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Abstract

This paper studies Semi-Supervised Domain Adaptation
(SSDA), a practical yet under-investigated research topic
that aims to learn a model of good performance using un-
labeled samples and a few labeled samples in the target
domain, with the help of labeled samples from a source
domain. Several SSDA methods have been proposed re-
cently, which however fail to fully exploit the value of the
few labeled target samples. In this paper, we propose
Enhanced Categorical Alignment and Consistency Learn-
ing (ECACL), a holistic SSDA framework that incorporates
multiple mutually complementary domain alignment tech-
niques. ECACL includes two categorical domain alignment
techniques that achieve class-level alignment, a strong data
augmentation based technique that enhances the model’s
generalizability and a consistency learning based technique
that forces the model to be robust with image perturbations.
These techniques are applied on one or multiple of the three
inputs (labeled source, unlabeled target, and labeled target)
and align the domains from different perspectives. ECACL
unifies them together and achieves fairly comprehensive
domain alignments that are much better than the existing
methods: For example, ECACL raises the state-of-the-art
accuracy from 68.4 to 81.1 on VisDA2017 and from 45.5 to
53.4 on DomainNet for the 1-shot setting. Our code is avail-
able at https://github.com/kailigo/pacl.

1. Introduction

Domain adaptation investigates techniques of avoiding
severe performance drop when deploying a model on a new
domain (target) that has domain gap with the one (source)
which the model is trained on. Most existing research fo-
cuses on Unsupervised Domain Adaptation (UDA) where a
model is trained jointly with unlabeled target data and la-
beled source data. Many effective UDA approaches have
been proposed, from early works that project data from both
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domains to a shared feature space [13, 34], to recent ones
that are based on adversarial learning [43, 28].

This paper makes a slight diversion from the mainstream
UDA research direction and investigates how much it can
help if we are further provided with a few (e.g., one sam-
ple per class) labeled target samples. We call these scarce
labeled target samples as “landmarks”. This is a practical
(with minimal labeling effort) yet under-investigated prob-
lem and is referred as semi-supervised domain adaptation
(SSDA). Preliminary works before the deep learning era use
landmarks to more precisely measure the data distribution
mismatch between source and target domains, either based
on Maximum Mean Discrepancy (MMD) or domain invari-
ant subspace learning [1, 10, 50]. Recent ones revisit this
problem and establish new evaluation benchmarks in the
deep learning context [38, 18]. However, these prior works
have not fully realized the value of the precious landmarks:
They are mainly used to optimize the cross-entropy loss
along with the labeled source samples that are of a much
greater amount; the contribution of the landmarks is sig-
nificantly diluted and thus the learned model shall still be
biased towards the source domain.

In this paper, we propose Enhanced Categorical Align-
ment and Consistency Learning (ECACL), a SSDA frame-
work which unifies multiple techniques that align domains
from different complementary perspectives. As we have ac-
cess to a few labeled samples from the target domain, i.e.,
landmarks, we can align the domains in a supervised way
by explicitly aligning samples of the same category from
the two domains. We propose two techniques to achieve
this objective. The first one is based on the prototypical loss
[40, 23]. We calculate a target prototype for each class by
averaging feature embeddings of the landmarks from that
class. Then, source samples are aligned with the target pro-
totype from the same class. The second one is based on
the triplet loss. We explicitly push source samples close to
the landmarks from the same class and apart from the land-
marks from the different classes.

Overfitting would likely occur since the number of land-
marks is small. An intuitive approach to this is data aug-
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mentation. But rather than employing some commonly used
techniques, e.g., image flipping, we harvest a recently pro-
posed one, RandAugment [7] which produces highly per-
turbed images by applying various image transformations
on an image. We apply RandAugment on both labeled
source samples and landmarks, which makes the categorical
alignment non-trivial to achieve and thus enhances model
generalibility.

Consistency learning has recently been proved a very
successful solution to various label scarce problems [41, 46,
5]. Inspired by this, we introduce consistency learning to
cope the SSDA problem. Specifically, we apply simultane-
ously a light data augmentation (e.g., image flipping) and
a strong augmentation (e.g., RandAugment) on each unla-
beled target image, and obtain two versions for each im-
age. We enforce the consistency constraint by producing a
pseudo label from the lightly augmented version, and use
the pseudo label as the ground truth label for the strongly
augmented version for supervised learning. By requiring
different perturbed versions of the same image being pre-
dicted with the same label, we encourage the model to be ro-
bust to changes in the image space and thus be more capable
of handling the domain gap. Besides, since unlabeled target
samples share the same label space as the labeled source
samples, this constraint facilitates label propagation from
the labeled source domain to the unlabeled target domain.

