
Dynamic Dual Gating Neural Networks

Fanrong Li1,2, Gang Li1, Xiangyu He1, Jian Cheng1,2,3∗

1Institute of Automation, Chinese Academy of Sciences
2School of Future Technology, University of Chinese Academy of Sciences,
3CAS Center for Excellence in Brain Science and Intelligence Technology

lifanrong2017@ia.ac.cn, gangli0426@gmail.com, {xiangyu.he, jcheng}@nlpr.ia.ac.cn

Abstract

In dynamic neural networks that adapt computations to
different inputs, gating-based methods have demonstrated
notable generality and applicability in trading-off the model
complexity and accuracy. However, existing works only
explore the redundancy from a single point of the net-
work, limiting the performance. In this paper, we pro-
pose dual gating, a new dynamic computing method, to re-
duce the model complexity at run-time. For each convo-
lutional block, dual gating identifies the informative fea-
tures along two separate dimensions, spatial and chan-
nel. Specifically, the spatial gating module estimates which
areas are essential, and the channel gating module pre-
dicts the salient channels that contribute more to the re-
sults. Then the computation of both unimportant regions
and irrelevant channels can be skipped dynamically during
inference. Extensive experiments on a variety of datasets
demonstrate that our method can achieve higher accuracy
under similar computing budgets compared with other dy-
namic execution methods. In particular, dynamic dual gat-
ing can provide 59.7% saving in computing of ResNet50
with 76.41% top-1 accuracy on ImageNet, which has ad-
vanced the state-of-the-art. Codes are available at https:
//github.com/lfr-0531/DGNet.

1. Introduction
In recent years, deep convolutional neural networks

(CNNs) have made great success in various computer vision
tasks, including image recognition [10, 33], object detec-
tion [28, 30], and segmentation [25, 40]. However, CNNs
achieve impressive accuracy at the cost of huge computa-
tional complexity and intensive memory footprint, which
pose challenges to the deployment of state-of-the-art mod-
els on resource-constrained devices.

Various methods have been proposed to improve the

∗Corresponding author.

0 1 0 1

Channel Gating
Module

Spatial
Gating
Module

1 1 0 1

0 1 0 0
0 0 1 1

0 1 0 1

Convolution

Figure 1: Illustration of dual gating. In each convolutional
block, spatial and channel gating modules use the interme-
diate feature maps to predict the informative features along
two separate dimensions. Then the unimportant computa-
tions can be skipped at run-time.

.

computational efficiency of CNN inference. Pruning is a
common approach to reduce the model size and computa-
tions. Most of the existing methods discard the computa-
tions of redundant weights or filters by following specific
criteria [13, 26, 18, 43, 41, 11, 12]. However, such meth-
ods execute the same calculation for different inputs. This
seems to be suboptimal because “hard” inputs usually re-
quire more computations. Therefore, dynamic computing
has also attracted a number of researchers. Unlike the static
pruning methods, these techniques allocate different calcu-
lations to different inputs to save computations on those
“easy” samples and keep a high accuracy of the overall
model. In dynamic computing, methods based on the gat-
ing functions are general and flexible approaches and have
achieved a good trade-off between computation and accu-
racy [37, 7, 36, 1, 39].

However, there are limitations in the existing methods.
The convolutions extract informative features across spatial
and channel dimensions, but previous works only leverage
the redundancy from a single point of the networks, affect-
ing the performance. Besides, simply combining those two
dimensions can not get a good result, and it is still a chal-
lenge to integrate the spatial and channel redundancies for
better efficiency. In this paper, we propose dual gating, a
new dynamic computing method to reduce the model com-

5330

putations at run-time. CNN with dual gating (DGNet) ex-
ploits the redundant features from those two principal axes,
spatial and channel. We call such redundancies spatial spar-
sity and channel sparsity, respectively. In the spatial do-
main, we try to detect foreground regions and avoid the
computations on the background, which can keep the key
information in the model. Meanwhile, in the channel do-
main, we estimate the most relevant channels to the current
input and skip the computations of those unimportant ones.

To achieve this, DGNet uses the channel and spatial gat-
ing modules to identify the channel and spatial sparsity,
respectively. The channel gating module produces a fine-
grained binary mask that turns the output feature maps on
or off. And we use the spatial gating module to get a tiled
binary mask over the spatial dimension to decide regions
to be evaluated. Compared with the fine-grained spatial
gating, the tile-based spatial mask can keep more informa-
tive features under the same computing saving. Both gating
modules are lightweight, and the overhead of parameters
and computation is negligible. In addition, we propose a
simple and efficient method to integrate the gating modules
with existing networks and jointly train end to end. As a
result, this can not only reduce computations but also allow
the salient information to flow freely throughout the model.

Our experiments demonstrate that by plugging our dual
gating modules, we can obtain appreciable computation re-
ductions with even higher accuracy than the baseline mod-
els on CIFAR-10, ImageNet, and COCO datasets. Com-
pared with the state-of-the-art dynamic computing and
static pruning methods, we can consistently improve the
performance under similar computing budgets. We then
conduct ablation studies to quantitatively evaluate improve-
ments of our proposed methods, including the tiled spatial
gating and the efficient integration. Finally, we visualize
the trained DGNet and observe that the computation mainly
focuses on the target objects and those essential features,
making full use of the sparsity in both spatial and channel
dimensions.

Our contributions can be summarized as follows:

• We propose dual gating, a new dynamic computing
method, which leverages spatial and channel sparsities
to improve the computation efficiency at run-time.

