
Fooling LiDAR Perception via Adversarial Trajectory Perturbation

Yiming Li†,∗ Congcong Wen†,§,∗ Felix Juefei-Xu‡ Chen Feng†
†New York University §University of Chinese Academy of Sciences ‡Alibaba Group

yimingli@nyu.edu, cfeng@nyu.edu

Abstract

LiDAR point clouds collected from a moving vehicle
are functions of its trajectories, because the sensor motion
needs to be compensated to avoid distortions. When au-
tonomous vehicles are sending LiDAR point clouds to deep
networks for perception and planning, could the motion
compensation consequently become a wide-open backdoor
in those networks, due to both the adversarial vulnerability
of deep learning and GPS-based vehicle trajectory estima-
tion that is susceptible to wireless spoofing? We demon-
strate such possibilities for the first time: instead of directly
attacking point cloud coordinates which requires tampering
with the raw LiDAR readings, only adversarial spoofing of
a self-driving car’s trajectory with small perturbations is
enough to make safety-critical objects undetectable or de-
tected with incorrect positions. Moreover, polynomial tra-
jectory perturbation is developed to achieve a temporally-
smooth and highly-imperceptible attack. Extensive experi-
ments on 3D object detection have shown that such attacks
not only lower the performance of the state-of-the-art de-
tectors effectively, but also transfer to other detectors, rais-
ing a red flag for the community. The code is available on
https://ai4ce.github.io/FLAT/.

1. Introduction
Autonomous driving systems are generally equipped

with all kinds of sensors to perceive the complex environ-

ment [7]. Among the sensors, LiDAR has played a crucial

role due to its plentiful geometric information sampled by

incessantly spinning a set of laser emitters and receivers.

However, LiDAR scans are easily distorted by vehicle’s mo-

tion, i.e., the points in a full sweep are sampled at different

timestamps when vehicle is at different locations and ori-

entations, as shown in Fig. 1. Imagine that a self-driving

car is on a highway at a speed of 30m/s, its LiDAR with a

20Hz scanning frequency would move 1.5 meters during a

* indicates equal contribution. The work is done during Congcong’s

visit at NYU. Chen Feng is the corresponding author.

Real Trajectory

…

=10ms =20ms =30ms =100ms

Motion
Correction

Spoofed Trajectory

GNSS Signal

Spoofer

Perception Original Results

Spoofed Results

Undetected

Undetected

Figure 1: Illustration of our trajectory-based attack and the motion correc-

tion process. The top right and bottom right figures are respectively origi-

nal and distorted LiDAR sweep as well as the detection results. Green/red
boxes denote the ground truth/prediction. In this example, our method

(named as FLAT) makes the detector miss eight out of eleven vehicles.

full sweep, severely distorting the captured point cloud.

Such distortions are typically compensated by querying

the vehicle/LiDAR’s pose at any time from a continuous

vehicle ego-motion tracking module that fuses pose estima-

tion from Global Navigation Satellite System (GNSS, e.g.,

GPS, GLONASS, and BeiDou), Inertial Navigation Sys-

tem (INS), and SLAM-based localization using LiDAR or

cameras. Well-known LiDAR datasets like KITTI [7] and

nuScenes [2] have already corrected such motion distor-

tions prior to the dataset release. Researchers then made

impressive progresses by processing those distortion-free

point clouds using deep neural networks (DNNs) for many

tasks, e.g., 3D object detection, semantic/instance segmen-

tation, motion prediction, multiple object tracking.

However, using DNNs on LiDAR point clouds cre-

ates a potentially dangerous and less cognizant vulnera-

bility in self-driving systems. First, the above perception

tasks are functions of LiDAR point clouds implemented

via DNNs. Second, the motion compensation makes Li-

DAR point clouds a function of the vehicle trajectories.

This functional composition leads to a simple but surpris-

ing fact that those perception tasks are now also func-
tions of the trajectories. Thus, such a connection exposes

the well-known adversarial robustness issue of DNNs to

7898

hackers who could now fool a self-driving car’s safety-

critical LiDAR-depending perception modules by calcu-

latedly spoofing the area’s wireless GNSS signals, which

is still a serious and unresolved security problem demon-

strated on many practical systems [23, 30, 52]. Luckily,

given that the aforementioned non-GNSS pose sources such

as INS and visual SLAM are fused together for vehicle ego-

motion estimation, large variations (meter-level) of GNSS

trajectory spoofing could be detected and filtered, ensuring

a safe localization and mapping for self-driving cars. How-

ever, what if a spoofed trajectory only has dozens of cen-
timeters offset? Would current point cloud DNNs be robust
enough under such small variations?