Integrating the above techniques that align domains from
different perspectives using different combinations of the
inputs, we reach the holistic SSDA framework, ECACL. We
show in the experiments that ECACL significantly advances
the state-of-the-art performance on the common evaluation
benchmarks. For example, ECACL lifts the state-of-the-art
mean accuracy from 68.4 to 81.1 on VisDA2017 and from
45.5 to 53.4 on DomainNet for the 1-shot setting

In summary, the contributions of this paper are as fol-
lows: (1) We propose ECACL, a holistic SSDA framework
that incorporates multiple complementary domain align-
ment techniques. Although each of the incorporated tech-
nique is not fundamentally new, we are the first to introduce
them to address the SSDA problem and assemble them in
a holistic framework. (2) We conduct a comprehensive ab-
lation study and analysis of ECACL, which offer insights
on drawing connections among seemingly distinct tasks and
identifying contributing techniques. (3) We significantly
advance the state-of-the-art performance for SSDA.

2. Related Work
Domain Adaptation (DA). According to the type of data
available in target domain, DA methods can be divided
into three categories: Unsupervised Domain Adaptation
(UDA), Few-Shot Domain Adaptation (FSDA) and Semi-
Supervised Domain Adaptation (SSDA). UDA assumes that
target domain data are purely unlabeled. Early methods

in the shallow regime address UDA either by reweighting
source instances [16, 12] or projecting samples into a do-
main invariant feature space [13, 34]. Recent ones are more
in the deep regime and approach UDA by moment match-
ing [27, 4, 29] or adversarial learning [43, 11, 30, 28, 24].
FSDA assumes that there is no access to unlabeled sam-
ples, but a few labeled ones in target domain. To fully uti-
lize the few labeled target samples, existing methods per-
form class-wise domain alignment using contrastive loss
[33] or triplet loss [49]. SSDA is a hybrid of FSDA and
UDA where we have access to both a few labeled samples
and many unlabeled samples from target domain. Early
works use the extra labeled target samples to help more
precisely measure the data distribution mismatch between
source and target domains, either based on Maximum Mean
Discrepancy (MMD) or domain invariant subspace learn-
ing [1, 10, 50, 38, 42]. Saito et al. recently proposed a
deep learning based method which alternates between max-
imizing the classification entropy with respect to the clas-
sifier and minimizing it with respect to the feature encoder
[38]. Kim et al. extended this work by alleviating the intra-
domain discrepancy problem [18]. We approach SSDA in a
new way by proposing a general framework into which ex-
isting UDA methods can be incorporated as one component
for domain alignment along with other novel components.

Semi-Supervised Learning (SSL). Leveraging unlabeled
data along with labeled ones in the training process, SSL
has boosted performance with a variety of training strate-
gies, including graph-based [19], adversarial [32], genera-
tive [8], model-ensemble [20], self-training [26, 41], etc.
The difference of SSL and SSDA lies that labeled samples
of SSL are from the same domain as the unlabeled ones.
In SSDA, labeled samples instead come from two differ-
ent domains and the majority are out-of-domain (relative
to the target). So, compared with SSL, SSDA needs first
address the domain shift problem in order to leverage the
plenty yet out-of-domain labeled samples. We achieve this
by employing off-the-shelf UDA techniques and proposing
the categorical domain alignment techniques.

Few-Shot Learning (FSL). FSL aims to acquire knowl-
edge of novel classes with only a few labeled samples
[45, 40, 25, 22]. FSL has very distinct goals from SSDA.
FSL emphasizes generalizability of a learned model to-
wards novel classes for which there is no sample (neither
labeled nor unlabeled) available during training but a few
labeled ones in test. SSDA instead focuses on enhancing
generalizability of a model towards unlabeled samples of
the classes for which during training there are plenty of la-
beled samples from source domain, a few labeled ones and
many unlabeled ones from target domain. Even with differ-
ent goals, the way that an FSL method [40] utilizes a few la-
beled samples to recognize other unlabeled ones inspires us
to develop the supervised alignment module which achieves
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Figure 1. Illustration of the proposed ECACL framework. ECACL includes three modules: (1) The unsupervised domain alignment module
that performs domain alignment using labeled source and unlabeled target samples. (2) The enhanced categorical alignment module that
conducts class-level alignment by explicitly pushing close cross-domain images that are from the same class, even when the images are
strongly perturbed. (3) The consistency alignment module that generates a pseudo label for each unlabeled target sample from its weakly
augmented version and applies the pseudo label on its strongly augmented version with supervised learning.

categorical domain alignment.

3. Algorithm
Semi-supervised domain adaptation (SSDA) investigates

the adaptation from a label-rich source dataset S =
{(si, ysi )}Ns

i=1 to a label-scarce target dataset T = Tl ∪ Tu,
where Tl = {ti, yti}

Nt
i=1 is a labeled set and Tu = {ui}Nu

i=1 an
unlabeled set. S and T are drawn from the same label space
Y = {1, 2, . . . , C} but with different data distributions that
cause domain shifts. Usually, the number of labeled sam-
ples in Tl is very small, e.g., one sample per class in the
extreme case. We call these labeled target samples as “land-
marks”. Our goal is to learn a domain adaptive model using
S, Tu and landmarks Tl. Let the model be h = f ◦ g with
parameters θ, where f generates features from images and
g outputs label predictions based on the extracted features.

