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Abstract

Most of the state-of-the-art action recognition methods
focus on offline learning, where the samples of all types
of actions need to be provided at once. Here, we address
continual learning of action recognition, where various
types of new actions are continuously learned over time.
This task is quite challenging, owing to the catastrophic for-
getting problem stemming from the discrepancies between
the previously learned actions and current new actions to
be learned. Therefore, we propose Else-Net, a novel Elastic
Semantic Network with multiple learning blocks to learn
diversified human actions over time. Specifically, our Else-
Net is able to automatically search and update the most
relevant learning blocks w.r.t. the current new action, or
explore new blocks to store new knowledge, preserving
the unmatched ones to retain the knowledge of previously
learned actions and alleviates forgetting when learning new
actions. Moreover, even though different human actions
may vary to a large extent as a whole, their local body
parts can still share many homogeneous features. Inspired
by this, our proposed Else-Net mines the shared knowledge
of the decomposed human body parts from different actions,
which benefits continual learning of actions. Experiments
show that the proposed approach enables effective contin-
ual action recognition and achieves promising performance
on two large-scale action recognition datasets.

1. Introduction
Skeleton-based human action recognition has been at-

tracting increasing attention in recent years because of its
research significance [5, 32, 29] and relevance to a wide
range of applications, e.g., human-robot interaction, self-
driving vehicles, and security surveillance [34, 6]. Most
of the existing works [7, 30, 38, 20, 13, 17, 26] mainly
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focus on using offline learning strategies to train the action
recognition models, i.e., all training action sequences need
to be provided at once when training the fixed-structure
models. However, the recognition models operating in the
real world may be exposed to continuous streams of new in-
formation, i.e., new unseen actions may continuously come
in. For instance, in the real-world human-robot interaction
scenario, the robot operates under open-set and can always
encounter new human interactions. Given an unseen human
interaction, retraining the robot on all previously observed
interactions hinders the robot from conducting efficient
learning and providing a timely response. In this case, the
recognition models must learn from the non-stationary data
distributions. However, continual learning of human action
recognition under non-stationary conditions is challenging
due to the catastrophic forgetting problem [23], which
refers to the tendency that the recognition models forget the
previously learned knowledge upon learning new unseen
actions.

On the other hand, humans have an extraordinary capac-
ity to learn continually from the external environment and
their historical experience over their lifespan without the
catastrophic forgetting problem, i.e., they excel at continu-
ally acquiring and accumulating new knowledge and skills.
This is because human brains can learn new knowledge by
searching and consolidating the most relevant memories in
multiple neocortex regions or establishing new memories
by activating new neocortex regions [9, 22]. In this way,
human brains can turn new knowledge into long-term mem-
ories to avoid forgetting. Moreover, when learning each
new knowledge, humans do not need to be retrained with
all the historical information to avoid the forgetting of the
old knowledge.

In this paper, we aim to investigate a brain-inspired
model that can approach human intelligence for continual
human action recognition, i.e., the model needs to effec-
tively accumulate new knowledge from actions over time
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while retaining the previously learned knowledge. More
specifically, we propose a novel Elastic Semantic Network
(Else-Net) that consists of multiple layers of elastic units.
Each elastic unit comprises several learning blocks storing
diversified knowledge from different human actions, with
a switch block to select the most relevant block. Unlike
existing offline learning approaches [7, 37] that update the
parameters of the fixed-structure network during learning,
our Else-Net has the capabilities in dynamically and flexibly
searching and activating only the most relevant learning
block in each Elastic Unit. It can also explore new learning
blocks to store new knowledge, given the current input
information. Conditioning on the selected learning blocks,
our Else-Net constructs a pathway that best matches the cur-
rent new human action. Since we select the learning blocks
that are most relevant to the new actions for parameter
updating, our network is able to learn the newly-incoming
actions very effectively. Meanwhile, since the parameters
of the non-selected (irrelevant) blocks are frozen, our model
also preserves the knowledge of previously learned actions
at the same time.

However, it can be difficult to find a matched relevant
pathway for newly-incoming human actions at a holistic
level, as unseen human actions may differ significantly
from previously learned actions as a whole. Regardless of
the overall human body, we observe that the current new
action may share homogeneous features with the previously
learned actions at the decomposed semantic body-part level,
which benefits the searching for the relevant blocks. In-
spired by this, we exploit the homogeneity by designing
our Else-Net with multiple semantic branches for the de-
composed multiple body parts, where each semantic branch
is comprised of several layers of elastic units. Thus our
network searches and activates the best-matched pathway
for each semantic body part separately.