In this paper, we initiate the first work to reveal and in-

vestigate such a vulnerability. Different from existing works

directly attacking point cloud coordinates with 3D point

perturbations or adversarial object generation [9, 36, 41,

44], we propose to fool LiDAR-based perception modules

by attacking the vehicle trajectory, which could be detri-

mental and easily deployable in the physical world. Our

investigation includes how to obtain LiDAR sweeps with

simulated motion distortion from real-world datasets, con-

vert LiDAR point clouds as a differentiable function of the

vehicle trajectories, and eventually calculate the adversarial

trajectory perturbation and make them less perceptible. Our

principal contributions are as follows:

• We propose an effective approach for simulating mo-

tion distortion using a sequence of real-world LiDAR

sweeps from existing dataset.

• We propose a novel view of LiDAR point clouds as

a differentiable function of the vehicle trajectories,

based on the real-world motion compensation process.

• We propose to Fool LiDAR perception with

Adversarial Trajectory (FLAT), which has better

feasibility and transferability.

• We conduct extensive experiments on 3D object detec-

tion as a downstream task example, and show that the

advanced detectors can be effectively blinded.

2. Related Work
GNSS/INS and LiDAR Motion Compensation. Motion

distortion is also known as motion blur or rolling shutter ef-

fect of LiDAR on ego-motion vehicles [20]. To compensate

for such distortions, GNSS/INS is often used to provide the

pose of the LiDAR at any moment when a point is scanned.

This opens backdoors for a self-driving system. First, space

weather is a substantial error source for GNSS and also sig-

nificantly affects systems such as differential GPS. The in-

fluence of ionosphere disturbances on GPS kinematic pre-

cise point positioning (PPP) can be larger than 2 to 10 me-

ters at different latitudes [49], while solar radio burst could

cause GPS positioning errors as large as 300 meters verti-

cally and 50 meters horizontally [22]. Besides those natu-

rally occurring events, malicious attacks such as GPS jam-

ming or spoofing could also be used to arbitrarily modify

the GPS trajectory [23, 30, 52]. Moreover, when GNSS and

INS are fused, such attacks can affect not only positions but

also the rotational component (gyroscope bias compensa-

tion) of a vehicle’s trajectory [46]. Of course, nowadays for

motion compensation, LiDAR poses are usually fused be-

tween GNSS/INS and LiDAR-/camera-based localization,

so large pose variations from extreme space weather or “ur-

ban canyon” effect could be filtered. But as long as GNSS is
a part of the equation, the backdoors could remain open, es-
pecially when the spoofed trajectories only have small vari-
ations from the ground truth, as we show later.

Image-based Adversarial Attack. Despite the great suc-

cess achieved by deep learning in both academia and indus-

try, researchers have found that deep networks are suscep-

tible to carefully-designed adversarial perturbation which

is hard to distinguish. Since such vulnerability is firstly

pointed out in image classification task [35], broad atten-

tions have been paid to adversarial robustness in various

downstream tasks, e.g., semantic segmentation [45], ob-

ject detection [24], visual tracking [8], etc. Adversarial

attack is divided into white box [21] and black box [1]

based on whether the model parameters are known. Be-

sides, attacks can be categorized as targeted [47] and untar-

geted [42] according to whether the adversary has a particu-

lar goal. Meanwhile, many attempts have been made in de-

fense mechanisms, such as adversarial training [19], certi-

fied defense [28, 51], adversarial example detector [51], and

ensemble diversity [25]. Extensive studies in image-based

adversarial attack and defense have largely promoted the

development of trustworthy machine learning in 2D com-

puter vision and inspired similar investigations in 3D vision.