We can see that the difference of SSDA from UDA is the
extra access to landmarks. A naive way to extend an UDA
method to SSDA is to optimize

Luda = Lce + αLua, (1)

where

Lce =
1

Ns

∑
(si,ys

i )∼S

L(h(si), ysi )+
1

Nt

∑
(ti,yt

i)∼Tl

L(h(ti), yti)

(2)
is the cross-entropy loss over labeled source and target sam-
ples. Lua is an UDA loss that exploits unlabeled target sam-
ples and labeled source samples for domain alignment. It
varies in different UDA methods.

Naively merging landmarks into source samples for the
cross-entropy loss optimization does not fully release their

potentials, as their contribution would be severely diluted.
The learned model would thus still be biased towards the
source domain. We solve this by performing categorical
alignment where we explicitly push source samples towards
the landmarks from the same class and apart from the land-
marks from the different classes (Section 3.1). This encour-
ages the model to produce features that maintain class dis-
crimination despite of domain shifts. In Section 3.2, we
further enhance the categorical alignment technique with a
data augmentation strategy where images are heavily per-
turbed, making the task harder to fulfill and hence improv-
ing model generalizability. Besides, we carefully design
another data augmentation based technique that is applied
on unlabeled target samples. This technique constrains the
model to make consistent predictions for different versions
of the same image undergone different levels of perturba-
tions. Figure 1 shows our framework.

3.1. Categorical Alignment

With labeled source samples S = {(si, ysi )}Ns
i=1 and la-

beled target samples Tl = {ti, yti}
Nt
i=1, we propose two ap-

proaches to achieve categorical alignment, one based on the
prototypical loss and the other based on the triplet loss.
Prototypical loss based approach. This approach learns to
minimize the risk of assigning source samples to the land-
marks from the same class. Specifically, we calculate a tar-
get representation, or a target prototype for each class by av-
eraging the feature embeddings of the landmarks from that
class [40]:

ck =
1

|Tk|
∑

(ti,yi)∈Tk

f(ti), (3)

where Tk is the landmark collection for class k. With the
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target prototypes for all classes {ck}Ck=1, we can compute a
distribution over classes for a source sample (si, ysi ) based
on a softmax over distances to the target prototypes in the
embedding space:

p(ysi = y|si) =
exp(−‖f(si)− cy‖2)∑C
k=1 exp(−‖f(si)− ck‖2)

. (4)

Then, we can calculate the prototypical loss over all source
samples as

Lpa =
1

CNs

∑
(si,ys

i )∼S

∑
y∼Y

ysi log[−p(ysi = y|si)]. (5)

Note that although class prototype based solution has
been proposed to address UDA [35, 47], we are the first
to introduce it for SSDA. Besides, while the class proto-
types in the UDA method are calculated based on pseudo
labels which are not always reliable [51], we compute class
prototypes directly from landmarks.
Triplet loss based approach. This approach explicitly
optimizes the model to produce features such that cross-
domain samples of the same class should be of higher sim-
ilarity than those from different classes [15]. Specifically,
for each landmark (ti, y

t
i) ∈ Tl, we find from S the least

similar source sample (sp, yp) which also belongs to class
yt (i.e., the hard positive). Meanwhile, we find from S the
most similar sample (sn, yn) which belongs to a class dif-
ferent from yt (i.e., the hard negative). With the hardest
triplet (ti, sn, sp), we optimize the following triplet loss as:

Lta = 1
Nt

∑
(ti,yt)∼Tl

[
‖f(ti)− f(sp)‖22−

‖f(ti)− f(sn)‖22 +m
]
+
.

(6)

The loss makes sure that for any given landmark, its hard
positive sample should be closer to it than its hard negative
sample by at least a margin m.

3.2. Domain Alignment with Data Augmentation

To further alleviate the scarcity of landmarks, we pro-
pose two data augmentation based domain alignment tech-
niques, one applied on labeled samples and the other ap-
plied on unlabeled samples.