• We design the spatial and channel gating modules,
which can be integrated with commonly used CNN ar-
chitectures and trade off the accuracy and computation
more flexibly. Importantly, the proposed method al-
lows the salient information to flow freely throughout
the model.

• We verify the performance on the CIFAR-10, Ima-
geNet, and COCO datasets. The proposed DGNet
achieves state-of-the-art results compared with other
dynamic computing and static pruning methods.

2. Related Work
Static Pruning. Pruning methods have been widely studied
to tackle the problem of enormous computation in CNNs.
Early works [9, 8] focus on pruning the individual weights.
This will lead to irregular sparsity that is not friendly to the
hardware. In recent years, channel pruning method has be-
come a more promising way, which removes the computa-
tions of those unimportant channels based on specific cri-
teria. [18] and [11] use filter norms to approximate the im-
portance of the corresponding channels, while [41] and [13]
use the reconstruction errors to guide the channel pruning.
FPGM [12] calculates the geometric median of the filters
and prunes the filters near it within the same layer. HRank
[20] measures the importance based on the rank of the fil-
ters. There are some other methods prune via learning-
based methods, such as [24, 6]. All the above methods
are static and permanently remove the computation of the
weights or the whole filters, which may lose the representa-
tion capability of the models.
Dynamic Computing. Dynamic computing is a promising
alternative to reduce model complexity by skipping part of
an existing model based on the input images. Such methods
can make decisions based on different criteria to select the
part of the network to be executed. BranchyNet [34] and
MSDNet [16] use the confidence-based criteria to explore
the early exit method, which divides the model into multiple
stages and processes the simple inputs with fewer stages in
the network than the complex ones. Besides, there are some
methods to build an additional policy network to learn the
decision of dynamic computation, such as BlockDrop [38],
GaterNet[3], and SBNet[29]. Among them, SBNet uses a
foreground mask network to predict a tiled spatial mask and
guide the sparse computation of all the layers in the model.
In contrast, our approach predicts the spatial mask in each
block, which is more flexible and can take full advantage of
the spatial sparsity.

Compared with the methods above, methods based on
gating functions have demonstrated notable generality and
applicability, which can be applied to different aspects of
the networks. SkipNet [37] and ConvNet-AIG [35] dynam-
ically skip the processing of the whole blocks based on the
observation that individual blocks can be removed without
interfering with other blocks in the residual networks [10].
But such coarse-grained methods lead to considerable ac-
curacy loss. Some methods exploit spatial sparsity to re-
duce the computations. [5], [36] and [39] learn a pixel-
wise execution mask for each block and only calculate on
these predicted locations. CGNet [15] and PGNet [42] are
two fine-grained methods that leverage spatial sparsity to al-
locate different calculations to different output activations.
There are also some methods that focus on channel sparsity
for efficient inference. FBS [7] ranks the channels and se-
lects the top-k ones as the essential channels. Batch-shaping

5331

: forward : backward

Input feature map

Adaptive
Avg-Pooing

3x3
Conv

+ Sigmoid
≥ 0.5

cl × hl × wl

c × ⌈ hl+1
t ⌉ × ⌈ wl+1

t ⌉

i.i.d. Gumbel
Sampling

Spatial Mask Ms

As

M′ s
⌈ hl+1

t ⌉ × ⌈ wl+1
t ⌉ ⌈ hl+1

t ⌉ × ⌈ wl+1
t ⌉

(a) Spatial Gating Module

≥ 0.5

cl × hl × wl

Global
Avg-Pooing

cl × 1 × 1

Channel
Attention

cl+1 × 1 × 1

+

i.i.d. Gumbel
Sampling

Sigmoid

cl+1 × 1 × 1
Channel Mask Mc

Ac

M′ cInput feature map

(b) Channel Gating Module

Figure 2: The details of the Spatial Gating Module and Channel Gating Module for training are illustrated in (a) and (b).
Note that, for the spatial gating module, when h and w are not divisible by t, the tiles on the right and bottom edges will be
slightly smaller, but the other tiles will still be with size t× t.

[1] uses the Gumbel-Softmax trick to learn the gating deci-
sions, while DGC [32] adaptively selects the connections
within group convolution for individual samples on the fly.
However, the above methods only explored a single point
of the network, while the convolutions extract informative
features across spatial and channel dimensions. Our method
leverage both spatial and channel sparsities to improve the
computation efficiency and empirically verify that exploit-
ing both can consistently improve the performance.

3. Methodology
In this section, we introduce our dual gating method.

First, we propose the spatial and channel gating modules in
detail. Next, we illustrate how to integrate the dual gating
with the existing models. Finally, we present the training
losses, which constrain the models to target computations.

Traditional CNNs are composed of multiple sequential
convolutional layers, and the output of one layer can be used
as the input of the next layer. We assume that a neural net-
work has L layers, and the input of the l-th layer is denoted
as Xl. Formally, the l-th convolutional layer can be defined
as

Xl+1 = φl(Xl) (1)

where Xl ∈ Rcl×hl×wl , Xl+1 ∈ Rcl+1×hl+1×wl+1 are the
input and output feature maps, and φl denotes the operation
function of the l-th layer.

3.1. Spatial Gating Module

Spatial sparsity commonly exists in feature maps. As
discussed in [19], the information in the background of im-

ages contributes less to the final results, which means that
not all regions in the spatial dimension are with the same
importance. Therefore, we do not need to execute convolu-
tional operations across all regions in the image. Our spatial
gating module aims to estimate the informative regions over
the spatial dimension.