Point Cloud Attack and Defense. Recently, researchers

have explored the vulnerability of DNNs taking point

clouds of 3D objects as input. For the object-level point

cloud attack, Xiang et al. [44] proposed point perturbation

as well as cluster generation to attack the widely-used Point-

Net [26]. Besides, critical points removal [41, 48], adver-

sarial deformation [54], geometric-level attack [15] are pro-

posed for fooling the point cloud-based deep model. How-

ever, none of them directly target LiDAR point clouds of

self-driving scenes which have domain gaps than object-

level point clouds. Moreover, to implement the above point

cloud attacks towards a self-driving car requires tamper-

ing with its software for altering point cloud coordinates.

Differently, our paper reveals a simple yet dangerous pos-
sibility of spoofing the trajectory to attack deep modules

through the LiDAR motion correction process yet without
any need of software hacking. As for the works on scene-

level point cloud attack, Tu et al. [36] proposed to generate

3D adversarial shapes placed on the rooftop of a target ve-

hicle, making the target invisible for the detectors. Some

7899

works [3, 4, 32, 34] created spoofing obstacles/faked points

in front of the car to influence the vehicle’s decision, but

they can only modify the limited area of the scene. Dif-

ferently, our method does not need to physically alter any

shapes in the scene, and can easily scale up the attack to the
whole scene. In a word, existing works directly manipulate

on the point coordinates either physically or virtually, while

our attack is realized by spoofing the vehicle trajectories.

Affected Downstream Tasks. Theoretically, every down-

stream task that require LiDAR point cloud as input could

be affected by the attacks proposed in this paper. This could

include geometric vision tasks such as registration, pose es-

timation, and mapping, as well as pattern recognition tasks

such as 3D object detection [14, 16, 31, 38, 50, 55], seman-

tic segmentation [12, 13], motion prediction [17, 43, 53],

and multiple object tracking [39, 40]. While the first group

of tasks could be less severely affected by GNSS spoofing

via data fusion as mentioned above, the second group has

higher vulnerability, because small but calculated perturba-

tions in the point coordinates could affect deep networks

as demonstrated in the above related works. In this paper,

without loss of generality, we choose to focus on the 3D ob-

ject detection task to illustrate the severity of this backdoor,

because miss detection of safety-critical objects surround-

ing a self-driving car could be a matter of life or death.

3. Motion Distortion in LiDAR
LiDAR measurements are obtained along with the ro-

tation of its beams, so the measurements in a full sweep

are captured at different timestamps, introducing motion

distortion which jeopardizes the vehicle perception. Au-

tonomous systems generally utilize LiDAR’s location and

orientation obtained from the localization system to correct

distortion [6, 10, 29]. Most LiDAR-based datasets [2, 7]

have finished synchronization before release. Hence, the

performance of current 3D perception algorithms in the dis-

torted point cloud remains unexplored. We briefly introduce

the nomenclature in this work before detailed illustrations.

World Frame. We use a coordinate frame W fixed in

the world with the orthonormal basis {xW ,yW , zW } to de-

scribe the global displacement of the self-driving car.

Object Frame. The car can be associated with a right-

handed, orthonormal coordinate frame which can describe

its rigid body motion. Such a frame attached to the car is

called object frame [18]. In the following, we use frame to

denote the object frame of the car at different timestamps.

Sweep&Packet. LiDAR points in a complete 360◦ is

called a sweep, and the points are emitted as a stream of

packets, each covering a sector of the 360◦ coverage [10].

3.1. Linear Pose Interpolation

In this section, we recover the raw point cloud before

synchronization with a sequence of real-world LiDAR point

Interpolate N steps between frame A and B

1
2

ܰ − 1 ஻ܠ
஻ܢ
஻ܡ

஺ܡ஺ܠ
஺ܢ

ଵܠ
ଵܢଵܡ

ଶܠ ଶܡ
ଶܢ

ேିଵܠ
ேିଵܡ

ேିଵܢ

ௐܢ
ௐܠ

஺ܹ܂ௐܡ ஻ܹ܂

஺1܂ ஺2܂

0

1
2 3

4ܰ − 1

ܰ − 1

Transform points in packet n to frame n

Separate point cloud at frame A into N packets cloud

Frame 1
Frame 2 Frame

Frame B

Frame A

World Frame

ܰ − 1

Figure 2: Diagram of motion distortion simulation. Firstly, we interpolate

N steps in 6DoF pose between two adjacent frames A and B. Secondly,

we divide a sweep at frame A into N packets, and the n-th sector cor-

responds to the n-th interpolated frame. Thirdly, we transform the point

cloud in the n-th packet at frame A into frame n with homogeneous trans-

formation Tn
A. Finally, motion-distorted point cloud can be generated by

aggregating the point cloud from frame 0 to frame N − 1.