3.2.1 Enhanced Categorical Alignment

It has been shown recently that strong augmentation that
creates highly perturbed images brings significant perfor-
mance gains for supervised learning [6, 7]. Inspired by this,
we introduce strong data augmentation to address the DA
problem. For each labeled sample from source and target
domains, (si, y

s
i ) ∈ S or (ti, y

t
i) ∈ Tl, we process it with

RandAugment [7] by applying random augmentation tech-
niques sampled from a transformation set, including color,

brightness, contrast adjustments, rotation, polarization, etc.
This is then followed by the Cutout [9]. Now we obtain
S ′ and T ′ that consist of highly perturbed images. With
S ′ and T ′, we can get the enhanced categorical alignment
objectives. For the prototypical loss based one, we reach

L′pa =
1

CNs

∑
(s′i,y

s
i )∼S′

∑
y∼Y

ysi log[−p(ysi = y|s′i)], (7)

where P (ys = y|s′) is calculated with Eq. (4), and the
target prototypes are calculated with T ′. Similarly, for the
triplet loss based one, we have

L′ta = 1
Nt

∑
(t′i,yt)∼T ′

l

[
‖f(t′i)− f(s′p)‖22−

‖f(t′i)− f(s′n)‖22 +m
]
+
,

(8)

where s′p and s′n are the hard positive sample and hard neg-
ative sample mined from S ′, respectively.

Strong data augmentation produces a wider range of
highly perturbed images, which makes the model harder
to memorize the few landmarks and therefore enhances the
generalizability of the learned model. On the one hand, the
model is forced to be insensitive to more diverse changes
or perturbations in the image space, which helps domain
alignment as these changes model a wide range of factors
causing domain shift. On the other hand, the above cate-
gorical alignment techniques in essence optimize the model
extracting image features that the intra-class ones are of
higher similarity than the inter-class ones regardless of do-
main shifts. It is harder for the model to achieve this opti-
mization objective with highly perturbed images. Thus, the
model is encouraged to mine the most discriminative class
semantics out of highly perturbed images.

3.2.2 Consistency Alignment

Inspired by the recent success of consistency learning in
semi-supervised learning [41, 46, 2, 3], we introduce con-
sistency learning to address SSDA and propose the CON-
sistency Alignment (CONA) module. For each unlabeled
target sample ui ∈ Tu, we apply weak augmentation ψ and
strong augmentation Φ:

uw
i = ψ(ui), (9)

us
i = Φ(ui). (10)

The weak augmentation ψ includes the widely-used image
flipping and image translation. Same as the practice for la-
beled samples, we use RandAugment [7] and Cutout [9] as
our strong data augmentation Φ. We feed us

i and uw
i to the

model h, and optimize the following objective function:

Lcona =
∑
ui∼U

[
1(max(pw) ≥ σ)H(p̃w,ps)

]
, (11)
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where ps and pw are the classification probabilities of
augmented samples us

i and uw
i , respectively. p̃w =

arg max(pw) returns a one-hot vector for the prediction;
H(., .) is the cross-entropy of two possibility distributions;
1(.) is an indicator function and max(pw) returns the high-
est possibility score.

In essence, the above CONA module computes a pseudo
label for an unlabeled sample from its weakly-augmented
version and applies the pseudo label on its strongly-
augmented version for the cross-entropy loss optimization.
To mitigate the impact of incorrect pseudo labels, only the
samples with confident predictions (the highest probability
scores are above a threshold) are used for loss computa-
tion. This introduces a form of consistency regularization,
encouraging the model to be insensitive to image perturba-
tions and hence stronger in classifying unlabeled images.

Pseudo labeling (or self-training) has been investigated
before for domain adaptation [35, 51], but our method is
clearly distinct from the previous ones. Existing methods
usually perform stage-wise pseudo labeling: Each stage
consists of a number of training epochs and the latest model
is applied on unlabeled samples in the end of each stage.
The confidently predicted samples are selected for model
training in the next stage usually in the same way as labeled
samples from source domain. Within all training epochs in
each stage, the pseudo-labeled samples remain unchanged.
Our method instead performs mini-batch-wise pseudo la-
beling: In each mini-batch, we compute a pseudo label for
every sample from its weakly-augmented version and apply
the pseudo label on the strongly-augmented one. We dis-
card all of the pseudo labels after each mini-batch, which
alleviates the harmful impact of incorrect pseudo labels.

The overall learning objective of our method is a
weighted combination of the UDA loss, the enhanced cate-
gorical alignment loss, and the consistency alignment loss:

L = Luda + λ1Lcata + λ2Lcona, Lcata = {L′pa, L′ta}
(12)

where λ1 and λ2 are the hyper-parameters. Lcata = L′pa
and Lcata = L′ta correspond to the two variants of our
ECACL framework which performs categorical alignment
based on the prototypical loss and the triplet loss, re-
spectively. We refer these two variants as ECACL-P and
ECACL-T, respectively.

Algorithm 1 outlines the main steps of the proposed
framework.

4. Experiments
Datasets and evaluation protocols. We conduct ex-
periments on three commonly used datasets, namely,
VisDA2017 [37], DomainNet [36], and Office-Home [44].