2. Related Work
Continual Learning. Continual learning aiming to

continuously learn incoming new skills to approach the
learning process of human intelligence in the real-world
scenarios, it is an emerging yet prospective and important
research direction in recent years. [8, 21, 28, 2, 1, 4,
41, 25]. Most of the existing approaches on continual
learning focuses on image or object recognition. Hayes
et al. [4] proposed to effectively replay with compressed
representations, rather than original input samples. Lopez-
Paz et al. [21] introduced gradient episodic memory to learn
over temporally continuous data that alleviates forgetting,
and benefits knowledge to past tasks. Pham et al. [25]
proposed a contextual transformation network to model the
task-specific features for continual learning.

Different from these works, we aim to achieve continual
learning of human action recognition. To effectively handle

this task, considering the semantics of human actions and
structures of human bodies, we design a novel Else-Net to
automatically search and update the parameters of the most
relevant learning blocks in accordance with each semantic
body part for the incoming new action, while freezing the
parameters of the irrelevant blocks for each body part. This
enables effective learning of new actions while preserving
the memories of previously learned ones.

Skeleton-based Human Action Recognition. Various
skeleton-based action recognition approaches [5, 29, 13, 17,
20, 18, 19, 30, 42, 15, 27, 31, 39, 14] have been proposed.
Zhu et al. [42] proposed a deep network to recognize human
activities using a regularization scheme to perceive the co-
occurrences among body joints. Ke et al. [7] leveraged 2D
convolutional neural networks (CNNs) to extract features
from 3D skeleton data. Yan et al. [37] proposed to learn
both the spatial and temporal information from skeletal data
via a spatial-temporal graph convolutional network (ST-
GCN).

Here we address the problem of continual action recog-
nition in skeleton data, where the network needs to effec-
tively and contiguously learn new types of actions over
time without forgetting. A flexible Else-Net with dynamic
pathway searching and learning is designed to handle this
problem.

Dynamic Network Architecture. Our network is also
relevant to dynamic network designs [33, 36, 3, 40, 24].
Wang et al. [33] designed a dynamic network, called
SkipNet, that adaptively adjusts the network architecture
by selecting or skipping convolutional layers based on
the input data. Wu et al. [35] proposed a coarse-to-
fine framework automatically adjusting and selecting the
suitable network structure for feature extraction from input
data, which achieves good trade-off between computational
cost and accuracy. Yang et al. [40] introduced a dynamic
convolutional network with dynamic width and resolution
designs to deal with various computation constraints.

Differently, we design a novel Else-Net to dynamically
select optimal pathways (network blocks) based on the body
structure and each type of new action for better continual
action recognition.

3. Elastic Semantic Network
We propose a novel Elastic Semantic Network (Else-

Net) for continual learning of action recognition, where
new actions need to be continuously learned over time.
The proposed Else-Net is capable of effectively learning
new human actions and mitigating catastrophic forgetting
problems of previously learned actions. Our main idea is
to construct best-matched pathways for new actions, by
searching and updating only the most relevant learning
blocks and exploring new learning blocks for incorporating
new knowledge. Below we describe the architecture of the
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Figure 1. Illustration of the overall architecture of the proposed Else-Net. Our Else-Net is comprised of a base encoder, a stack of N
elastic units and a classification module. Each skeleton sequence is first fed to a base encoder to extract the body feature x. Then, the
feature passes through the elastic units, each consisting of multiple learning blocks and a switch block. The switch block in the elastic
unit n selects the best-matched learning block for the input feature xn via a Gumbel Softmax trick to produce a one-hot matching vector
bn = [b1, · · · , bBn+1]

T . By conditioning on the selected learning block in each Elastic Unit, our Else-Net constructs the most relevant
pathway (indicated by the red arrows), i.e., blocks on this pathway are selected to learn the current new action and to produce the latent
features x′ for predicting the label of the current new action. Note that only the parameters of the selected learning blocks are updated,
while the non-selected blocks are frozen. Therefore, our Else-Net preserves the knowledge of the previously learned human actions as
well.

proposed Else-Net in detail.

