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Abstract
Event cameras are bio-inspired sensors that respond to

brightness changes asynchronously and output in the form
of event streams instead of frame-based images. They own
outstanding advantages compared with traditional cam-
eras: higher temporal resolution, higher dynamic range,
and lower power consumption. However, the spatial resolu-
tion of existing event cameras is insufficient and challeng-
ing to be enhanced at the hardware level while maintain-
ing the asynchronous philosophy of circuit design. There-
fore, it is imperative to explore the algorithm of event
stream super-resolution, which is a non-trivial task due to
the sparsity and strong spatio-temporal correlation of the
events from an event camera. In this paper, we propose
an end-to-end framework based on spiking neural network
for event stream super-resolution, which can generate high-
resolution (HR) event stream from the input low-resolution
(LR) event stream. A spatiotemporal constraint learning
mechanism is proposed to learn the spatial and temporal
distributions of the event stream simultaneously. We val-
idate our method on four large-scale datasets and the re-
sults show that our method achieves state-of-the-art perfor-
mance. The satisfying results on two downstream applica-
tions, i.e. object classification and image reconstruction,
further demonstrate the usability of our method. To prove
the application potential of our method, we deploy it on a
mobile platform. The high-quality HR event stream gener-
ated by our real-time system demonstrates the effectiveness
and efficiency of our method.

1. Introduction
Event cameras, e.g. Dynamic Vision Sensor (DVS) [6],

are bio-inspired vision sensors. Different from traditional
frame-based sensors that capture images at a fixed rate, the
event cameras respond to the pixel-wise brightness changes
of the scene asynchronously. Specifically, let I(x, y, t) be
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Figure 1. A comparison of the outputs of an event camera and a
frame-based camera while capturing (a) an ellipse and a star mov-
ing rightward. Different from the frame-based camera (b) that cap-
tures the scene at a fixed rate, the event camera asynchronously
responds to the brightness changes of the scene and outputs a spa-
tiotemporal event stream (c), where the red and blue points repre-
sent the positive and negative events, respectively, i.e. the increase
and decrease of the brightness. Figure inspired by [32].

the brightness intensity of the spatial coordinates (x, y) at
time t. When the change of its logarithm reaches a thresh-
old value C, i.e. |∆ log I(x, y, t)| > C, an event will be
triggered [34]. Each event is denoted as ei = (xi, yi, ti, pi),
where pi ∈ {1,−1} is the polarity, indicating whether the
brightness is increased or decreased. Therefore, the output
of the event camera is a tuple list called event stream, de-
noted as E = {ei}Ni=1. Figure 1 compares the output of an
event camera and a traditional frame-based camera.

Compared with traditional cameras, event cameras own
many outstanding properties: high dynamic range (140 dB
vs. 60 dB for traditional cameras), high temporal resolution,
and free from motion blur, which make them widely used
in many applications, e.g. object recognition [31, 41], ges-
ture recognition [1, 2], optical flow estimation [47, 33], high
frame rate video reconstruction [32, 36, 16], visual-inertial
odometry [46, 24], and 3D reconstruction [17, 8].

However, the spatial resolution of existing event cam-
eras is insufficient. Many influential works are based on
the 128 × 128 pixels DVS128 [34] or 240 × 180 pixels
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DAVIS240 [6]. If we aim at improving the spatial resolution
at the hardware level, i.e. reducing the pixel size, the asyn-
chronous circuit design philosophy will tough to be main-
tained [13]. Therefore, under the difficulty of increasing the
spatial resolution with hardware design, it is imperative to
explore the algorithm of event stream super-resolution.

The concerned event stream super-resolution is to in-
crease the spatial resolution of the input low-resolution
(LR) event stream without changing the data modality, i.e.
directly generating high-resolution (HR) event stream in-
stead of HR grid-based representation of the event stream,
e.g. intensity image [27] and event frame [42]. This is be-
cause the grid-based representations of the event stream are
incomplete with a lower temporal resolution, leading to a
deficiency of the temporal information of the original event
stream. Some high-performance algorithms [39, 25] also
directly deal with the event stream instead of the grid-based
representation of it, and achieve a higher computing effi-
ciency. So we claim that it is more significant to generate
HR event streams instead of its grid-based representation.

