) GooglesRGB

28.59 dB

Figure 5. Visual comparison of the six models on the SIDD dataset.

4.3. Denoising Performance on SIDD

We validate the usefulness of our denoising model on
SIDD. Five recent models are used to compare with CPNet.
The first is DnCNN[41], which is a classical deep-learning-
based denoising method. The second model is FFDNet
[42], which is trained by using sRGB images with esti-
mated noise level maps, where the noisy images are added
with different levels of Gaussian noise. The third model is
GooglesRGB [4], which is trained with synthetic raw im-
ages and the loss is imposed in the sRGB space. The fourth
model is CBDNet [18], which is trained using sRGB images
with their noise level maps generated by a deep network.
The fifth model is CycleISP[40], which models the camera
imaging pipeline forward and trains a new framework on
realistic synthetic data generated by its pipeline. All these
models are trained with the SIDD and DIV2K training set.

Table 1 shows the denoising performance comparison
among these six models on practical noisy sRGB images.
We can see that CPNet performs significantly better than
DnCNN, FFDNet, GooglesRGB, and CBDNet in terms of
both PSNR and SSIM. It also outperforms CycleISP by

Table 1. Denoising performance of the six models on the 16210
128×128 non-overlap patches from the 20 practical noisy images
in SIDD.

Method PSNR (dB) SSIM
DnCNN 31.96 0.6970
FFDNet 34.66 0.7781

GooglesRGB 35.66 0.8485
CBDNet 37.08 0.9236
CycleISP 38.13 0.9524

CPNet 38.34 0.9571

0.21dB on PSNR.

A visual comparison of the six models is given in Figure
5. The original real noisy image is quite dark. For better
observation, the intensities of the three R, G, and B channels
of the image and the denoising results are stretched by a
linear function y = 2x. It is easy to see that CPNet removes
most noise, especially in the dark regions.
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 33.70 dB
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Figure 6. Visual comparison of the five models on the DND dataset.

Table 2. Denoising performance of the five models on the DND
dataset.

Method PSNR (dB) SSIM
FFDNet 36.88 0.9252
CBDNet 38.06 0.9421

GooglesRGB 38.10 0.9436
CycleISP 39.56 0.9564

CPNet 39.78 0.9566

4.4. Denoising Performance on DND

We also conduct an experiment on another commonly-
used real-world dataset DND [34]. Since DND has only
50 real noisy images without their ground truth released,
all the models are trained with the 800 clean sRGB images
from DIV2K and tested on the DND dataset. As shown in
Table 2, our model outperforms the others, even though the
training and test datasets are different. A visual denoising
comparison is given in Figure 6.

4.5. Ablation Study

We study the impact of various design parameters on de-
noising performance. To validate the effectiveness of Cross-
Patch GCN, the NLF loss, and the data augmentation, we
conduct ablation experiments to evaluate the effectiveness
of each key component in our proposed method: removing
NLF loss (w/o LNLF) which means the loss is L2 loss only,
removing Cross-Patch GCN (w/o CPGCN) which means
only remains the local convolution, and removing data aug-
mentation which means only use SIDD training data set.
Table 3 shows that the performance becomes increasingly
better as any one of the adaptation components being in-
cluded. The above experimental results demonstrate that
CPGCN enhances the denoising performance and the noise
level map can be leveraged to supervise the network train-

Table 3. Results on SIDD for variants of CPNet. The (w/o
CPGCN), (w/o LNLF), and (w/o data augmentation) denote re-
moving Cross-Patch GCN, removing noise level map loss, and
only using SIDD training data set, respectively.

PSNR (dB) SSIM
baseline 36.85 0.9103

w/o CPGCN 37.34 0.9311
w/o LNLF 38.15 0.9531

w/o data augmentation 37.61 0.9382
CPNet 38.34 0.9571

ing. Besides, we can improve a denoiser by using our
method to enlarge the training dataset.

5. Conclusion

We have proposed a graph convolutional network CP-
Net to explore cross-patch contextual consistency for high-
resolution real image denoising. Furthermore, a novel noise
level map loss is applied to our model and promotes the
denoiser performance. To improve the robustness and flex-
ibility of the real image denoising, we design an effective
pipeline to generate realistic sRGB noisy images for enlarg-
ing the training dataset and achieve satisfactory results.
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