clouds from nuScenes [2]. Each sample of nuScenes pro-

vides a sweep and its corresponding ego pose. We assume

the vehicle is moving smoothly and carry out linear pose in-

terpolation between two adjacent frames A and B, as shown

in Fig. 2. {xA,yA, zA} and {xB ,yB , zB} are their or-

thonormal basis. Using tA ∈ R
3 and tB ∈ R

3 to represent

global translation of frame A and B, the global translation

of the n-th (n = 0, 1, 2, ..., N − 1) interpolated frame is:

t(n) = tA +
tB − tA

N
× n , (1)

where N is the total interpolation steps. For the

orientation, we implement spherical linear interpolation

(slerp) [33]. Using qA =
[
qAw , q

A
x , q

A
y , q

A
z

]�
and qB =[

qBw , qBx , qBy , qBz
]�

to represent quaternion at frame A and

B, then the quaternion at the n-th interpolated frame is:

q(n) =
sin((1− n)θ)

sin θ
qA +

sin(nθ)

sin θ
qB , (2)

where θ = cos−1 (qA · qB) is the rotation angle between A

and B. Convert the quaternion q(n) =
[
qnw, q

n
x , q

n
y , q

n
z

]�
to

the rotation matrix R(n) ∈ SO(3), then the homogeneous

transformation matrix from the world frame W to the n-th

interpolated frame denoted as TW
n ∈ SE(3) is:

TW
n =

[
R(n) t(n)
01×3 1

]
. (3)

3.2. Motion Distortion Simulation

After linear pose interpolation, we can get N more

frames. To simulate motion distortion, we assume that the

sweep at frame A is aggregated from N frames, and in each

frame, the beam scans a degree of 360
N . Therefore, we firstly

divide the sweep at frame A into N packets, as shown in

Fig. 2. Then we transform the LiDAR packet n to the co-

ordinate of frame n at which the point cloud is assumed to

7900

be captured. The points in packet n at frame A (denoted

as APn ∈ R
4×mn) is represented as a set of 3D points

{Pm|m = 1, 2, ...,mn}, where each point Pm is a vector

of its homogeneous coordinate (x, y, z, 1), and mn denotes

the number of points in packet n. We transform APn to its

corresponding capture frame n:

nP = Tn
A

APn , (4)

where nP ∈ R
4×mn is the point cloud of packet n in the

coordinate of frame n (can be treated as the point cloud cap-

tured at frame n) and Tn
A is the homogeneous transforma-

tion from frame n to frame A and is as follows:

Tn
A = Tn

WTW
A = (TW

n)−1TW
A , (5)

where TW
n is from Eq. (3) and TW

A can also be calculated

given tA and qA. Finally, a set of motion-distorted point

clouds AP̃ ∈ R
4×m is generated by aggregating multiple

LiDAR packets captured at different frames:

AP̃ = [0P; 1P; ...;N−1P] , (6)

where [·; ·; ...; ·] is the concatenation operation along the

row. It is noted that m =
∑N−1

n=0 mn.

3.3. Motion Compensation with Ego-Pose

Up to now, we have generated motion-distorted point

cloud as shown in Eq. 6, and then we can represent the

motion compensation using the mathematical formula, i.e.,

a LiDAR sweep can be written as a differentiable func-

tion of the vehicle trajectory*. The undistorted point cloud
AP ∈ R

4×m is obtained by transforming point clouds from

frame 0 ∼ N − 1 back to the coordinate of frame A:

AP = [TA
0

0P;TA
1

1P; ...;TA
N−1

N−1P] , (7)

where TA
n is the transformation from frame A to frame n,

which is the inverse matrix of Tn
A in Eq. (5).