The event stream is a type of spatiotemporal event cloud
containing high-precision timestamp information compared
with traditional frame-based vision. The core question of
the event stream super-resolution is how to effectively de-
scribe the spatial and temporal distribution of the event
stream. To the best of our knowledge, there are few studies
on this task. Li et al. [22] use a sparse signal representation
based method [44] to learn the event stream’s spatial dis-
tribution and use a non-homogeneous Poisson processes to
simulate the event stream at each pixel. The timestamp of
each event in the output HR event stream is predicted by a
sampling method according to the Poisson intensity, which
causes a fatal error in temporal dimension due to the lack of
effective supervised learning on the temporal distribution.

In this paper, we propose an end-to-end event stream
super-resolution method based on the spiking neural net-
work, which could better preserve the temporal component
of the event stream. A spatiotemporal constraint learning
mechanism is proposed to describe both the spatial and
temporal distribution of the event stream. The proposed
method could generate the HR event stream by precisely
predicting each output event’s timestamp, instead of pre-
dicting a grid-based representation. We evaluate our method
on four large-scale datasets, i.e. N-MNIST [30], CIFAR10-
DVS [23], ASL-DVS [2], and Event Camera Dataset [28].
Experimental results show that our method outperforms the
state-of-the-art method by a large margin. For further test-
ing the quality of super-resolution results, we evaluate our
generated HR event streams on two downstream applica-
tions, i.e. object classification and image reconstruction.
The marvelous performance shows the usability of the pro-
posed method. We also deploy our method on a mobile
system and show that our method can perform high-quality

event stream super-resolution in real-time.
Our main contributions are summarized as follows:

• An end-to-end SNN-based model is proposed for the
event stream super-resolution task. Compared with the
previous method, a spatiotemporal constraint learning
mechanism is proposed to learn the temporal and spa-
tial distribution of the event stream simultaneously.

• Satisfying performances on two downstream applica-
tions with the generated HR event streams as input, i.e.
object classification and image reconstruction, demon-
strate the usability of the proposed method.

• An embedded deployment of our method is imple-
mented proving that the proposed method can gener-
ate high-quality HR event streams in real-time, which
shows the potential of deploying the proposed method
on mobile systems.

2. Related Work
2.1. Spiking Neural Network

Spiking Neural Networks (SNNs) are bio-inspired Arti-
ficial Neural Networks (ANNs), using biomimetic spiking
neurons as computing units. Different from the neurons in
traditional ANNs with a static, continuous-valued, and dif-
ferentiable activation function, the spiking neurons in SNNs
use discrete spike trains, i.e. temporal series of spikes, to
transmit information, which is similar to biological neu-
rons. An internal variable, called membrane potential, is
defined to describe the hidden state of the spiking neuron.
When the membrane potential exceeds a specified thresh-
old, an output spike will be generated. Immediately after
the spike, the membrane potential will be inhibited. Such a
self-suppression mechanism is called refractory response.
Each input spike train will generate a Post Synaptic Poten-
tial (PSP). The membrane potential of the neuron is the sum
of all PSPs and the refractory responses. There are various
spiking neural models in neuroscience, including Leaky In-
tegrate and Fire neuron [11], Hodgkin-Huxley neuron [14],
Izhikevich model [15], and Spike Response Model [10].

One of the main limitations of SNNs is that the spike
function that triggers output spikes in the spiking neuron
model is non-differentiable, which restricts the utilization of
backpropagation for training. Nevertheless, there have been
some efforts in recent years to design specific backpropaga-
tion for SNNs, e.g. methods with event-based backpropaga-
tion [4, 5, 12], methods that use a differentiable continuous
function to approximate the spike function [45, 29], meth-
ods that reassign error along temporal dimension [43, 40].

2.2. Event Stream Super-resolution

The event stream super-resolution task is complicated
and challenging due to the special spatiotemporal property
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Figure 2. Pipeline of the proposed method. Taking the LR event stream obtained from the event camera as input, the proposed method
generates the HR event stream by predicting the timestamp of each output event. A spatiotemporal constraint learning mechanism is
applied to simultaneously learn the spatial and temporal distribution of the event stream, which can effectively boost the performance.