DomainNet consists of 6 domains of 345 categories. Fol-
lowing [38], we select the Real (R), Clipart (C), Painting

Algorithm 1. Proposed ECACL framework
Input: Source set S = {Xs,Ys}, labeled target set

Tl = {Xt,Yt} and unlabeled target set Tu.
Output: Domain adaptive model h.
while not done do

1. Sample from S ∪ Tl labeled images
Bl = {{si,j}Ns

i=1, {ti,j}
Nt
i=1, yj}

M
j=1. Sample

unlabeled images Bu = {ui}Nu
i=1 from U . Denote

Bl = Bs ∪ Bt where Bs = {{si,j}Ns
i=1, yj}

M
j=1

and Bt = {{ti,j}Nt
i=1, yj}

M
j=1.

2. Apply strong augmentation on Bs, Bt and Bu,
and get B′

s = Φ(Bs), B′
t = Φ(Bt) and Bs

u = Φ(Bu).
3. Apply weak augmentation on Bu and get Bw

u = ψ(Bu).
4. Calculate the cross-entropy loss with B′

s and
B′

t using Eq. (2).
5. Calculate the unsupervised alignment loss with B′

s and
Bw

u using an existing UDA method (e.g., MME [38]).
6. Calculate the enhanced categorical alignment loss with
B′

s and B′
t by using Eq. (7) (for the ECACL-P variant),

or Eq. (8) (for the ECACL-T variant).
7. Calculate the consistency alignment loss with
Bs

u and Bw
u using Eq. (11).

8. Optimize the model h using Eq. (12).
end while

(P), and Sketch (S) as the 4 evaluation domains and perform
the following cross-domain evaluations: R→C (adaptation
from source Real to target Clipart), R→P, P→C, C→S,
S→P, R→S, and P→R. For each set of cross-domain exper-
iment, we evaluate both 1-shot and 3-shot settings, where
there are 1 and 3 labeled target samples, respectively. The
labeled samples are randomly selected and we use the pro-
vided splits for experiments. We evaluate the classification
accuracy for all the 7 sets of experiments and also report the
mean of the accuracies.

VisDA2017 includes 152,397 synthetic and 55,388 real
images from 12 categories. For SSDA evaluation, we ran-
domly select 1 and 3 real images from each of the 12 classes
as the landmarks, which correspond to the 1-shot and 3-
shot evaluation settings, respectively. Following precious
method [48], we report the per-class classification accuracy
and also the Mean Class Accuracy (MCA) over all classes.

Office-Home contains images of 65 categories that are
from 4 different domains, namely, Real (R), Clipart (C),
Art (A), and Product (P). We use the same 1-shot and 3-shot
splits as [38] and evaluate the adaptation performance for all
12 pairs of domains. We report the classification accuracies
for all the experimental sets and the accuracy mean.

Implementation details. The proposed ECACL-P and
ECACL-T are general SSDA frameworks that can incor-
porate most existing UDA methods and leverage landmark
samples to improve adaptation performance. Depending on
the UDA method built upon, we can get different variants.
But for ease and fairness of evaluation, we conduct most
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Net
R→C R→P P→C C→S S→P R→S P→R Mean

1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

ST AlexNet 43.3 47.1 42.4 45.0 40.1 44.9 33.6 36.4 35.7 38.4 29.1 33.3 55.8 58.7 40.0 43.4
DANN AlexNet 43.3 46.1 41.6 43.8 39.1 41.0 35.9 36.5 36.9 38.9 32.5 33.4 53.6 57.3 40.4 42.4
ADR AlexNet 43.1 46.2 41.4 44.4 39.3 43.6 32.8 36.4 33.1 38.9 29.1 32.4 55.9 57.3 39.2 42.7
CDAN AlexNet 46.3 46.8 45.7 45.0 38.3 42.3 27.5 29.5 30.2 33.7 28.8 31.3 56.7 58.7 39.1 41.0
ENT AlexNet 37.0 45.5 35.6 42.6 26.8 40.4 18.9 31.1 15.1 29.6 18.0 29.6 52.2 60.0 29.1 39.8
MME AlexNet 48.9 55.6 48.0 49.0 46.7 51.7 36.3 39.4 39.4 43.0 33.3 37.9 56.8 60.7 44.2 48.2
Meta-MME AlexNet - 56.4 - 50.2 - 51.9 - 39.6 - 43.7 - 38.7 - 60.7 - 48.7
BiAT AlexNet 54.2 58.6 49.2 50.6 44.0 52.0 37.7 41.9 39.6 42.1 37.2 42.0 56.9 58.8 45.5 49.4
FAN AlexNet 47.7 54.6 49.0 50.5 46.9 52.1 38.5 42.6 38.5 42.2 33.8 38.7 57.5 61.4 44.6 48.9
ECACL-T AlexNet 56.8 62.9 54.8 58.9 56.3 60.5 46.6 51.0 54.6 51.2 45.4 48.9 62.8 67.4 53.4 57.7
ECACL-P AlexNet 55.8 62.6 54.0 59.0 56.1 60.5 46.1 50.6 54.6 50.3 45.0 48.4 62.3 67.4 52.8 57.6
ST ResNet-34 55.6 60.0 60.6 62.2 56.8 59.4 50.8 55.0 56.0 59.5 46.3 50.1 71.8 73.9 56.9 60.0
DANN ResNet-34 58.2 59.8 61.4 62.8 56.3 59.6 52.8 55.4 57.4 59.9 52.2 54.9 70.3 72.2 58.4 60.7
ADR ResNet-34 57.1 60.7 61.3 61.9 57.0 60.7 51.0 54.4 56.0 59.9 49.0 51.1 72.0 74.2 57.6 60.4
CDAN ResNet-34 65.0 69.0 64.9 67.3 63.7 68.4 53.1 57.8 63.4 65.3 54.5 59.0 73.2 78.5 62.5 66.5
ENT ResNet-34 65.2 71.0 65.9 69.2 65.4 71.1 54.6 60.0 59.7 62.1 52.1 61.1 75.0 78.6 62.6 67.6
MME ResNet-34 70.0 72.2 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 61.9 76.1 78.5 66.4 68.9
MME ResNet-34 - 73.5 - 70.3 - 72.8 - 62.8 - 68.0 - 63.8 - 79.2 - 70.1
BiAT ResNet-34 73.0 74.9 68.0 68.8 71.6 74.6 57.9 61.5 63.9 67.5 58.5 62.1 77.0 78.6 67.1 69.7
FAN ResNet-34 70.4 76.6 70.8 72.1 72.9 76.7 56.7 63.1 64.5 66.1 63.0 67.8 76.6 79.4 67.6 71.7
ECACL-T ResNet-34 73.5 76.4 72.8 74.3 72.8 75.9 65.1 65.3 70.3 72.2 64.8 68.6 78.3 79.7 71.1 73.2
ECACL-P ResNet-34 75.3 79.0 74.1 77.3 75.3 79.4 65.0 70.6 72.1 74.6 68.1 71.6 79.7 82.4 72.8 76.4