4. Adversarial Trajectory Perturbation
4.1. Point Cloud Representation w.r.t. Trajectory

The studies of object-level point cloud generally treat

point cloud as a set of 3D points sampled from mesh models

instantaneously [9, 44]. In autonomous driving, however,

the 3D points are captured in a dynamic setting through

raycasting, thus LiDAR not only records points’ (x, y, z)
coordinates, but also the timestamps at which the points are

captured. To this end, we propose a novel representation

of point cloud as a function of vehicle trajectory through

Eq. (7) which can be written as a general form:

P = f(T, L(nP)), n = 0, 1, ..., N − 1 , (8)

*In this work, the translation and the orientation are collectively re-

ferred to as “trajectory”.

where P ∈ R
4×m is a full sweep with m points, and is

represented as a differentiable function f in terms of vehi-

cle trajectory T ∈ R
N×4×4 and the list of LiDAR pack-

ets L(nP) = [0P, 1P, ...,N−1P] (nP ∈ R
4×mn). Noted

that the trajectory between two adjacent frames is repre-

sented as a set of homogeneous transformation matrices.

Different from previous works tampering with point coordi-

nates [44]†, we propose to represent point cloud as a func-

tion of trajectory, and attack the trajectory instead of 3D

points. Our method has the following advantages.

Physical Feasibility. Since the motion compensa-

tion is naturally occurring in self-driving, it is physically-

realizable and straightforward to attack the trajectory, e.g.,

by wireless GNSS spoofing. In contrast, coordinate attack

requires software hacking which is infeasible in practice.

Better Transferability. Our learned trajectory perturba-

tion with the same size (N × 4 × 4) can be easily trans-

ferred to different sweeps. Yet, coordinate attacks cannot

be transferred across sweeps because different sweeps could

have different numbers of points, and the perturbation in the

point space could have different dimensions.

Novel Parameterization. We attack the 6-DoF pose of

each packet, but coordinate attack modifies a single point’s

xyz position without orientations. Hence, our method has

better performance due to new attacked parameters.

4.2. Objective Function

Since the point cloud is represented as a differen-

tiable function of the trajectory, the gradient can be back-

propagated to the trajectory smoothly for adversarial learn-

ing. The adversarial objective is to minimize the negative

loss function of the deep model with parameter θ:

min L̃(θ, f(T, L(nP)),y) , (9)

where y is the desired output of the network, f(T, L(nP))
is the input point cloud as a function of the trajectory. As-

sume that we are assigned to attack a downstream task with

loss function L, e.g., cross-entropy loss in classification,

then L̃ = −L. Afterwards, the adversarial perturbation

δ ∈ R
N×4×4 can be obtained via projected gradient de-

scent (PGD) with multiple iterations [19]:

δt+1 = P
(
δt − α sgn

(
∇δL̃(θ, f(T+ δ, L(nP)),y)

))
,

(10)

where t denotes iteration number, α denotes learning rate,

P indicates the projection onto the convex set of interest,

and this work uses clipping which is the case of �∞ norm

to ensure an acceptable perturbation magnitude. The n-th

element in δ in the matrix form is:

δ(n) =

[
R̃(n) t̃(n)
01×3 1

]
. (11)

†In the following, we will use coordinate attack to denote the modifi-

cation of point coordinate.

7901

Polynomial Trajectory Perturbation. To make the attack

highly imperceptible, the polynomial trajectory perturba-

tion is proposed: we define the perturbation in translations

as a third-order polynomial of time as follows:

t̃(n) = βTn , (12)

where n = [1, n, n2, n3]� and β = [βx,βy,βz] is the

polynomial coefficients. Now δ is a differentiable function

of β, and the gradient will be back-propagated to β, so the

adversarial coefficients are calculated by:

βt+1 = P
(
βt − α sgn

(
∇βL̃(θ, f(T+ δ, L(nP)),y)

))
,

(13)

hence, we only need to manipulate several key points to
bend a polynomial-parameterized trajectory which can be

easily achieved in reality, achieving a real-time attack.