3.1. Block Search and Pathway Construction

As shown in Fig. 1, the proposed Else-Net contains a
stack of N elastic units, where each elastic unit n (n ∈
{1, ..., N}) is comprised of several learning blocks and a
switch block. We denote the learning blocks within the nth

elastic unit as: {fθi,n(·)}
Bn
i=1, where θi,n are the parameters

of the ith learning block, and Bn is the number of learning
blocks in this elastic unit. These learning blocks contain
diversified prior knowledge that is attained from previously
learned actions. The switch block, which consists of a
gating module g followed by the Gumbel Softmax, is
responsible for selecting the most relevant learning block
within the nth elastic unit according to the input feature
(xn) of this elastic unit.

Considering that there could be new knowledge in the
current unseen action to be learned, an additional new
learning block fθBn+1,n(·) (indicated as the green block
in Fig. 1) is temporarily appended to the existing blocks
within the nth elastic unit, as a candidate learning block for
storing new knowledge. More specifically, the input feature
xn of the nth elastic unit is fed to all the learning blocks
(including the additional learning block) within this elastic
unit, i.e., {fθi,n(·)}

Bn+1
i=1 , to produce the corresponding

latent features: {zi,n}Bn+1
i=1 . As shown in Fig. 1, the

encoded latent features are then passed through the gating
module g followed by the Gumbel Softmax to produce a

one-hot vector bn = [b1, · · · , bBn+1]
T , where the highest

score (i.e., score 1) corresponds to the best-matched block.
It is worth mentioning that the additional new learning
block will be permanently added to the elastic unit if it
obtains the highest matching score. Otherwise, it will be
removed. This process can be formulated as follows:

zi,n = fθi,n(x
n), i ∈ {1, ..., Bn + 1}, (1)

bn = Gumbel Softmax(g(z1,n); g(z2,n); ...; g(zBn+1,n)).
(2)

Note that if the input feature (xn) of the nth elastic unit
best matches the ith learning block, the output value g(zi,n)
is expected to be higher than other blocks. This is because
the convolutional operations in the learning blocks are able
to capture the shared homogeneous features between the
current input feature xn and the corresponding learning
block fθi,n(·), i.e., the more correlated xn and fθi,n(·) is,
the higher the output value g(fθi,n(x

n)). Then, with the
Gumbel Softmax trick, the learning block with the highest
output value attains a matching score equal to 1. This block
is “activated” as the best-matched block in accordance with
the input feature xn. Hence, the encoded feature (zi,n) from
this best-matched block is used as the output of the nth

elastic unit. By selecting the most relevant learning block
within each Elastic Unit to encode the current input feature,
our Else-Net can exploit the homogeneity between the
current input feature and the previously learned knowledge
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stored in the selected learning blocks to achieve effective
learning of the current new action.

Moreover, utilizing the Gumbel Softmax to generate the
one-hot matching vector also ensures that only the parame-
ters of the most relevant learning blocks are updated, while
the parameters of the non-selected learning blocks, storing
irrelevant knowledge learned from other actions, are frozen.
This selective updating scheme enables our Else-Net to try
to preserve the knowledge of the previously learned actions
as much as possible and mitigate the catastrophic forgetting
problem. The selective updating can be formulated as
follows:

θi,n ← θi,n − α∇θi,n [−bi,n · yk log ŷk], (3)

where i ∈ {1, ..., Bn + 1}, θi,n are the parameters of the
ith learning block in the nth elastic unit, yk and ŷk denote
the ground-truth label and predicted label of the kth newly
incoming action sample, bi,n denotes the matching score
(i.e., 1 for the best-matched learning block, and 0 for others)
of the ith learning block within the nth elastic unit for the
kth sample, and α is the learning rate.

Note our Else-Net contains N elastic units (N levels).
In such a multi-level structure, different human actions can
share common learning blocks at different levels, instead
of exhaustively adding an additional block to every elastic
unit. As mentioned above, each elastic unit is capable of
selecting the most relevant learning block in it w.r.t. its
input feature. Thus, by connecting all the selected relevant
learning blocks of the N elastic units, a promising semantic
pathway that best matches the current input features x, is
constructed.