Figure 2a illustrates the structure of the spatial gating
module for training, which splits the output feature maps
into tiles on the spatial dimension with tile size t × t and
estimates which tiles needed to be evaluated. First, we ag-
gregate the local information of input feature maps using
an adaptive average pooling operation (AdaAvgPooling)
and then use a standard 3 × 3 convolution to produce a 2D

spatial attention map As ∈ R
⌈

hl+1
t

⌉
×dwl+1

t e:
As = f3×3(AdaAvgPooling(Xl)) (2)

where f3×3 denotes the 3 × 3 convolution. The value
As(i, j) represents the importance of the tile located at (i, j)
position on the output feature map.

Here we choose the tile-based mask for two reasons.
First, this can reduce the computations of producing the at-
tention map, making the computing overhead of the gating
module negligible. Then considering that the spatial infor-
mation has a strong local correlation, pixels in the same tile
often contain similar information, and using the tile-based
mask helps keep more essential features passing throughout
different layers, which will be discussed later in detail.

In the inference phase, we can mask the execution of
those unimportant tiles directly based on the spatial atten-
tion As. The binary spatial gating mask Ms can be written

5332

as follows:

Ms(i, j) =

{
1 As(i, j) ≥ 0
0 Otherwise

(3)

However, during training, there is a challenge that the spa-
tial gating module can not directly backpropagate as the bi-
nary spatial mask is non-differentiable. Here we utilize the
Gumbel-Softmax reparameterization technique [27] to re-
lax the discrete binary masks to continuous variables.

Specifically, given the spatial attention As, the proba-
bility of the execution of the spatial tiles can be defined
as P 1

s = σ(As), where σ is the sigmoid function. In
contrast, the probability that the tiles are not executed is
P 0
s = 1 − σ(As). Then, the spatial gating Ms can

be modeled as binary random variables with probabilities
P (Ms(i, j) = 1) = P 1

s (i, j), and the sampling process of
Ms can be reparameterized as

Ms = arg max
k

(log(P ks) + gk),∀k = 0, 1 (4)

where {gk}k={0,1} are i.i.d. random variables that follow
the Gumbel distribution.

Because arg max is not continuous, Gumbel-Softmax
trick replaces the arg max with a softmax. Here for the
binary special case, the differentiable sample M ′s from the
Gumbel-Softmax relaxation can be expressed as follows:

M ′s=
exp(

log(P 1
s)+g1
τ)

Σk∈{0,1}exp(
log(Pk

s)+gk
τ)

=σ

(
As+g0−g1

τ

)
(5)

In addition, the difference between the two Gumbels is
a Logistic distribution, and the sampling process can be
written as g0 − g1

d
= logU − log(1 − U), where U ∼

Uniform(0, 1). Then we have

M ′s=σ

(
As+logU−log(1−U)

τ

)
(6)

where τ is the temperature of the softmax that controls the
difference between the softmax and argmax functions. We
choose τ = 2/3 in our experiments as suggested by [27].
In the training phase, to narrow the mismatch between the
operation of training and inference, we directly add a step
function toM ′s to get a binary mask during the forward pass
and use the continuous M ′s to produce the gradient during
the backward pass, as shown in Figure 2a.

3.2. Channel Gating Module

As the saliency of a specific channel is not static for dif-
ferent inputs, dynamically selecting important channels for
execution is a promising method to reduce the computation
while preserving the representation capability of the model
as much as possible. Therefore, we build a channel gating
module to identify the unimportant channels which can be
skipped during inference based on the input images.

The structure of the channel gating module is illustrated
in Figure 2b. We first aggregate the spatial information of

⇒
3x3 Conv,
BN, ReLU

3x3 Conv,
BN

+
ReLU

3x3 Conv,
BN, ReLU

3x3 Conv,
BN

+
ReLU

McMs

Up
Sample

(a)

⇒

1x1 Conv,
BN, ReLU

3x3 Conv,
BN, ReLU

+
ReLU

1x1 Conv,
BN

+
ReLU

McMs

1x1 Conv,
BN, ReLU

3x3 Conv,
BN, ReLU

1x1 Conv,
BN

Up
Sample

Mc

(b)

Figure 3: Integration of the dual gating into the residual
blocks. (a) Apply dual gating to the basic block. (b) Ap-
ply dual gating to the bottleneck block. The dashed arrows
denote the inference paths.

the feature maps by using a global average pooling oper-
ation (GlbAvgPooling) to generate a context descriptor.
Then feed the descriptor to a lightweight network to get
channel attention Ac ∈ Rcl+1 . Similar to the SE block
[14], the channel attention network composes two sequen-
tial fully connected layers and has c

r neurons in the hidden
layer to reduce the computations, where r is the reduction
ratio. In short, the channel attention can be represented as
follows:
Ac = W1 ∗ δ [norm(W0 ∗GlbAvgPooling(Xl))] (7)

where W0 ∈ R
cl
r ×cl , W1 ∈ Rcl+1×

cl
r , δ is the ReLU func-

tion, and norm denotes the batch normalization. In our ex-
periments, we set r = 4.

As the same with the spatial gating module, we directly
use the channel attention to generate the binary channel
mask Mc during inference. In the training phase, the chan-
nel gating module also uses the Gumbel-Softmax relax-
ation to get the continuous mask M ′c for back-propagation.
Therefore, the channel gating module can also be integrated
with CNNs and learn the salient channels end-to-end.