4.3. Attack with Regularization

Regularization on Trajectory. To realize an impercep-

tible attack, we propose a trajectory smoothness regularizer

to repress the total variation in vehicle poses. Given a trajec-

tory perturbation δ ∈ R
N×4×4, we calculate the difference

in translation and rotation separately. The smoothness S(δ)
equals to the following formula:

λt(

N−1∑
n=1

(t̃(n)− t̃(n−1))p)
1
p +λR(

N−1∑
n=1

(R̃(n)−R̃(n−1))p)
1
p ,

(14)

where λt and λR are used to balance the influence of trans-

lations and rotations, p denotes the norm (p = 2 in this

work). With trajectory smoothness regularization, the ob-

jective of adversarial attacks is as follows:

min L̃(θ, f(T+ δ, L(nP)),y) + λsS(δ) , (15)

where λs is for adjusting the smoothness degree. By opti-

mizing over Eq. (15), we aim to find an imperceptible ad-

versarial perturbation δ with desirable smoothness.

Regularization on Point Cloud. We also propose a reg-

ularizer on point cloud to repress its change. We use two

metrics to measure the variation of point cloud before and

after distortion, i.e., �p norm and Chamfer distance [5]. Us-

ing DL(δ) to denote �p distance, DC(δ) to denote Chamfer

distance before and after perturbation δ. The adversarial

objective with regularization is defined as:

min L̃(θ, f(T+ δ, L(nP)),y) + λdD(δ) , (16)

where D(δ) can be either DL(δ) or DC(δ). λd is to control

the degree of distortion. By optimizing over Eq. (16), we try

to search for a powerful adversarial perturbation δ leading

to subtle distortion in the point cloud.

5. Experiments
5.1. Target 3D Deep Model

In this work, we select widely-studied LiDAR-based 3D

detection, which aims to estimate 3D bounding boxes of the

objects in point cloud, as a downstream task example to ver-

ify our attack pipeline. Currently, LiDAR-based detection

has two mainstreams: 1) point-based method directly con-

suming raw point cloud data, 2) voxel-based method which

requires non-differentiable voxelization in the preprocess-

ing stage. For the white box attack, we use point-based

PointRCNN [31]. For the black box transferability test, we

adopt voxel-based PointPillar++ [11].

PointRCNN. Our white box model, PointRCNN, uses

PointNet++ [27] as its backbone and includes two stages:

stage-1 for proposal generation based on each foreground

point, and stage-2 for proposal refinement in the canonical

coordinate. Since PointRCNN uses raw point cloud as the

input, the gradient can smoothly reach the point cloud, then

arrive at vehicle trajectory. In this work, we individually

attack the classification as well as regression branches in

stage-1 and stage-2, with four attack targets in total.

PointPillar++. PointPillar [14] proposes a fast point

cloud encoder using pseudo-image representation. It di-

vides point cloud into bins and uses PointNet [26] to extract

the feature for each pillar. Due to the non-differentiable pre-

processsing stage, the gradient cannot reach the point cloud.

Peiyun et al. [11] proposed to augment PointPillar with the

visibility map, achieving better precision. In this work, we

use PointPillar++ to denote PointPillar with visibility map

in [11]. We use perturbation learned from the white box

PointRCNN to attack black box PointPillar++, in order to

examine the transferability of our attack pipeline.

5.2. Dataset and Evaluation Metrics

Dataset. nuScenes [2] is a large-scale multimodel au-

tonomous driving dataset captured by a real SDV with a

full 360◦ field of view in various challenging urban driving

scenarios. Including 1000 scenes collected in Boston and

Singapore in different weather, nuScenes has much more

annotations (7 times) and images (100 times) than the pi-

oneer KITTI [7]. Besides, nuScenes provides a temporal

sequence of samples in each scene, facilitating linear pose

interpolation for motion distortion simulation, yet the 3D

detection dataset in KITTI solely offers independent frames

without temporal connection. Considering the above fac-

tors, nuScenes is employed in this work. We use PointR-

CNN model released in [37], and the open-source PointPil-

lar++ model in [11]. Both models are trained on nuScenes

training set. We report the results of white box on 1,000

samples from the validation set, and the results of black box

on the whole validation set.

Metrics. For the white box PointRCNN, we report the

7902

Table 1: Quantitative results of white box attack: AP (IoU=0.7) of 3D bounding boxes on nuScenes [2]. We report results of the car category under

different levels of difficulty and ranges of depth following [37]. In four attack settings of our method (FLAT), the best and second best attack qualities

among four attacking targets are respectively highlighted using red and blue color. In attacking translations/rotations, the step size for each iteration is 0.1

and 0.01 respectively, and the number of attack iteration is 20 for both two settings.