More specifically, the red arrows in Fig. 1 illustrate the
best-matched semantic pathway to exploit the homogeneity
between x and the previously learned knowledge, i.e., x
flows through the most relevant learning blocks (shown in
red boxes) sequentially, to mine the homogeneous features
and produce the latent semantic features x′. Hence, our
Else-Net is able to learn the newly-incoming actions very
effectively by utilizing and strengthening the most relevant
blocks and prior knowledge, while well retaining the knowl-
edge stored in the non-selected irrelevant blocks.

3.2. Pathway Construction for Body Part Branches

Although the proposed Else-Net described in Sec. 3.1
dynamically constructs and updates the best-matched path-
way, given the full skeleton, it is still quite challenging
to select an optimal pathway that best matches the newly
incoming action. This is because the new actions as a whole
may differ significantly from the previously learned actions.
However, these actions can still share some homogeneous
knowledge at the decomposed body-part level. Inspired
by this, the proposed Else-Net is further designed to be
capable of mining and strengthening the shared knowledge
at the decomposed body-part level, i.e., achieving effective
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Figure 2. Illustration of the Else-Net with five branches for
decomposed five local body parts. To better exploit homogeneous
features, we divide the full body into five local parts. Specifically,
the current new input skeletons are fed to the base encoder to
extract body feature x. Given the full body feature x, we divide
it to five part features, and then feed each part feature to the
corresponding branch for feature learning. Then encoded latent
part features are concatenated into an integral global feature (x′)
for action classification.

learning of new actions via leveraging previously learned
knowledge for each body part.

Concretely, we divide the input body feature x into five
semantic body part features {xpj}5j=1, as shown in Fig. 2.
The decomposed semantic body part features are then fed to
the corresponding body part branches, i.e., left arm, left leg,
body trunk, right leg, and right arm. These five branches
(without parameter sharing) have the same architecture,
and each branch contains N elastic units for processing
the features of each body part. As introduced in Sec. 3.1,
our Else-Net dynamically searches and constructs a seman-
tic pathway that best matches the current input features.
Therefore, by inheritance, each body part branch is capable
of searching for the best-matched learning block in each
Elastic Unit, for the input features of each corresponding
body part.

With this, each body part branch constructs an optimal
semantic pathway w.r.t. the current input semantic part
features xpj (j ∈ {1, ..., 5}), and produces informative
latent features x′

pj (j ∈ {1, ..., 5}). We utilize five optimal
pathways to effectively learn the input semantic features
({xpj}5j=1) separately. Finally, we can obtain powerful inte-
gral body features (x′) by concatenating the learned features
{x′

pj}5j=1 and achieve effective learning of the current new
action while mitigating the catastrophic forgetting problem.

3.3. Training and Testing

Training. Following previous continual learning settings
[4, 21], we learn new human actions once and one by one,
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Figure 3. Illustration of decomposed five local body parts (i.e.,
trunk, left/right hand, and left/right leg).

i.e., each new human action is considered as a new task
in continual learning settings. To train our Else-Net, we
update the parameters by minimizing the classification loss
(categorical cross-entropy). The optimization of our Else-
Net comprises of two phases: outer optimization and inner
optimization. The outer optimization fixes parameters of all
learning blocks while updating parameters of switch blocks
in the elastic units. The inner optimization fixes parameters
of the switch blocks while updating parameters of the
selected learning blocks. Specifically, when learning each
new action, we first apply the outer optimization and then
apply the inner optimization. The optimization procedure
can be formulated as follows:

Outer: θg ← θg − α∇θg [−yk log ŷk] (4)

Inner: θm ← θm − α∇θm [−b · yk log ŷk] (5)

where θm and θg denote the parameters of learning blocks
and gating modules respectively, b denotes the matching
scores of learning blocks, and yk and ŷk denote the ground-
truth label and predicted label for the kth newly incoming
action sample.
Testing. During inference phase, input human actions are
first fed to the base encoder to extract different semantic
body part features. Then, given the decomposed body part
features, each semantic pathway automatically searches for
the most relevant learning blocks to mine homogeneity
between the current new features and the previously learned
ones. Finally, the encoded body part features are concate-
nated and passed through the classification module to attain
global features for action classification.