3.3. Integration with existing models

Our dual gating can be easily integrated with the existing
models. Here we use the residual blocks as an example to
illustrate the use of our method, as shown in Figure 3. The
design principle of the integration is to avoid applying the
two gating modules in the same layer during training, so
that more salient information can flow freely in the model.

For the spatial gating, each block composes only one
gating module, and all the convolutions in the block share
the same spatial mask. During training, because of the tile-
based gating method, we use an up-sample module to gen-
erate a new spatial mask Mup

s , then multiply the Mup
s to

the normalized result of the last convolution operation in
the block. In this way, we can mask the less informative re-
gions and only pass the important features to the next block.

In the inference phase, since 3 × 3 convolutions exist,

5333

Sparsity = 47.84% Sparsity = 0.26%

Dilate

: 1 : 0

(a) Tile size t = 1

Sparsity = 44.90% Sparsity = 23.85%

Dilate

(b) Tile size t = 4

Figure 4: Visualization of the dilated binary spatial mask
with t = 1 and t = 4.

for any position that needs to be executed, the correspond-
ing 3 × 3 positions in the previous layer also need to be
preserved to avoid the mismatch in the input of the 3 × 3
convolution. One way to solve this problem is to use a di-
lated mask for the previous layer, which has been exploited
in [36]. However, this will lose the sparsity of the previ-
ous layer, especially for the fine-grained masks with t = 1.
As shown in Figure 4, after dilated, a 28 × 28 fine-grained
mask almost loses the sparsity completely. Another ap-
proach ignores the mismatch problem and directly shares
the same mask among all convolutional layers within the
block, which ensures that layers in the same block have the
same spatial sparsity. Such method is not suitable for the
fine-grained methods due to the large mismatch between the
dilated mask and the original one. But it can be an alterna-
tive for the tile-based methods, as there is no huge gap be-
tween those two masks. In our method, we directly use the
same tiled mask for convolutional layers in each block. In
this way, compared with fine-grained dilation methods, our
method can get masks with lower spatial sparsity to achieve
similar computation reduction, which can keep more infor-
mative features passing throughout the model.

For the channel gating module, we only insert it between
two convolutions in the blocks to preserve more informa-
tion passing to the next block. During training, we directly
multiply the binary mask Mc to the activated result of the
convolutional layers to mask those unimportant channels.
In the inference phase, the binary mask can be viewed as
the output sparsity of the previous layer of the channel gat-
ing module, and it can also represent the input sparsity of
the later layer.

3.4. Training Loss

To encourage the gating mask to be sparse, we intro-
duce a sparse regularization term into the training loss. This
guides the average FLOPs of the dynamic model to a spe-
cific target ratio. Let Td denote the target rate. Then the
sparse regularization is defined as:

Lspar =

(∑L
l=1 Fl∑L

l=1 Fl,ori
− Td

)2

(8)

where Fl denotes the average FLOPs of the lth block in-
cluding the computation of the gating modules, and Fl,ori
represents the FLOPs of the lth original residual block.

Initialization is another important issue for training dy-
namic models. Without proper initialization, the spatial
sparsity often converges to a suboptimal state, where ex-
ist layers with all the gates on or off. [36] adds a bound loss
to guide the early optimization. Here we also introduce a
bound regularization to constrain both spatial and channel
sparsity to a target budget

√
Td at the beginning. And dur-

ing training, we will relax the constraint to be within the
range of [p

√
Td,1−p(1−

√
Td)]. The lower and upper bound

regularization terms are:

Lb,low=

L∑
l=1

∑
k∈{s,c}

max(0,p
√
Td−|M l

k|d)2

Lb,up=

L∑
l=1

∑
k∈{s,c}

max(0,p(1−
√
Td)−1+|M l

k|d)2
(9)

where | · |d calculates the density of the binary masks, and
we use an exponential annealing p = exp(−α · epoch) to
gradually loose the bound. We choose α = 0.02 for CIFAR-
10 and α = 0.05 for ImageNet.

Therefore, the training loss is:

L = Ltask + λLspar + γ(Lb,low + Lb,up) (10)

where λ and γ are the weights for the regularization terms
and Ltask is the task specific training loss.

4. Experiments
In this section, we validate the effectiveness of our pro-

posed DGNets on the standard benchmarks: CIFAR-10[17],
ImageNet[4], for image classification, and COCO 2017[23]
for object detection. We first compare our results with other
dynamic methods as well as static pruning methods. Then
carry out ablation studies to evaluate different aspects of our
proposed method. Last, we will end this section with the vi-
sualization of the dual gating method.

4.1. Experiment settings

For CIFAR experiments, we use a pertained static model
to initialize, and then train DGNets with a batch-size of
128, using an SGD optimizer with a momentum of 0.9 and
weight decay of 5e−4. No weight decay was applied on the
gating modules. We start with a learning rate of 0.1, divide
it by 10 at epoch 150 and 225 with a total of 300 epochs.
For the gating modules, since spatial size in deep layer are
always small, which is not suitable for large tile size, we use
different tile size in different layers. For ResNet models on
CIFAR-10, the tile sizes of layers in the three stages are set
to {4, 2, 2}, and we set λ = 5 and γ = 1.

For ResNet models on ImageNet experiments, DGNets
are trained with batch-size 256 and learning rate 0.05 for
100 epochs. The learning rate is reduced by the cosine

5334

Table 1: Comparison of accelerated ResNet on CIFAR-10.