Attack Approach \ Case Easy Moderate Hard 0-30m 30-50m 50-70m

PointRCNN [31] 47.44 21.56 20.91 47.44 2.16 0.17

Baseline

Coordinate Attack [44] 16.42 6.58 5.90 15.20 0.48 0.03

Random Attack (Point Cloud) 30.09 12.39 10.84 25.65 0.79 0.06

Random Attack (Translation) 17.00 8.58 8.90 20.43 1.09 0.09

Random Attack (Rotation) 12.30 4.87 5.13 13.31 0.01 0.00

Random Attack (Full Trajectory) 5.66 2.43 2.78 7.67 0.02 0.00

FLAT (Translation)
Classification

Stage-1 12.94 6.58 7.22 16.82 0.86 0.06

Stage-2 11.72 5.87 6.06 13.91 0.87 0.04

Regression
Stage-1 17.46 8.24 8.57 19.36 1.09 0.03
Stage-2 26.09 12.78 12.53 27.15 2.17 0.17

FLAT (Polynomial)
Classification

Stage-1 17.94 9.36 9.56 20.73 1.90 0.19

Stage-2 12.51 6.37 6.54 14.51 1.38 0.16

Regression
Stage-1 22.60 11.01 10.96 24.36 1.67 0.15
Stage-2 26.04 12.76 12.51 27.19 2.17 0.17

FLAT (Rotation)
Classification

Stage-1 6.32 2.43 2.51 7.32 0.02 0.00
Stage-2 2.35 0.80 0.61 2.03 0.01 0.00

Regression
Stage-1 5.50 1.87 1.76 5.45 0.02 0.00
Stage-2 26.30 12.89 12.59 27.35 2.17 0.17

FLAT (Full Trajectory)
Classification

Stage-1 1.52 0.45 0.51 1.71 0.01 0.00
Stage-2 0.19 0.01 0.02 0.26 0.00 0.00

Regression
Stage-1 1.01 0.35 0.32 1.27 0.01 0.00
Stage-2 26.03 12.70 12.48 27.13 2.16 0.17

3D bounding boxes average precision (AP) with the IoU

thresholds at 0.7 on car category. Following [37], we eval-

uate the detector in three scenarios (Easy, Moderate, and

Hard) based on the difficulty level of the surrounding cars.

In addition, the performance within three depth ranges, i.e.,

0 ∼ 30, 30 ∼ 50, and 50 ∼ 70 meters, are also assessed.

For the black box PointPillar++, we follow the original pa-

per [11] to employ official 3D detection evaluation protocol

in nuScenes [2], i.e., average mAP over ten categories at

four distance thresholds. For evaluating attack quality, we

utilize the performance drop after attack.

5.3. Experimental Setup

Implementation details. nuScenes samples keyframes

at 2Hz from the original 20Hz data, so we assume that a

sweep consumes 0.5 second‡ and implement linear pose in-

terpolation between two adjacent keyframes. We set total

interpolation step N as 100. For PGD, we restrict the per-

turbation to 10cm in translation, and to 0.01 in rotation.

The step size for each attack iteration is 0.1/0.01 in trans-

lation/rotation, and the number of iterations is 20. More

experimental settings like the step size and the number of

iterations are reported in the supplementary.

Baselines. To demonstrate the superiority of our attack

pipeline, we employ two baseline methods for comparison.

‡In fact, the LiDAR rotation period is 0.05 second, however, we only

have access to annotations on keyframes at 2Hz, so we have to assume the

capture frequency of LiDAR is also 2Hz.

• Random Attack. We add Gaussian noise with a 10cm

standard deviation to the original point cloud, Gaus-

sian noise with a 10cm standard deviation to the trans-

lations and Gaussian noise with 0.01 standard devia-

tion to rotations.

• Coordinate Attack. Coordinate attack [44] is directly

manipulating the point set to deceive the detector. We

attack classification of stage-2 and restrict the change

in point coordinate to 10cm. The binary search step

number is 10 and the number of iteration for each bi-

nary search step is 100.

Attack Settings. The polynomial trajectory attack is

temporally-smooth and the others are temporally-discrete:

• Attack Translation Only. We merely modify the

translation vector. The perturbation is a 100×3 matrix.