of the event stream. To the best of our knowledge, the first
and only work on this task is [22], which uses an event count
map (ECM) to describe the event stream’s spatial distribu-
tion and a nonhomogeneous Poisson process to simulate the
event stream at each pixel. Specifically, in the spatial di-
mension, the LR ECM is obtained by counting the number
of events in the input LR event stream at each pixel, and
the HR ECM is predicted using an image super-resolution
method [44]. In the temporal dimension, the intensity of
the nonhomogeneous Poisson process at each pixel could be
computed from the input LR event stream, and then a fixed
convolutional kernel is applied to get the Poisson intensity
of the predicted HR event stream. Finally, a thinning-based
sample algorithm [21] is applied to obtain the timestamps
of output events, according to the predicted HR ECM and
Poisson intensity. Though the event stream’s spatial distri-
bution is well described in this work, the timestamp of each
output event is obtained by a sampling-based method in the
temporal dimension, resulting in low accuracy of the event
stream super-resolution task.

(a) (b)
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Figure 3. Illustration of spiking neuron dynamics described by the
Spike Response Model. (a) A spiking neuron modeled by SRM.
(b) The neuron is stimulated by input spikes with different synap-
tic weights, leading to an increment of the membrane potential
u (t). As soon as the membrane potential exceeds the threshold
Vth, an output spike will be emitted, and the membrane potential
will decrease due to the refractory response. See Section 3.1 for
more detail. (Best viewed in color.)

3. Method
We start with an overview of our pipeline for event

stream super-resolution, as illustrated in Figure 2. Our
method takes the LR event stream as input and treats each
event as an input spike. A convolutional SNN based on spa-
tiotemporal constraint learning is proposed to learn the spa-
tial and temporal distribution of the event stream simultane-
ously, and the HR event stream is generated with precisely
predicted timestamps of output events.

3.1. Spiking Neuron and SNN Model

In this section, we introduce the spiking neural model,
i.e. the Spike Response Model (SRM) [10], and the SNN
model used in our method. Denote sin (t) and sout(t) as the
input and output of a neuron in SRM, consisting of n and 1
spike trains, respectively. An internal variable u (t), named
membrane potential, is used to maintain the hidden state of
the neuron and generate an output strike once it exceeds a
specified threshold Vth. And u(t) is defined as the sum of
all the Post Synaptic Potentials (PSPs) and the refractory
responses. Among them, the PSP is obtained by convolv-
ing the input sin (t) with a spike response kernel ε (·), and
then multiplied by a corresponding synapse weight w. Sim-
ilarly, the refractory response is defined as the convolution
of sout(t) and a refractory response kernel γ (·). Therefore,
the membrane potential u (t) is calculated as:

u (t) = (γ (t) ∗ sout (t)) +
∑
i

wi
(
ε (t) ∗ siin (t)

)
, (1)

where siin (t) =
∑

k δ
(
t− tik

)
is the i-th input spike train

and tik is the timestamp of the t-th spike.
Figure 3 shows an illustration of the spiking neuron dy-

namics described by SRM. Each input spike train siin (t)
has a corresponding synapse weight wi, which is visualized
as the length of spikes in the figure. The PSP generated by
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each spike is shown as a curve in the corresponding color.
The membrane potential u (t), colored in black, is the sum
of all PSPs and refractory responses. When u (t) exceeds
the threshold Vth, an output spike is emitted, and a refrac-
tory response (colored in red) is triggered to reduce the cur-
rent membrane potential.

Consider a feed-forward SNN architecture with L layers
and Nl neurons in the l-th layer. The forward propagation
can be defined as:

u(l+1) (t) = W(l)
(
ε (t) ∗ s(l) (t)

)
+

(
γ (t) ∗ s(l+1) (t)

)
s(l+1) (t) =

∑
tk∈{t|u(l+1)(t)=Vth}

δ (t− tk)

s(1) (t) = sin (t)

sout (t) = s(N) (t)

(2)

where the W(l) ∈ RNl+1×Nl is the synaptic weight, sin(t)
and sout(t) are the input LR spike trains and the output HR
spike trains, respectively, and Vth is the membrane potential
threshold. In this paper, the spike response kernel and the
refractory response kernel are defined as follows:

ε (t) =
t

τs
e1−

t
τs Θ(t)

γ (t) = −2Vthe
− t

τr Θ(t)

(3)

where τs and τr are the time constants of spike response ker-
nel and refractory response kernel, respectively, and Θ(t) is
the Heaviside step function.