Model Method Acc. (%) Acc. ↓(%) FLOPs

R
es

N
et

-2
0 LCCL [5] 91.43 0.10 3.20E7 (20.3%↓)

DynConv [36] * 91.62 0.63 2.34E7 (41.2%↓)
Batch-shaping [1] 91.75 1.00 2.20E7 (46.3%↓)

DGNet (50%) 92.27±0.15 -0.03 2.28E7 (42.7% ↓)
DGNet (60%) 91.90±0.23 0.34 1.89E7 (52.4% ↓)

R
es

N
et

-3
2 LCCL [5] 90.74 1.59 4.70E7 (31.2% ↓)

DynConv [36] 92.57 1.00 3.37E7 (51.9% ↓)
Batch-shaping [1] 92.80 0.70 3.30E7 (52.2% ↓)

DGNet (50%) 93.21±0.14 0.01 3.82E7 (43.4% ↓)
DGNet (60%) 92.96±0.06 0.26 3.08E7 (54.4% ↓)

R
es

N
et

-1
10

LCCL [5] 93.44 0.19 1.63E8 (34.2% ↓)
SkipNet [37] 93.30 0.30 1.22E8 (50.5% ↓)

DynConv [36] * 92.82 1.43 1.30E8 (47.1% ↓)
DGNet (60%) 94.33±0.06 -0.08 1.08E8 (56.1% ↓)
DGNet (70%) 93.87±0.09 0.38 8.11E7 (67.2% ↓)

* results are reproduced by using their released code.

scheduler. And the tile sizes of layers in the four stages
are set to {8, 4, 2, 1}. Other settings are with the same to
CIFAR-10 with a weight decay of 1e−4. For MobileNet-V2
[31], we use SGD with the momentum of 0.9 and the weight
decay of 4e−5. We start with a learning rate of 0.05 and re-
duce it by the cosine scheduler with a total of 200 epochs.
The tile size in the first bottleneck block is set to 16. And
in the sequential blocks, the tile sizes decrease in propor-
tion to the size of feature maps and are set to a minimum
of 2. For all ImageNet experiments, we initialize DGNets
with pre-trained models and use the same data augmenta-
tion strategies with PyTorch official examples.

For COCO experiments, we evaluate dual gating using
single-stage object detection of RetinaNet [22] and the two-
stage Faster R-CNN with Feature Pyramid Network (FPN)
[21]. The average mAP over different IoU thresholds from
0.5 to 0.95 is used for evaluation. ImageNet pre-trained
ResNet-50 with dual gating is chosen as the default back-
bone model. Our training code and the parameters are based
on mmdetection [2]. For the gating modules, the tile sizes
of layers in the four stages of the backbone model are set to
{16, 8, 4, 2}, and we set λ = 5 and γ = 0.

4.2. Image Classification

Results on CIFAR-10. We test our dual gating on
ResNet-20, 32, and 110 with different target sparsity: 50%,
60%, and 70%, and we run each experiment three times
and report the “mean ± std”. As shown in Table 1,
our DGNets can outperform previous dynamic comput-
ing methods. Specifically, compared with SkipNet [37],
which skips the processing of the whole residual blocks,
on ResNet-110, DGNet can achieve a less accuracy drop (-
0.05% v.s. 0.30%) with more computational cost reduction
(56.1% v.s. 50.5%). Compared with the methods LCCL [5]
and DynConv [36], which exploit spatial sparsity, our ap-
proach can obtain better accuracy with fewer FLOPs. Com-
pared with the dynamic channel pruning method Batch-

shaping [1], our method can also achieve a smaller accuracy
drop with fewer FLOPs.

Results on ImageNet. We apply our method to ResNet-
18, 34, 50, and MobileNet-V2 with different target sparsi-
ties. Table 2 shows the results on the validation set. We
first compare dual gating with other state-of-the-art dy-
namic methods, and we can observe that DGNets achieve
better performance. On ResNet-18, DGNet removes 49.4%
FLOPs and can achieve even better performance than the
baseline model, which has never been achieved by the pre-
vious dynamic methods, including dynamic spatial meth-
ods LCCL [5] and DynConv [36], dynamic channel method
Batch-shaping [1], and fine-grained dynamic spatial method
CGNet [15]. On ResNet-34, DGNet obtains 73.01% top-
1 accuracy with 59.3% FLOPs reduction, which also out-
performs other dynamic methods. Moreover, on ResNet-
50, DGNet can also obtain higher accuracy than the base-
line model with 59.7% FLOPs reduction, significantly bet-
ter than the method ConvNet-AIG [35], DynConv [36],
and Batch-shaping [1]. We then compare dual gating with
the state-of-the-art static pruning methods. Since dynamic
computing can keep the representation capability of the
model as much as possible, dual gating shows better results
than the static pruning methods across different networks.
Similar improvements can also be found when applying the
dual gating to MobileNet-V2. This demonstrates the effec-
tiveness of our proposed dual gating, leveraging redundan-
cies from both spatial and channel dimensions. It can not
only achieve high accuracy of the model, but also reduce
the calculation of the model as much as possible.

To demonstrate the inference speedup, we evaluated the
real speedup of our method on two different hardware envi-
ronments: a CPU (I7-6700, 24G RAM, and Ubuntu 16.04
OS) and an embedded FPGA accelerator (Ultra96 SoC)1.
Table 3 shows the speedup of DGNet. There is a gap be-
tween the theoretical speedup and CPU speedup, mainly be-
cause that the non-zero indexing leads to inefficient compu-
tation. But FPGA accelerators can implement this process
efficiently.