Table 1. Results on the DomainNet dataset. Best results are in bold.

of our experiments with the variants based on MME [38]1.
Note that although MME is proposed for SSDA, it can
be viewed as an UDA method that naively merges labeled
target samples into labeled source samples for the cross-
entropy loss optimization. Since we do this in the same way,
MME is still compatible with our framework. We adopt ex-
actly the same training procedures and hyper-parameters as
MME, except the way to sample labeled data in each mini-
batch. Rather than naively sampling data across the whole
labeled set, we perform class-balanced sampling: In each
mini-batch, we randomly sample M classes with Ns and
Nt images for each class from source and target domains,
respectively. We set M =10, Ns =10, Nt =1 for 1-shot
setting, and Nt =3 for 3-shot setting. We set the balanc-
ing hyper-parameters of different losses as λ1 = 0.1 and
λ2 = 1 in Eq. (12), and the confident threshold σ = 0.8 for
pseudo labeling (Eq. (11)) for all experiments. For ECACL-
T, we set the margin parameterm = 1.0 for all experiments.

4.1. Comparative Results

We compare with the following methods, DANN [11],
ADR [39], CDAN [28], ENT [14], MME [38], FAN [18],
BiAT [17], and Meta-MME [21]. All these methods are
either specifically designed or tailored to address the SSDA
problem. We also report results of the baseline method “ST”
which trains models with labeled samples from source and

1Unless otherwise specified, we use “ECACL-P” and “ECACL-T” to
represent the variants in short.

target domains, without domain alignment.

DomainNet. We first compare the two variants of ECACL.
We can see from Table 1 that while ECACL-T performs
slightly better than ECACL-P with the AlexNet backbone,
ECACL-P gets much better performance than ECACL-T
with the ResNet-34 backbone. This shows that the proto-
type based categorical domain alignment technique is more
effective than the triplet loss based one. One possible reason
is that the former considers discrimination over all classes,
which is more beneficial than the latter where only the
triplet-wise relationship is modeled. For ease of evaluation,
we only evaluate ECACL-P for the rest experiments.

Comparing with other methods, we can see that ECACL-
P shows significant advantages for all the experimental set-
tings. Specifically, with AlexNet as the feature extraction
model, ECACL-P attains 8.6 and 9.4 point gains for the
1-shot and 3-shot settings, respectively, over MME which
ECACL-P is based on. With ResNet-34, the improvements
are 6.4 and 7.5 for the 1-shot and 3-shot settings, respec-
tively. ECACL-P also performs significantly better than the
most recent methods in both settings with both backbone
networks. These results substantiate the effectiveness of
ECACL-P on mitigating domain shifts by comprehensively
exploring landmarks.