3.4. Implementation Details

Network Architecture. Considering the powerful capabil-
ity in representing human skeleton data by disentangling
multi-scale aggregation scheme to capture powerful skele-
ton features, we leverage MS-G3D [20] as our base encoder.
Each learning block fθi,n(·) consists of a convolutional
layer with 1 × 1 kernel, and ReLU activation. Note that
the learning block retains the shape of input features. The
gating module g(·) in the switch blocks is comprised of a

linear layer and tanh activation function to normalize the
output value. Our Else-Net contains three layers of elastic
units (N = 3). Each elastic unit is initialised with three
learning blocks, and the number of learning blocks can
dynamically increase during continual learning.

Body Feature Decomposition. As mentioned above, MS-
G3D [20] is used as our base encoder to extract human
skeleton features x ∈ RC×V , where C denotes feature size
for each skeleton joint and V is the total number of skeleton
joints. Note that the V skeleton joints spatially correspond
to the V -dimensional extracted body features. Therefore,
as shown in Fig. 3, we can divide the whole body feature x
into five decomposed semantic body part features {xpj}5j=1

along the spatial dimension.

Classification Module. The classification module is com-
prised of two fully-connected layers. The latent semantic
body part features {x′

pi}5i=1 encoded by the five semantic
pathways are first concatenated, then fed to these fully
connected layers to predict the action label.

Episodic Memory. Following the continual learning setting
[4, 25, 21], we use a small episodic memory storing a small
portion of observed data (10%) for replay. When new hu-
man actions are fed to the network, they are used to populate
the episodic memory simultaneously. For each training it-
eration, two random action samples in the episodic memory
are used for replay when learning a new human action.

4. Experiments

We evaluate the proposed Else-Net on two large-scale
3D skeleton-based human action recognition datasets: NTU
RGB+D dataset [29] and PKU-MMD dataset [16]. The
experiments are conducted on a Nvidia RTX 3090 graphics
card. The initial learning rate α is set to 10−3. Following
the continual learning setting [4, 21], new human actions are
divided into multiple tasks by their classes. At each time,
only one task is used to train the recognition model for 5
iterations and this task will not be presented to the model
again, i.e., the multiple tasks are learned sequentially and
each task is generally observed only once, except for those
stored in the small episodic memory. Following the setting
in [4] where some categories are learned continuously while
the others are used for pre-training to provide the model
with prior knowledge, for all continual learning settings
we continuously learn 10 new unseen categories, while
the other categories are used for pre-training. For offline
learning settings, we follow MS-G3D [20] and train 50
epochs over all action samples.

4.1. Datasets

NTU RGB+D [29] is a large-scale action recognition
dataset, widely used for 3D skeleton action recognition.
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The NTU RGB+D dataset contains 60 action classes and
56,880 videos. Note that this dataset contains 40 human
subjects and diversified human actions, which thus are very
likely to lead to forgetting of old actions, when the model
continually learns new human actions. The NTU RGB+D
dataset provides two standard evaluation protocols, namely
cross-view (CV) and cross-subject (CS). In the CS protocol,
sequences performed by 20 subjects are used for training,
and remaining sequences are used for testing. In the CV
protocol, sequences captured from 2 viewpoints are used
for training, and remaining sequences are used for testing.
PKU-MMD dataset [16] is a large 3D skeleton dataset,
providing 51 action classes and 1,076 untrimmed videos,
containing 21,545 labelled action instances performed by
66 distinct subjects. The evaluation protocols of PKU-
MMD are similar to those of NTU RGB+D, i.e., a cross-
view (CV) protocol where 2 viewpoints are used for training
and the remaining viewpoint is used for testing, and a cross-
subject (CS) protocol where action videos of 57 subjects
are used for training and the remaining videos are used for
testing.

4.2. Evaluation Criteria

To evaluate the abilities of the proposed Else-Net in
both effectively learning the new actions and mitigating
catastrophic forgetting, we follow the metrics introduced
in [25] for continual learning performance evaluation. The
metrics include Average Accuracy (ACC), Forgetting Mea-
sure (FM) and Learning Accuracy (LA). Suppose that our
model aims to learn a total of T action classes sequentially,
and at,q represents the recognition accuracy on action class
q after the model is trained on the action class t.
Average Accuracy (ACC) is defined as the average recog-
nition accuracy of all observed actions after training the
model on the last action (i.e., action class T ):

ACC =
1

T

T∑
q=1

aT,q (6)

Forgetting Measure (FM) evaluates how much knowledge
has been forgotten after the model has been trained contin-
ually up till action class T . The lower the FM, the more
unlikely the model forgets the previously learned actions.
The forgetting measure is formulated as:

FM =
1

T − 1

T−1∑
q=1

max
t∈{1,2,...,T−1}

{at,q − aT,q} (7)

Learning Accuracy (LA) evaluates the recognition perfor-
mance of the model on an action class immediately after
training on this action, which reflects the model’s ability in
learning current new actions.