4.3. MS COCO Object Detection

To show the generalization ability of our proposed dual
gating method, we conduct experiments on object detection.
MS COCO dataset is used for evaluation, and the average
FLOPs in the backbone network over the whole validation
set is used to evaluate the model complexity. We set the
target sparsity of the backbone model to be 60%. During
the evaluation, input images are resized to 800 pixels in the
shorter edge. The results are shown in Table 4. We can
observe that, on both RetinaNet and Faster-RCNN, DGNet
can save 59.29% of FLOPs of the backbone network with a

1More details are described in the appendix.

5335

Table 2: Comparison of accelerated ResNet and MobileNet-V2 on ImageNet.

Model Method Dynamic Top 1 accuracy (%) Top 5 accuracy (%) FLOPs
Baseline Accelerated Acc ↓ Baseline Accelerated Acc ↓

ResNet-18

FPGM [12] 7 70.28 68.41 1.87 89.63 88.48 1.15 1.05E9 (41.8% ↓)
LCCL [5] 3 69.98 66.33 3.65 89.24 86.94 2.30 1.23E9 (34.6% ↓)

CGNet [15] 3 69.20 68.80 0.40 - - - 0.98E9 (48.2% ↓)
DynConv [36] * 3 69.76 66.97 2.79 89.08 87.22 1.86 1.08E9 (41.5% ↓)

Batch-shaping [1] 3 69.70 68.75 0.95 - - - 1.05E9 (42.0% ↓)
DGNet (50%) 3 69.76 70.12 -0.36 89.08 89.22 -0.14 9.54E8 (49.4% ↓)
DGNet (60%) 3 69.76 69.38 0.38 89.08 88.94 0.14 7.88E8 (58.2% ↓)

ResNet-34

FPGM [12] 7 73.92 72.63 1.29 91.62 91.08 0.54 2.17E9 (41.1% ↓)
LCCL [5] 3 73.42 72.99 0.43 91.36 91.19 0.17 2.78E9 (24.8% ↓)

CGNet [15] 3 72.40 71.30 1.10 - - - 1.83E9 (50.5% ↓)
DynConv [36] * 3 73.31 71.75 1.56 91.42 90.47 0.95 2.01E9 (44.1% ↓)

Batch-shaping [1] 3 73.30 72.55 0.75 - - - 1.75E9 (52.2% ↓)
DGNet (60%) 3 73.31 73.01 0.30 91.42 90.99 0.43 1.50E9 (59.3% ↓)
DGNet (70%) 3 73.31 71.95 1.36 91.42 90.46 0.96 1.21E9 (67.2% ↓)

ResNet-50

FPGM [12] 7 76.15 74.83 1.32 92.87 92.32 0.55 1.91E9 (53.5% ↓)
HRank [20] 7 76.15 74.98 1.17 92.87 92.33 0.54 2.30E9 (41.3% ↓)

ConvNet-AIG [35] 3 76.13 75.25 0.88 92.88 92.39 0.49 2.56E9 (32.6% ↓)
DynConv [36] * 3 76.13 74.40 1.73 92.86 91.83 1.03 2.25E9 (42.4% ↓)

Batch-shaping [1] 3 76.10 74.40 1.70 - - - 1.75E9 (57.2% ↓)
DGNet (60%) 3 76.13 76.41 -0.28 92.86 93.05 -0.19 1.65E9 (59.7% ↓)
DGNet (70%) 3 76.13 75.12 1.01 92.86 92.34 0.52 1.31E9 (67.9% ↓)

MobileNet-V2
MetaPruning [24] 7 71.88 71.20 0.68 - - - 2.17E8 (22.5% ↓)

DGC [32] 3 72.00 70.70 1.30 90.60 89.80 0.80 2.45E8 (18.3% ↓)
DGNet (50%) 3 71.88 71.62 0.26 90.27 90.05 0.22 1.60E8 (44.0% ↓)

* results are reproduced by using their released code.

Table 3: Comparison of real speedups on CPU and FPGA.

Model Method Top 1 Acc. FLOPs CPU FPGA
Speedup Speedup

ResNet-18
Baseline 69.76% 1.89E9 - -

DGNet (60%) 69.38% 7.88E8 1.24 1.87

ResNet-34
Baseline 73.31% 3.69E9 - -

DGNet (60%) 73.01% 1.50E9 1.21 1.93
DGNet (70%) 71.95% 1.21E9 1.41 2.26

neglectable accuracy drop, which demonstrates the general-
ization ability of the proposed dynamic computing method.

4.4. Ablation Study

We conduct a series of ablation studies aiming to evalu-
ate different aspects of our proposed dual gating method.

Importance of dual gating. To demonstrate the effec-
tiveness of the dual gating method, we experimentally com-
pare DGNet with the other two variants, DGNet (spatial)
and DGNet (channel), which only use spatial or channel
gating modules, respectively. On CIFAR-10 dataset, we
use ResNet-20 and ResNet-32 with different target densi-
ties Td ∈ {0.3, 0.4, 0.5, 0.6, 0.7}. Figure 5a shows the ex-
perimental results. We can observe that DGNet (spatial)
can achieve better performance than DGNet (channel) un-
der high computation budgets. This is because DGNet (spa-
tial) only leverages the spatial sparsity, but keeps all the ker-
nels during inference, preserving the model representation

Table 4: Object detection results (bounding box AP) on
COCO 2017.