VisDA2017. We can see from Table 2 that ECACL-P, built
upon on MME, reaches significant gains over MME. The
average gains are 12.7 for the 1-shot setting and 12.1 for the
3-shot setting. These tremendous improvements convinc-
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Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck MCA
1-shot

ST 82.6 52.8 75.0 57.6 72.7 39.7 80.5 53.3 59.0 64.1 77.5 12.6 60.6
MME 86.6 60.1 80.8 61.9 84.0 69.6 87.0 72.4 73.0 50.9 79.4 14.7 68.4

ECACL-P 94.9 81.5 88.9 81.3 95.9 92.4 92.2 83.3 95.2 77.4 88.4 2.3 81.1
3-shot

ST 74.0 71.7 71.2 64.7 78.5 71.8 69.6 51.4 73.7 49.4 80.8 19.8 64.7
MME 87.2 67.3 74.9 64.5 86.9 85.5 78.8 75.8 84.4 48.0 80.8 19.9 71.2

ECACL-P 95.9 82.9 88.6 84.9 95.9 92.1 93.3 83.7 95.4 79.3 88.0 19.5 83.3

Table 2. Results on the VisDA2017 dataset.

R to C R to P R to A P to R P to C P to A A to P A to C A to R C to R C to A C to P Mean
One-shot

S+T 37.5 63.1 44.8 54.3 31.7 31.5 48.8 31.1 53.3 48.5 33.9 50.8 44.1
DANN 42.5 64.2 45.1 56.4 36.6 32.7 43.5 34.4 51.9 51.0 33.8 49.4 45.1
ADR 37.8 63.5 45.4 53.5 32.5 32.2 49.5 31.8 53.4 49.7 34.2 50.4 44.5
CDAN 36.1 62.3 42.2 52.7 28.0 27.8 48.7 28.0 51.3 41.0 26.8 49.9 41.2
ENT 26.8 65.8 45.8 56.3 23.5 21.9 47.4 22.1 53.4 30.8 18.1 53.6 38.8
MME 42.0 69.6 48.3 58.7 37.8 34.9 52.5 36.4 57.0 54.1 39.5 59.1 49.2
ECACL-P 50.3 70.71 52.2 61.4 41.2 39.3 57.8 39.1 59.1 55.8 41.7 59.9 52.4

Three-shot
S+T 44.6 66.7 47.7 57.8 44.4 36.1 57.6 38.8 57.0 54.3 37.5 57.9 50.0
DANN 47.2 66.7 46.6 58.1 44.4 36.1 57.2 39.8 56.6 54.3 38.6 57.9 50.3
ADR 45.0 66.2 46.9 57.3 38.9 36.3 57.5 40.0 57.8 53.4 37.3 57.7 49.5
CDAN 41.8 69.9 43.2 53.6 35.8 32.0 56.3 34.5 53.5 49.3 27.9 56.2 46.2
ENT 44.9 70.4 47.1 60.3 41.2 34.6 60.7 37.8 60.5 58.0 31.8 63.4 50.9
MME 51.2 73.0 50.3 61.6 47.2 40.7 63.9 43.8 61.4 59.9 44.7 64.7 55.2
FAN 51.9 74.6 51.2 61.6 47.9 42.1 65.5 44.5 60.9 58.1 44.3 64.8 55.6
ECACL-P 55.4 75.7 56.0 67.0 52.5 46.4 67.4 48.5 66.3 60.8 45.9 67.3 59.1

Table 3. Results on the Office-Home dataset.

CA X X X X
SA X X X X

CONA X X X X
37.9 39.2 39.3 43.5 42.2 45.2 44.1 48.4

Table 4. Ablation study for the adaptation from Real to Sketch on
the DomainNet dataset for the 3-shot setting. The second column
shows the baseline result obtained by MME.

ingly evidence the effectiveness of ECACL-P.
Office-Home. We can see from Table 3 that ECACL-P at-
tains remarkable performance boosts over existing methods
as well, although the gains are not as significant as those
on the other two datasets. A possible reason is that this
dataset is harder than the other two such that improvements
are more difficult to attain.

4.2. Additional Empirical Analysis

Ablation study. Built upon existing UDA methods,
ECACL-P includes the following new modules/techniques
to address the SSDA problem, namely, the Prototypical
Alignment (PA) module, the Strong Augmentation (SA)
technique that aims to enhance PA and the CONsistency
Alignment (CONA) module. Table 4 shows the ablation
study on the adaptation from Real to Sketch on the Domain-
Net dataset for the 3-shot setting. We can see that all the

Method Net Setting MCA
Source-only ResNet-101 UDA 52.4

HAFN ResNet-101 UDA 73.9
SAFN ResNet-101 UDA 76.1

1-shot 3-shot
HAFN + ST ResNet-101 SSDA 77.0 79.3
SAFN + ST ResNet-101 SSDA 77.5 79.2

ECACL-P (HAFN) ResNet-101 SSDA 83.9 85.3
ECACL-P (SAFN) ResNet-101 SSDA 83.3 84.5