LA =
1

T

T∑
q=1

aq,q (8)

4.3. Experimental Results on PKU-MMD

We compare the proposed Else-Net with the state-of-
the-art continual learning approaches [21, 4] for the task
of continual action recognition on the PKU-MMD dataset.
To ensure fair comparison across the continual learning
experiments, we fix the learning order of the incoming
actions, i.e., the models are trained continually on the same
sequence of action classes. We also use the proposed Else-
Net to conduct offline action recognition (i.e., all actions
can be accessed at once), and compare with the state-of-
the-art approaches of skeleton-based action recognition for
offline learning. The results are shown in Table 1.

Results on Continual Learning. Our Else-Net achieves
the best performance across all metrics on both cross-
subject and cross-view evaluation protocols, compared to
existing continual learning approaches [4, 21]. The signifi-
cant improvement demonstrates that the proposed Else-Net
can exploit the homogeneous features between current new
actions and previously learned human actions, effectively
learning new knowledge and preserving past knowledge.
Following the continual learning settings where some cat-
egories are learned sequentially while others are used for
pre-training, we sequentially learn 10 categories and other
categories are used for pre-training. During testing phase,
all the categories are used to evaluate our model.

It is worth mentioning that, when compared to existing
continual learning approaches, such as GEM [21] and Re-
mind [4], our Else-Net achieves significant improvement
on FM (lower the better). This shows that by selecting
and updating the most relevant learning blocks, our Else-
Net preserves past knowledge and thus avoid forgetting
previous human actions. Also, as shown in Table 1, our
Else-Net attains higher LA, which shows its ability to
effectively learn new incoming tasks in a continual learning
approach. This means that the optimal semantic pathways
constructed using the block searching strategy is able to
mine homogeneous features between current input actions
and previously learned human actions, which empowers the
proposed model to learn new actions effectively.

Besides, we conduct an experiment on training our back-
bone encoder, i.e., MS-G3D [20] in the continual learn-
ing manner. The significant performance improvement of
our network over MS-G3D further demonstrates that the
proposed block search and body part pathway construction
scheme has the capabilities in effectively learning new
human actions and mitigating catastrophic forgetting.

Results on Offline Learning. To further evaluate the
capacities of our model, we evaluate our method under the
offline learning setting, where all action categories can be
accessed at once. The results of offline learning are shown
in Table 1. The proposed Else-Net achieves state-of-the-
art performance over other approaches. This indicates that
although our Else-Net is specifically designated for contin-
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Table 1. Performance comparison (%) on PKU-MMD. Our model
trained under the continual learning setting outperforms other
continual learning methods, and even achieves competitive results
compared to models trained under the offline learning setting. Be-
sides, under the offline learning setting used by previous skeleton-
based action recognition methods, we also obtain competitive
performance.

Setting Methods CS CV
ACC FM LA ACC FM LA

Continual
Learning

GEM [21] 65.9 13.5 72.8 61.3 12.7 74.3
Remind [4] 71.2 7.5 85.1 75.3 8.7 81.3

MS-G3D [20] 65.3 17.0 77.2 68.0 23.7 72.7
Else-Net 84.6 4.0 86.8 87.0 7.2 90.8

Offline
Learning

Li et al. [10] 90.4 - - 93.7 - -
HCN [11] 92.6 - - 94.2 - -

RF-Action [12] 92.9 - - 94.4 - -
MS-G3D [20] 93.1 - - 94.9 - -

Else-Net 95.3 - - 97.2 - -

Table 2. Performance comparison (%) on NTU RGB+D
Setting Methods CS CV

ACC FM LA ACC FM LA

Continual
Learning

GEM [21] 55.3 15.1 72.1 54.5 11.5 64.7
Remind [4] 56.0 9.5 66.5 59.8 9.4 68.9

MS-G3D [20] 46.3 25.4 56.4 54.5 23.1 58.5
Else-Net 84.4 5.1 87.6 87.9 8.0 89.3

Offline
Learning

ST-GCN [37] 81.5 - - 88.3 - -
2s-AGCN [4] 88.5 - - 95.1 - -
MS-G3D [20] 91.5 - - 96.2 - -

Else-Net 91.6 - - 96.4 - -

ual learning, the block searching and body part pathway
construction strategy is also beneficial for offline learning-
based action recognition.