Model AP0.5:0.95 AP0.5 AP0.75 FLOPs

RetinaNet
Baseline 36.5 55.4 39.1 7.05E10

DGNet (60%) 36.1 55.3 38.1 2.87E10

Faster-RCNN
Baseline 37.4 58.1 40.4 7.05E10

DGNet (60%) 37.2 58.3 40.1 2.86E10

capacity. However, with low computation budgets, DGNet
(channel) can outperform DGNet (spatial). We suspect this
is because the spatial redundancy is limited, and the meth-
ods that only leverage spatial sparsity are not suitable for an
extremely low computation budget. Nevertheless, DGNets
outperform both two methods, as the dual gating method
can combine advantages of the other two variants and trade-
off the accuracy and computation with more freedom.

Different spatial tile sizes. Besides the investigation
above, we conduct an ablation study of the DGNet ac-
curacy with different tile sizes. Experiments still use
ResNet-20 and ResNet-32 with target densities Td ∈ {0.3,
0.4, 0.5, 0.6, 0.7}. Figure 5b shows the accuracy of DGNets
with different spatial tile sizes, i.e., 1× 1, 2× 2, 8× 8, and
the hybrid setting we used. When we choose 1× 1 tile size,
the spatial gating becomes a fine-grained method. Com-
pared with the others with tile size 2 × 2 and the hybrid
setting, fine-grained gating leads to an apparent decline in

5336

71 2 3 4 5 6
FLOPs()× 107

To
p-

1
A

cc
ur

ac
y

(%
)

89

90

91

92

93

(a) Different gating methods

2 3 4 5 6 7
FLOPs()× 107

To
p-

1
A

cc
ur

ac
y

(%
)

89

90

91

92

93

88

(b) Different spatial tile sizes

FLOPs()× 107

To
p-

1
A

cc
ur

ac
y

(%
)

2 3 4 5 6 71

90

91

92

93

89

(c) Different integration strategies

Figure 5: Ablation results on CIFAR-10. (a) shows the effect of our dual gating method on ResNet-20 and ResNet-32. (b)
gives the comparison with different spatial tile sizes, where ‘hybrid’ means the strategies in our proposed method. Other
settings use the same tile size in all layers. (c) shows the impact of different integration strategies, where ‘all’ means the
method that inserts spatial gating modules to all convolutional layers in residual blocks.

accuracy, as the fine-grained spatial method will lose more
informative features as discussed in Section 3.3. However,
the large tile size is not always a good choice, and it can
also lead to poor performance. DGNets with 8× 8 tile size
obtains a larger accuracy drop than other settings. This is
because the 8 × 8 tile size is too large for the features in
deep layers, and each tile will compose both important and
unimportant features, affecting the estimation of the spatial
gating module. Therefore, the large tile size is only suitable
for large images, and our proposed hybrid tile setting is a
better choice.

Effectiveness of the integration method. To demon-
strate the effectiveness of our proposed integration princi-
ple, we compare it with a simple integration method, which
is a natural way to insert spatial gating modules to each
convolutional layer. Figure 5c gives the experimental re-
sults of ResNet-20 and ResNet-32 on CIFAR-10. We can
observe that our method consistently improves the perfor-
mance over different sparsities. This is because methods
that apply both spatial and channel gating modules to the
same convolutional layer will lose much more information
than our approach, hindering the flow of salient information
across the model.

4.5. Gating Visualization

To demonstrate that dual gating can keep informative
features flow throughout the models, we visualize the spa-
tial cost map and the feature maps of the first layer in the
first block of ResNet-34 with dual gating, as shown in Fig-
ure 6. The spatial cost map indicates the number of blocks
executed at each tile, and we can obtain it by upsampling
the spatial gating masks to the same size as images and ac-
cumulate them all. As we can see, the spatial gating mod-
ule can focus the computation on the essential tiles, and the
channel gating modules can also select the salient features.
This is also the reason that our dual gating can achieve bet-
ter performance.

(a) Input

(c) Feature maps(b) Spatial cost map

Figure 6: Input image (a) and visualization of the spatial
cost map (b) and feature maps (c). Dual gating selects chan-
nels with red borders.

.

5. Conclusion
In this paper, we propose dual gating, a new dynamic

computing method, which leverages both spatial and chan-
nel sparsities to tradeoff accuracy and computational com-
plexity. Specifically, our method uses spatial and channel
gating modules, which can be easily integrated with com-
monly used CNN architectures and trained end-to-end, to
skip redundant computations at run-time. The proposed
dual gating method is validated on a variety of computer
vision tasks with various network architectures, showing
state-of-the-art performance compared with other dynamic
computing and static pruning methods.

Acknowledgment
This work was supported in part by National Nat-

ural Science Foundation of China (No.61972396), Na-
tional Key Research and Development Program of China
(No. 2020AAA0103402), the Strategic Priority Re-
search Program of Chinese Academy of Sciences (No.
XDA27040300).