ST ResNet-34 SSDA 60.6 64.7
MME ResNet-34 SSDA 68.4 71.2

ECACL-P (MME) ResNet-34 SSDA 81.1 83.3

Table 5. Flexibility analysis of ECACL-P on the VisDA2017
dataset. “HAFN + ST” and “SAFN + ST” denote the naive ex-
tensions of the methods HAFN and SAFN from UDA to SSDA,
by further including labeled target data for the cross-entropy loss
optimization. “ECACL-P (MME)”, “ECACL-P (HAFN)”, and
“ECACL-P (SAFN)” are the methods corresponding to different
UDA methods incorporated into our framework.

new modules/techniques contribute to the ultimate perfor-
mance promotions, thus verifying the efficacy.
Plug-and-play evaluation. As mentioned above, ECACL-
P is agnostic to the UDA methods built upon. To evaluate
this, we apply ECACL-P as a plug-and-play component on
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Figure 2. (a): Accuracy with different numbers of labeled samples per class in target domain. (b): Sensitivity analysis with respect to the
confident threshold σ (Eq. (11)). (c): t-SNE visualization of the learned features of 3 randomly selected classes. Different colors represent
different classes. Shapes “Y”, “?” and “◦” represent source samples, labeled target samples, and unlabeled target samples, respectively.

different existing UDA methods and see how much adap-
tion performance can be improved. Table 5 shows the re-
sults of three UDA methods before and after empowered
by ECACL-P, namely HAFN [48], SAFN [48], and MME
[38]. We can see from Table 5 that ECACL-P indeed signif-
icantly promotes the performance of existing UDA methods
and their naive SSDA extensions. For example, “ECACL-
P (HAFN)” raises the result of the UDA method HAFN
from 73.9 to 83.9 with one sample per class labeled and
further to 85.3 with 3 samples per class labeled. These sig-
nificant and consistent improvements with different UDA
methods, different backbone networks and different num-
bers of landmarks convincingly substantiate the effective-
ness of ECACL-P on boosting adaptation performance with
minimal labeling effort.
Impact of the number of landmarks. We have shown the
superior performance of the standard 1-shot and 3-shot set-
tings above. We wonder how performance changes with
the number of landmarks increased. We study this on the
adaptation from Real to Sketch on DomainNet. We can see
from Fig. 2 (a) that all the three methods enjoy performance
boosts with more target samples labeled. Comparatively
speaking, ECACL-P consistently reaches the best perfor-
mance for all the cases. This substantiates the benefit of our
method for flexibly exploiting different amount of labeled
target samples to help address the domain shift problem.
Parameter analysis. Our consistency alignment module
involves an important hyper-parameter σ which is the con-
fident threshold for pseudo labeling. We analyze the sensi-
tiveness regarding σ on the adaptation from Real to Sketch
on the DomainNet dataset under the 3-shot setting. The re-
sult is shown in Figure 2 (b). We see that ECACL-P is not
very sensitive to σ and maintains good performance when
σ is fairly high (over 0.65).
Results with different splits. We follow the prior method
[38] and use the provided labeled/unlabeled splits of target
domains for experiments. To study the impact of random-
ness on the performance, we regenerate the splits used for
the adaptation from the real domain to sketch domain in the

Split 1 Split 2 Split 3

AlexNet
MME 37.9 41.2 43.0

ECACL-P 48.4 48.9 51.6

ResNet-34
MME 61.9 65.3 65.2

ECACL-P 71.6 72.5 71.8
Table 6. Variance analysis with different dataset splits.

DomainNet dataset for the 3-shot settings. Table 6 shows
the results with three different splits. We can see that the
proposed ECACL-P consistently improves MME with dif-
ferent splits.
Feature visualization. To qualitatively evaluate the align-
ment results, we plot the t-SNE [31] visualization of the fea-
tures produced by ECACL-P for the adaptation from Real
to Sketch on DomainNet in the 3-shot setting. We can see
from Figure 2(c) that the learned features exhibit favorable
clustering structure. Features from different domains are
close if they belong to the same classes and apart otherwise.
This plot further supports that both feature discriminabilty
and domain alignment are achieved by the learned model.

5. Conclusion
We propose in this paper a novel semi-supervised do-

main adaptation (SSDA) framework within which existing
unsupervised domain adaptation (UDA) methods can effec-
tively utilize a few labeled samples from the target domain
to further mitigate domain shifts. The proposed frame-
work includes two categorical alignment techniques, both
of which are further enhanced by a data augmentation based
technique that produces highly perturbed images to miti-
gate overfitting. A consistency alignment module is in-
corporated into the framework which enforces consistency
regularization on the learned model. Ablation study veri-
fies the contributing roles of all the above alignment com-
ponents. Experiments show that the proposed framework
reaches state-of-the-art SSDA performance and consistently
promotes the adaptation performance of various UDA meth-
ods for different numbers of labeled target samples.
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