3.2. Network Architecture

The pipeline of our method is shown in Figure 2. Our
network architecture is a convolutional SNN with 2 con-
volution layers and 1 deconvolution layer. The input and
output of the model contain 2 channels, corresponding to
the positive and negative events, respectively. The first con-
volutional layer extracts the feature using 8 kernels of size
5 × 5 × 2 with a padding of 2 pixels. The second convolu-
tional layer has 8 kernels of size 3 × 3 × 8 with a padding
of 1 pixel. The final deconvolutional layer has 2 kernels
of size 2 × 2 × 8 with a stride of 2. The PSP of the in-
put LR event stream is interpolated to the desired size and
added to the output PSP of the last layer to generate the fi-
nal HR event stream. In practice, the time constants of the
spike response kernel and refractory response kernel are set
as τs = τr = 1, 2, 4 for the three layers, respectively. For
the depth of the proposed model, our experimental results
show that increasing the number of layers will not improve
the performance. See Section 4.6 for more details.

3.3. Spatiotemporal Constraint Learning

Inferring HR event streams from LR event streams is an
underdetermined task. The output HR event stream is ex-
pected to have the same statistical characteristics as the LR

input in both spatial and temporal dimensions. The event
stream obtained from the event camera is a spatiotemporal
event cloud, and the statistics along its temporal dimension
t and spatial dimension (x, y) represent different meanings.
For the temporal dimension, we learn the temporal distribu-
tion of the event stream at each pixel, representing the distri-
bution of the event rate intensity. For the spatial dimension,
we learn the holistic spatial distribution of the event stream,
representing the boundary and shape of moving edges in the
scene, which is the principle of event triggering.

Temporal dimension. We learn the temporal distribu-
tion by minimizing the error between the predicted and the
ground truth events at each pixel of each timestamp. Specif-
ically, the temporal loss is defined as:

LT =
1

2

∑
i

∫ T

0

(
sNi (t)− ŝi (t)

)2
dt (4)

where sNi (t) and ŝi (t) denote the output and ground truth
spike trains, respectively, at the pixel with coordinate i.

Spatial dimension. We sum the output spike trains
triggered within a time bin [T0, T1] along the tempo-
ral dimension to obtain the Peristimulus Time Histogram
(PSTH) as the representation of the spatial distribution, i.e.,
PSTHi =

∫ T1

T0
sNi (t) dt. Specifically, the spatial distribu-

tion is learned by minimizing the error between the PSTH
of the output spike train and the ground truth spike train,
and the corresponding spatial loss is defined as:

LS =
1

2

∑
i

(
PSTHi − P̂STHi

)2

(5)

where PSTHi and P̂STHi are the PSTH of the output spike
train and ground truth spike train, respectively, at the pixel
with coordinate i. In practice, the length of time bin is man-
ually setting to 50 milliseconds without overlapping.

Finally, the total loss function is defined as:

L = α · LT + β · LS (6)

where α and β are hyperparameters for balancing the
weights of different loss items.

4. Experiments
4.1. Datasets

We evaluate our method on four public datasets, i.e.,
N-MNIST [30], CIFAR10-DVS [23], ASL-DVS [2], and
Event Camera Dataset [28]. The N-MNIST dataset is ob-
tained by capturing samples from the MNIST [20] dataset
through a moving ATIS sensor [35], which contains 60,000
samples for training and 10,000 samples for test. The
CIFAR10-DVS dataset is collected by moving images from
the CIFAR10 [19] dataset in front of a fixed DVS128 [34]
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sensor, which contains 8,500 samples for training and 1,500
samples for test. The ASL-DVS dataset is a handshape
dataset recorded in the real scene, containing 100,800 sam-
ples, among which 80% are selected for training and the
remaining 20% for test. The Event Camera Dataset con-
tains sequences captured by a moving DAVIS240C camera
in various environments. We split each sequence into sam-
ples of 50 milliseconds length. See Section 4.5 for more
details. Following the method in [22], we use the original
DVS recordings as the ground truth HR event streams and
down-sample the data by merging the events in each 2 × 2
kernel with a stride of 2 to obtain the LR event streams.

To match the simulation precision of SNN, we adjust the
temporal resolution of the event stream to millisecond, i.e.
merging events within each 1 millisecond. This process will
result in partial event loss that more than one event trig-
gered in the same pixel within 1 millisecond will be merged.
According to our statistics, such loss of events is 0.14%,
1.96%, 3.41%, and 0.21% on N-MNIST, CIFAR10-DVS,
ASL-DVS, and Event Camera Dataset, respectively.