5337

References
[1] Babak Ehteshami Bejnordi, Tijmen Blankevoort, and Max

Welling. Batch-shaping for learning conditional channel
gated networks. In International Conference on Learning
Representations (ICLR), 2020. 1, 3, 6, 7

[2] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 6

[3] Zhourong Chen, Yang Li, Samy Bengio, and Si Si. You look
twice: Gaternet for dynamic filter selection in cnns. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 9164–9172, 2019. 2

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 248–
255, 2009. 5

[5] Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan.
More is less: A more complicated network with less infer-
ence complexity. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1895–1903, 2017. 2, 6, 7

[6] Xuanyi Dong and Yi Yang. Network pruning via trans-
formable architecture search. In Advances in Neural In-
formation Processing Systems (NeurIPS), pages 760–771,
2019. 2

[7] Xitong Gao, Yiren Zhao, Łukasz Dudziak, Robert Mullins,
and Cheng zhong Xu. Dynamic channel pruning: Feature
boosting and suppression. In International Conference on
Learning Representations (ICLR), 2019. 1, 2

[8] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic net-
work surgery for efficient dnns. In Advances in Neural In-
formation Processing Systems (NeurIPS), page 1387–1395,
2016. 2

[9] Song Han, Jeff Pool, John Tran, and William Dally. Learn-
ing both weights and connections for efficient neural net-
work. In Advances in Neural Information Processing Sys-
tems (NeurIPS), pages 1135–1143, 2015. 2

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016. 1, 2

[11] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and
Yi Yang. Soft filter pruning for accelerating deep convo-
lutional neural networks. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
page 2234–2240, 2018. 1, 2

[12] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi
Yang. Filter pruning via geometric median for deep con-
volutional neural networks acceleration. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4335–4344, 2019. 1, 2, 7

[13] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In Proceedings
of the IEEE International Conference on Computer Vision
(ICCV), pages 1398–1406, 2017. 1, 2

[14] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation
networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
7132–7141, 2018. 4

[15] Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru Zhang,
and G. Edward Suh. Channel gating neural networks. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
pages 1886–1896, 2019. 2, 6, 7

[16] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
van der Maaten, and Kilian Q. Weinberger. Multi-scale dense
networks for resource efficient image classification. In In-
ternational Conference on Learning Representations (ICLR),
2018. 2

[17] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5

[18] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. In In-
ternational Conference on Learning Representations (ICLR),
2017. 1, 2

[19] Xiaoxiao Li, Ziwei Liu, Ping Luo, Chen Change Loy, and
Xiaoou Tang. Not all pixels are equal: Difficulty-aware se-
mantic segmentation via deep layer cascade. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6459–6468, 2017. 3

[20] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:
Filter pruning using high-rank feature map. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1526–1535, 2020. 2, 7

[21] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 936–944, 2017. 6

[22] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE International Conference on Computer
Vision (ICCV), pages 2999–3007, 2017. 6

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 740–755, 2014. 5

[24] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin
Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta
learning for automatic neural network channel pruning. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 3295–3304, 2019. 2, 7

[25] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3431–3440, 2015. 1

5338

[26] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A fil-
ter level pruning method for deep neural network compres-
sion. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), pages 5068–5076, 2017. 1

[27] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The
concrete distribution: A continuous relaxation of discrete
random variables. In International Conference on Learning
Representations (ICLR), 2017. 4

[28] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 779–
788, 2016. 1

[29] Mengye Ren, Andrei Pokrovsky, Bin Yang, and Raquel Urta-
sun. Sbnet: Sparse blocks network for fast inference. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 8711–8720, 2018. 2

[30] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: towards real-time object detection with re-
gion proposal networks. In Advances in Neural Information
Processing Systems (NeurIPS), pages 91–99, 2015. 1

[31] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: In-
verted residuals and linear bottlenecks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4510–4520, 2018. 6

[32] Zhuo Su, Linpu Fang, Wenxiong Kang, Dewen Hu, Matti
Pietikäinen, and Li Liu. Dynamic group convolution for ac-
celerating convolutional neural networks. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 138–155, 2020. 3, 7

[33] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–
9, 2015. 1

[34] Surat Teerapittayanon, Bradley McDanel, and H.T. Kung.
Branchynet: Fast inference via early exiting from deep neu-
ral networks. In Proceedings of the International Conference
on Pattern Recognition (ICPR), pages 2464–2469, 2016. 2

[35] Andreas Veit and Serge Belongie. Convolutional networks
with adaptive inference graphs. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 730–
741, 2018. 2, 6, 7

[36] Thomas Verelst and Tinne Tuytelaars. Dynamic convolu-
tions: Exploiting spatial sparsity for faster inference. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2317–2326, 2020.
1, 2, 5, 6, 7

[37] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E. Gonzalez. Skipnet: Learning dynamic routing
in convolutional networks. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 420–436,
2018. 1, 2, 6

[38] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven
Rennie, Larry S. Davis, Kristen Grauman, and Rogerio Feris.

Blockdrop: Dynamic inference paths in residual networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8817–8826,
2018. 2

[39] Zhenda Xie, Zheng Zhang, Xizhou Zhu, Gao Huang, and
Steve Lin. Spatially adaptive inference with stochastic fea-
ture sampling and interpolation. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), pages 531–
548, 2020. 1, 2

[40] Fisher Yu and Vladlen Koltun. Multi-scale context aggrega-
tion by dilated convolutions. In International Conference on
Learning Representations (ICLR), 2016. 1

[41] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I.
Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and
Larry S. Davis. Nisp: Pruning networks using neuron impor-
tance score propagation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 9194–9203, 2018. 1, 2

[42] Yichi Zhang, Ritchie Zhao, Weizhe Hua, Nayun Xu, G. Ed-
ward Suh, and Zhiru Zhang. Precision gating: Improving
neural network efficiency with dynamic dual-precision acti-
vations. In International Conference on Learning Represen-
tations, (ICLR), 2020. 2

[43] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,
Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.
Discrimination-aware channel pruning for deep neural net-
works. In Advances in Neural Information Processing Sys-
tems (NeurIPS), pages 875–886, 2018. 1

5339