4.4. Experimental Results on NTU RGB+D

We conduct extensive experiments in continual learning
and offline learning settings on the very challenging NTU
RGB+D dataset to evaluate the efficacy of the proposed
network. For fair comparisons, the order of the action tasks
is fixed across all continual learning experiments. During
training phase, we continuously learn 10 categories and the
others are used for pre-training to provide prior knowledge
to the model. And during inference, all categories are used
for evaluation.

Results on Continual Learning. To evaluate the ef-
ficacy of our model, we compare the proposed Else-Net
with existing continual learning approaches. As shown
in Table 2, the proposed Else-Net outperforms existing
approaches on ACC and LA by large margins, demon-
strating that selecting the most relevant learning blocks for
the current input human action enables the model to ex-
ploit homogeneity between the newly-input and previously
learned knowledge. In addition, our Else-Net achieves
lower FM compared to other approaches. This demonstrates
that by updating the parameters of the selected relevant
blocks while freezing the non-selected ones, our Else-
Net preserves past knowledge stored in the non-selected
learning blocks to mitigate the forgetting problem.

Results on Offline Learning. As shown in Table 2, we
also compare our Else-Net with offline learning approaches.

The proposed Else-Net achieves competitive performance
compared to existing offline learning methods. This further
demonstrates the capability of our Else-Net, that is specif-
ically designed for continual action recognition, even on
action recognition under the offline learning setting.

4.5. Ablation Study

Below, we conduct extensive ablation experiments on
NTU RGB+D dataset (cross-subject protocol) to evaluate
the efficacy of our proposed Else-Net from different per-
spectives.

Impacts of Number of Elastic Units. To evaluate
the impact of the number of Elastic Units (EU), we con-
duct experiments on NTU RGB+D dataset (cross-subject
protocol) by stacking different numbers of EUs in each
semantic pathway. As shown in Tab. 3, with the growth of
number of Elastic Units, the ACC and LA increase while
the FM decreases. This could be explained as that in-
creasing number of Elastic Units empowers our model with
more representative capacities in mining the homogeneous
knowledge between the current new human actions and the
previously-learned actions and achieving better continual
learning performance. We also observe that when the
number of EUs ≥ 3, the increase in performance becomes
trivial for all metrics, including ACC, FM and LA. In Tab. 3,
compared to 3 Elastic Units, when Else-Net is comprised of
4 Elastic Units, the ACC and LA increase only 0.2% and
0.1% respectively, while the FM decreases only 0.1%. This
shows that three Elastic Units could be qualified for learning
sufficient representative features to effectively learn new
human actions and avoid forgetting past learned actions.

Table 3. Performance comparison (%) of different numbers of
Elastic Units (EUs) in each branch.

Num. of EUs ACC FM LA
1 80.2 7.7 84.0
2 83.2 6.3 86.6
3 84.4 5.1 87.6
4 84.6 5.0 87.7

Impact of Body Part Branches. To evaluate the ef-
ficacy of employing decomposed body part branches to
exploit homogeneous features, we compare our method
illustrated in Fig. 2 with the method illustrated in Fig.
1, where whole body features are used as input features
instead of decomposing into semantic part features. Specif-
ically, we use a single branch for full-body feature learning,
i.e., “Else-Net w/o Part Branches”, and report results in
Table 5. For a fair comparison, we initialize the model
with single body branch and the model with five body-part
branches with the same number of learning blocks.

The experimental results in Table 5 demonstrate that the
recognition performance drops and the forgetting measure
FM increases, when the body-part branches are replaced
by a single full-body branch. This is because there may
be significant discrepancies between the current new action
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Table 4. Growth rate (GR) of the number of learning blocks, when
the model is trained until the final task.