4.2. Implementation Details

Since SNN is a time-continuous system, it must be dis-
cretized for simulation on GPUs. Considering the duration
of samples from different datasets, we set the simulation
step size as 1 millisecond and restrict the simulation time
to 350, 200, 1500, and 50 milliseconds on N-MNIST, ASL-
DVS, CIFAR10-DVS, and Event Camera Dataset, respec-
tively. Our implementation is based on a publicly available
SNN library named SLAYER [40].

The hyperparameters of the spatiotemporal constraint
learning are chosen as α = 1, β = 5, respectively. The
proposed model is trained for 30 epochs with a batch size
of 16. The optimization method is Adam [18] with a learn-
ing rate of 0.1, multiplied by 0.1 after 15 epochs.

4.3. Criterion

The criterion used to evaluate the performance of the
event stream super-resolution is the root mean squared error
(RMSE) along both the temporal and spatial dimensions:

RMSEST =

√
1

(T1 − T0)
(MSES +MSET)

MSET =
1

Np

∑
i,j

∫ T1

T0

(
Spikehi,j(t)− Spikegti,j(t)

)2

dt

MSES =
1

Np

Nb∑
k=1

∑
i,j

∥∥∥PSTHh
i,j(k)− PSTHgt

i,j(k)
∥∥∥2

2

(7)

where T0 and T1 are timestamps of the first and last events,
and Np is the number of pixels that contain at least one
event in the ground truth event stream, and Nb is the num-
ber of time bins. Spikehi,j and Spikegti,j are the output and

N-MNIST CIFAR10-DVS ASL-DVS
Li et al. [22] 0.757 0.404 0.550
Ours 0.272 0.179 0.229
Ours (w/o s-loss) 0.280 0.183 0.234
Ours (w/o t-loss) 0.273 0.180 0.230

Table 1. Super-resolution results on N-MNIST, CIFAR10-DVS,
and ASL-DVS datasets. Bold numbers represent the best scores.

ground truth event stream at pixel (i, j), and PSTHh
i,j(k)

and PSTHgt
i,j(k) are the corresponding PSTH calculated in

the k-th time bin. We set the length of time bins as 50 mil-
liseconds without overlapping for the calculation of PSTH.

Here we describe our motivation for designing the cri-
terion in detail. Since the events are triggered by moving
edges in the scene, the events at different timestamps in the
same pixel have less correlation than the events in a spatial
neighborhood at the same moment. Meanwhile, the spa-
tial and the temporal dimensions of the event stream have
different physical meanings. This is the reason why we do
not adopt some of the existing spike train similarity met-
rics, e.g. [37] and [38], which are designed for neuronal
spike trains and are not suitable for the event stream. Sum-
ming the event stream along the temporal dimension can
depict the texture and boundaries of moving objects in the
scene. Therefore, considering the principle of the event trig-
gering, we design the MSES to measure the consistency of
the event stream with the moving edges. Similarly, we de-
sign the MSET to measure the error of events’ timestamps
in the temporal dimension.

4.4. Super-resolution Results

Quantitative comparison. Table 1 and Table 3 show
the quantitative results on the N-MNIST, CIFAR10-DVS,
ASL-DVS, and Event Camera Dataset. RMSEST is cho-
sen as the criterion to evaluate the super-resolution perfor-
mance. The proposed method is compared with the only
existing method [22] and achieves satisfying improvement
on all datasets. As shown in tables, the proposed method
reduces RMSEST by 64.1%, 55.7%, 58.4%, and 61.2% on
the N-MNIST, CIFAR10-DVS, ASL-DVS, and Event Cam-
era Dataset, respectively. Different from [22], which uses
the non-homogeneous Poisson process to simulate the event
stream and predicts the timestamp of each event in a sam-
pling way, the proposed method utilizes a supervised learn-
ing mechanism on the spatial and temporal distributions of
the event stream. And our performance is attributed to such
a strategy that could predict more accurate spatial structures
as well as timestamps of the output HR event stream.

Qualitative analysis. Figure 5 shows the qualitative re-
sults generated by the proposed method and [22] on the N-
MNIST dataset. It can be intuitively seen that our method
achieves better performance than the previous work [22].
For example, the proposed method can generate a clearer
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(a) LR (b) HR-GT (c) Ours (d) Ours w/o
spatial loss

(e) Ours w/o
temporal loss

(f) Li et al.

(1) (1) 

(2) (2) 

(3) (3) 

(4) (4) 

(5) (5) 

Figure 4. Visualization results of super-resolution on ASL-DVS dataset [2]. From left to right: the input LR event streams, the ground
truth HR event streams, results generated by our method, our method without spatial distribution learning, our method without temporal
distribution learning, and Li et al. [22]. See Section 4.4 and Section 4.6 for the detailed analysis. (Best viewed in color.)

(1) 

(2) 

(3) 

(f) Li et al.(c) Ours(b) HR(a) LR

Figure 5. Visualization results on N-MNIST dataset [30]. From
left to right: the input LR event streams, the ground truth HR event
streams, results generated by our method, and Li et al. [22].

shape boundary, as shown in row (1). Row (2) shows that
the proposed method performs better on reconstructing tiny
details in pixel-level, e.g. the middle part of the digital num-
ber 2. In contrast, the result generated by [22] is blurry.
Figure 4 shows more visualization results on the ASL-DVS
dataset. Our method can generate relatively sparser output
with less noise, e.g. row (1) and row (4), which is more
similar to the ground truth. More visualization results are
provided in the supplementary material.

4.5. Downstream Applications

To demonstrate the usability of the proposed method and
evaluate the quality of generated HR event streams, we test

N-MNIST ASL-DVS CIFAR10-DVS
LR events 99.0% 99.7% 50.8%
Li et al. [22] 97.8% 98.0% 59.6%
Ours 99.1% 99.9% 76.8%
GT events (ref.) 99.1% 99.9% 78.7%

Table 2. Classification results on N-MNIST, CIFAR10-DVS, and
ASL-DVS datasets. The classification accuracy of the HR event
streams generated by our method outperforms the LR event
streams and those generated by [22]. The classification accuracy
of the ground truth HR event streams is also provided for refer-
ence. Bold numbers represent the best scores.

on two downstream applications: object classification and
image reconstruction. First, we test the classification per-
formance on the N-MNIST, CIFAR10-DVS, and ASL-DVS
datasets. We use the classifier proposed in [9] to classify the
LR event streams, the ground truth HR event streams, the
HR event streams generated by our method, and by [22], re-
spectively. To prevent data leakage, the split of training and
test sets for classification is the same as the super-resolution
task. The results in Table 2 show that the HR event streams
generated by our model can achieve a comparable classi-
fication accuracy with the ground truth HR event streams,
and outperform the LR event streams and those generated
by [22], which prove that our method can effectively im-
prove the accuracy of the downstream classification task.
More details of the experimental setting are provided in the
supplementary material.
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(a) LR Events (b) HR Events-GT (c) HR Events-Ours (d) HR Events-Li et al. (e) Frame-GT (f) Frame reconstructed 

by (b) GT events

(g) Frame reconstructed 

by (c) ours events

(h) Frame reconstructed 

by (d) Li et al. s events 

Figure 6. Results on Event Camera Dataset. (a) Input LR event streams. (b) Ground truth HR event streams. (c-d) HR event streams
generated by the proposed method and Li et al. [22]. (e) Ground truth frames. (f-h) The images reconstructed from ground truth HR event
streams, HR event streams generated by the proposed method and by [22], respectively (i.e. corresponding to column (b-d)).

Dataset RMSEST ↓ SSIM ↑ MSE ↓
Li et al. Ours Li et al. Ours GT Event (ref.) Li et al. Ours GT Event (ref.)

dynamic 6dof 0.937 0.356 0.62 0.62 0.68 0.07 0.05 0.03
boxes 6dof 0.786 0.312 0.38 0.46 0.65 0.06 0.07 0.03
poster 6dof 0.902 0.344 0.44 0.54 0.68 0.07 0.05 0.03
shapes 6dof 0.924 0.356 0.40 0.47 0.45 0.19 0.13 0.18
office zigzag 0.852 0.325 0.57 0.63 0.71 0.04 0.04 0.03
slider depth 0.667 0.274 0.58 0.52 0.65 0.06 0.10 0.07
calibration 0.794 0.306 0.49 0.47 0.55 0.03 0.03 0.03

Mean 0.837 0.325 0.497 0.530 0.624 0.074 0.067 0.057

Table 3. Results of event stream super-resolution (RMSEST) and image reconstruction (SSIM, MSE) on Event Camera Dataset. Bold
numbers represent the best results. Our method achieves a 61.2% decrease of RMSEST in the event stream super-resolution task. The HR
event streams generated by our method outperform those generated by [22] in the image reconstruction task with an average 6.6% increase
of SSIM and 9.5% decrease of MSE. The results of ground truth event streams are also provided for reference.