Methods GR ACC FM LA
Else-Net w/o Part Branches 1070% 83.0 7.4 86.0
Else-Net 68% 84.4 5.1 87.6

and previously learned actions. Thus, the single-branch
network for full human body is limited in exploiting ho-
mogeneity between actions for effective learning of new
actions by taking advantage of prior knowledge of other
actions. On the contrary, different body part branches are
able to boost the learning of current new human action by
separately exploiting the semantic homogeneous features
from different local body parts, where the shared homo-
geneity with previously learned human actions are more
likely to be observed, which can be exploited to learn the
new action effectively.

Moreover, compared to the single-branch network for
processing the full body, our body-part branches have a
lower growth rate (GR) as shown in Table 4. Specifically,
the growth rate is calculated as ∆

N , where ∆ denotes the in-
creased number of learning blocks (i.e., the number of new
learning blocks that are added) during continual learning
from the first task until the final task, and N denotes the
number of initial learning blocks before the model starts to
learn the first task.

As shown in Table 4, the growth rate of single branch
model is more than ten times larger than our Else-Net,
which means that instead of searching for the relevant
blocks with homogeneous knowledge learned from previ-
ous actions, the single branch model tends to more exhaus-
tively explore brand new learning blocks when new tasks
coming in. However, our Else-Net is able to make better use
of the previously-learned learning blocks while moderately
exploring new blocks, and thus it is able to achieve a
good recognition performance, by dynamically searching
and updating the most relevant learning blocks to effectively
learn newly-incoming human actions and preserve the past
knowledge from the previous human actions.

Impact of Block Searching. We conduct experiments
to evaluate the impact of block searching and pathway
construction. We leverage the same number of pre-defined
learning blocks for different Else-Net variations as the
number of initial learning blocks. Instead of selecting the
most relevant block in each elastic unit, all latent features
produced by all learning blocks in the elastic units are
concatenated and sent into a fully-connected layer to fuse
the information from all learning blocks. Then, the fused
features are fed into next learning block sequentially. The
experimental results of this setting (“Else-Net w/o Block
Searching”) are shown in Table 5.

We analyse that the performance discrepancy of this
setting (without using block searching) compared to our
Else-Net, may come from two aspects: 1) By concatenat-
ing all the encoded latent features together, the diversi-

Table 5. Ablation Study (%) on NTU RGB+D (CS)
Methods ACC FM LA
Else-Net w/o Block Searching 76.4 17.5 83.5
Else-Net w/o Selective Updating 77.3 13.4 84.2
Else-Net w/o Part Branches 83.0 7.4 86.0
Else-Net 84.4 5.1 87.6

fied knowledge from different learning blocks are mixed-
up. Thus, the unwanted irrelevant noise may harm the
recognition performance; 2) Since all learning blocks are
used and updated, the past knowledge stored in learning
blocks may be overwritten, leading to forgetting problems.
Conversely, our Else-Net dynamically searches and updates
the most relevant blocks in accordance with the current
input actions to achieve effective learning, while preserving
past knowledge by freezing irrelevant blocks.

Impact of Selective Updating. To evaluate the efficacy
of selective updating of the selected learning blocks, we
replace the Gumbel Softmax function with a Softmax func-
tion in the switch block, and call this variant “Else-Net w/o
Selective Updating”. In this case, the matching scores of
all blocks are non-zero, i.e., all the learning blocks in the
elastic units are updated w.r.t. current input features. As
shown in Table 5, the performance drops when we adopt the
variant of “Else-Net w/o Selective Updating”. We analyse
that updating the parameters of all the learning blocks
disturbs past knowledge from previously learned human
actions. This also introduces irrelevant noise when the
model learns new human actions, leading to a performance
drop.

5. Conclusion
In this paper, we propose a brain-inspired Elastic Seman-

tic Network, namely Else-Net, for continual human action
recognition. The proposed Else-Net is able to dynamically
search for the most relevant learning blocks with regard
to the input human actions and exploit the homogeneous
features between the current new actions and the previ-
ously learned human actions to achieve effective learning
of current new human action. In addition, our Else-Net is
able to selectively update the parameters of the most rele-
vant learning blocks, while freezing non-selected learning
blocks to preserve previously learned knowledge, in order
to mitigate catastrophic forgetting problems. An optimal
semantic pathway is further constructed on the selected
relevant learning blocks to mine the homogeneity over each
decomposed local body part. With such a block search and
body-part pathway construction process, the proposed Else-
Net shows great efficacy in learning new human actions
and preserving the old knowledge from previously learned
human actions.
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