We also evaluate our super-resolution result with the im-
age reconstruction task. Reconstructing images from event
streams is a challenging task, which requires our method
to be extremely robust. We test on the Event Camera
Dataset [28] containing more complex motions and scenes
to demonstrate the robustness of our method. Following
the experimental settings in [36], we choose the same 7
sequences for testing, e.g. boxes 6dof, office zigzag, etc.,
and the other sequences for training, e.g. boxes rotation, of-
fice spiral, etc. The split of training and test sets are the
same for super-resolution and image reconstruction tasks.
For image reconstruction, we use the pre-trained model pro-
vided in [36] and reconstruct images with events in a win-
dow with a fixed duration of 50 ms. We use the mean square
error (MSE) and structural similarity (SSIM) as criteria and
choose the same ground truth frames as [36] for evaluation.
Table 3 presents the main quantitative results. Our super-
resolution result outperforms the state-of-the-art by a large

margin, with an average of 61.2% decrease in RMSEST.
Meanwhile, the HR event streams generated by our method
can achieve a better performance in the image reconstruc-
tion task than those generated by [22] with an average of
6.6% increase in SSIM and 9.5% decrease in MSE. Fig-
ure 6 shows more qualitative results. The images recon-
structed by the HR event streams generated by our method
(column (g)) are comparable to those reconstructed by the
ground truth HR event streams (column (f)) and outperform
those reconstructed by HR event streams generated by [22]
(column (h)). Meanwhile, the images reconstructed by the
HR event streams generated by [22] result in a large error
of intensity, e.g. row 1 and 3, which is caused by the fact
that the method in [22] will mis-trigger lots of events and
lead to a blurred boundary, as column (d) shown. We also
observe that the HR event stream generated by our method
outperforms the ground truth event stream on shapes 6dof
sequence. This is due to that our model learns precise pat-
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3 layers 4 layers 5 layers 5 layers
RMSEST 0.272 0.278 0.295 0.309

Table 4. Super-resolution results with different network architec-
ture on N-MNIST dataset. Bold numbers represent the best scores.

(a) Hardware system (b) Indoor scene: office table

1 2 

2 1 

HR LR 

HR LR 

1 

2 

1 LR  

2 HR 

DAVIS346

Nvidia Jetson

AGX Xavier

Figure 7. (a) Picture of our embedded implementation. The event
camera, DAVIS346, is connected to the edge computing proces-
sor, Nvidia Jetson AGX Xavier. (b) The real-time super-resolution
results generated by our embedded system as well as the operat-
ing screenshots. Some details are zoomed for a better comparison.
The complete video is presented in the supplementary material.

terns and generates HR event stream contain less noise.

4.6. Ablation Study

We conduct ablation experiments to demonstrate the ef-
fectiveness of the proposed method. Table 1 shows the
quantitative results of our method without spatial distribu-
tion learning, denoted as Ours (w/o s-loss), and without
temporal distribution learning, denoted as Ours (w/o t-loss).
The experimental results show that the removal of either the
spatial or temporal distribution learning will lead to a de-
cline in performance. As shown in Figure 4, the outputs of
the proposed method without spatial distribution learning
contain fuzzier boundaries and more noise, e.g. row (3).

For the network architecture, we test the performance of
models with different numbers of layers on the N-MNIST
dataset. As shown in Table 4, the quantitative results show
that the performance decline as the model becomes deeper.
This may attribute to the difficulty of training the deep SNN
model. More details of the experimental setting are pro-
vided in the supplementary material.

4.7. Limitations

Since the implementation of our SNN model is a numeri-
cal simulation on GPUs, the precision of events’ timestamps
is decreased to millisecond to match the simulation preci-
sion. This can be improved by deploying the model on an
SNN chip, e.g. Loihi [7], during the prediction stage.

5. Embedded Implementation
To further prove the efficiency and usability of the pro-

posed method, we deploy our method on a mobile platform,
as shown in Figure 7 (a). The event camera we used is the

DAVIS346, which can achieve a dynamic range of 120 dB
and a maximum bandwidth of 12M events/s. The comput-
ing processor we choose is the Nvidia Jetson AGX Xavier, a
powerful edge computing processor. In our implementation,
all the computing is performed on Xavier, and a monitor is
connected only for displaying the result. It should be noted
that our method is implemented in a numerical simulation
way based on GPU, so the power consumption is relatively
high (about 30 W for Xavier). If we use some neuromor-
phic computing chips specifically designed for SNN, e.g.
Loihi [7] or TrueNorth [26], the power consumption could
be reduced by about 95% [3], which would be more suitable
for deployment on mobile devices.

We test our embedded system indoor, and the result
shows that our system can generate superior HR event
streams in real-time and owns strong robustness to com-
plex motions. Figure 7 (b) shows our operation and super-
resolution results. We hold the DAVIS346 in hand and
move it to capture the original data. The movement involves
from simple low-speed shifting to complex high-speed spin-
ning. The upper-left part in the red box shows the LR event
stream obtained by the DAVIS346 and the HR event stream
generated by our system. The bottom-left part in the blue
box is the screenshot of our operation. It can be seen that
our system could generate HR event streams with a high-
quality recovery of detail. The complete video of the super-
resolution result and our operation screenshot are presented
in the supplementary material.

6. Conclusion

In this paper, we introduce an event stream super-
resolution method based on spiking neural network to di-
rectly predict the HR event stream from the input LR event
stream. The major contributions of the proposed method
include the spatiotemporal constraint learning mechanism
that learns both the spatial and temporal distribution of
the event stream simultaneously. The experimental results
show that the proposed method outperforms the state-of-
the-art method on four large-scale datasets by a large margin
(> 55% improvement). Ablation study and visualization re-
sults further prove the effectiveness of the proposed learn-
ing mechanism. The marvelous performance on two down-
stream applications, i.e. object classification and image re-
construction, demonstrates the usability of our method. An
embedded deployment shows that our method could gen-
erate high-quality HR event streams in real-time, which is
suitable to be deployed on mobile systems.
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[36] Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide
Scaramuzza. High Speed and High Dynamic Range Video
with an Event Camera. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 2019. 1, 7

[37] MCW van Rossum. A Novel Spike Distance. Neural Com-
putation, 13(4):751–763, 2001. 5

[38] Susanne Schreiber, Jean-Marc Fellous, D Whitmer, P
Tiesinga, and Terrence J Sejnowski. A New Correlation-
Based Measure of Spike Timing Reliability. Neurocomput-
ing, 52:925–931, 2003. 5

[39] Yusuke Sekikawa, Kosuke Hara, and Hideo Saito. Event-
Net: Asynchronous Recursive Event Processing. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3887–3896, 2019. 2

[40] Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike
Layer Error Reassignment in Time. In Advances in Neural
Information Processing Systems, pages 1412–1421, 2018. 2,
5

[41] Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier
Lagorce, and Ryad Benosman. HATS: Histograms of Aver-
aged Time Surfaces for Robust Event-based Object Classifi-
cation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1731–1740, 2018. 1

[42] Zihao Wang, Peiqi Duan, Oliver Cossairt, Aggelos Kat-
saggelos, Tiejun Huang, and Boxin Shi. Joint Filtering

of Intensity Images and Neuromorphic Events for High-
Resolution Noise-Robust Imaging. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1609–1619, 2020. 2

[43] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping
Shi. Spatio-Temporal Backpropagation for Training High-
Performance Spiking Neural Networks. Frontiers in Neuro-
science, 12:331, 2018. 2

[44] Jianchao Yang, John Wright, Thomas Huang, and Yi Ma.
Image Super-Resolution as Sparse Representation of Raw
Image Patches. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8, 2008.
2, 3

[45] Friedemann Zenke and Surya Ganguli. SuperSpike: Super-
vised Learning in Multilayer Spiking Neural Networks. Neu-
ral Computation, 30(6):1514–1541, 2018. 2

[46] Alex Zihao Zhu, Nikolay Atanasov, and Kostas Daniilidis.
Event-Based Visual Inertial Odometry. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 5391–5399, 2017. 1

[47] Alex Zihao Zhu, LiangFzhe Yuan, Kenneth Chaney, and
Kostas Daniilidis. Unsupervised Event-Based Learning of
Optical Flow, Depth, and Egomotion. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 989–997, 2019. 1

4489