• Polynomial Perturbation. We add a polynomial per-

turbation into the vehicle trajectory (translation part).

• Attack Rotation Only. We only interfere with the ro-

tation matrix. The perturbation is a 100× 3× 3 tensor.

• Attack Full Trajectory. We tamper with the transfor-

mation matrix. The perturbation is a 100×4×4 tensor.

5.4. White Box Attack

To explore the vulnerability of different stages and

branches in PointRCNN, we separately attack its four

modules, i.e., classification/regression branch of stage-1/2.

Qualitative results are displayed in Fig. 3 and more exam-

ples can be found in the supplementary.

7903

b) FLAT (Translation) d) FLAT (Full Trajectory)a) PointRCNN) FLAT (Rotation)c

Figure 3: Qualitative evaluations of white box attack. False positives are increased and output are drifted by carefully crafting the trajectory.

Table 2: Quantitative results of black box attack on nuScenes [2]: the worst and second worst performances are highlighted by red and blue color.

Category Car Pedes. Barri. Traff. Truck Bus Trail. Const. Motor. Bicyc. mAP

PointPillar++ [11] 80.0 66.9 34.5 27.9 35.8 54.1 28.5 7.5 18.5 0.0 35.4

FLAT (Translation) 57.7 26.9 21.3 12.6 25.3 30.0 25.0 3.3 3.5 0.0 20.6

FLAT (Polynomial) 57.9 26.9 21.3 12.7 25.4 30.2 25.2 3.4 3.5 0.0 20.7

FLAT (Rotation) 47.7 21.1 18.6 8.9 20.2 23.5 20.5 1.7 1.3 0.0 16.4
FLAT (Full Trajectory) 45.0 18.6 16.4 5.9 18.3 22.0 19.7 1.3 0.5 0.0 14.8

Attack Translation Only. The quantitative results are

exhibited in Table 1. Simply adding random noise with a

small standard deviation can largely decrease the perfor-

mance, e.g., AP in the easy case is reduced by 30.44 (around

64%). This phenomenon should stand as a warning for the

autonomous driving community. Also, attacking classifi-

cation branch of stage-2 is the most effective way to fool

the detector: AP is respectively lowered by 35.72 (75.3%),

15.69 (72.8%) and 14.85 (71.0%) in the scenarios of easy,

moderate and hard. This is because the stage-2 outputs the

final predictions and is extremely safety-relevant. More-

over, we can find that attacking the classification branch is

more effective than attacking regression, which is reason-

able because classifying the objects takes priority over es-

timating their sizes in the detection task. Compared to the

random attack, our method is more detrimental thanks to

our making use of the vulnerability pointed out by the gra-

dient. In easy, moderate, and hard scenarios, adversarial

perturbation generated by attacking stage-2’s classification

can yield additional drops of 5.28, 2.71, and 2.84 in AP,

compared to the random perturbation. Besides, our attack

is better than the coordinate attack due to the parameteriza-

tion, validating the superiority of the trajectory attack.

Polynomial Trajectory Perturbation. When attacking

polynomial coefficients instead of the individual trajectory

point, the performance is still on par with the discrete set-

ting, as shown in Table 1, yet the attack is highly impercep-

tible especially in the point cloud space as shown in Fig. 4.

Table 3: AP of FLAT with and without regularization. λ indicates reg-

ularization strength S denotes average trajectory variation and D denotes

average point cloud distance (�p norm and Chamfer distance).

Regularization λ S/D AP
Easy Moderate Hard

Trajectory
0 0.18 0.19 0.01 0.02

0.01 0.17 0.28 0.04 0.02

�p norm/Chamfer

0 27.54/28.70 0.19/0.19 0.01/0.01 0.02/0.02
0.01 14.43/13.85 5.66/3.11 2.45/1.33 2.65/1.38
0.1 2.35/3.54 21.84/14.59 9.98/6.45 9.75/ 6.59
1 0.95/2.04 23.65/19.19 11.22/9.21 11.33/9.40

Attack Rotation Only. Coordinate attack is manipulat-

ing each point’s xyz position. In contrast, our method treat

each LiDAR packet as a rigid body, therefore we can at-

tack the rotation. From Table 1 we can find that attacking

classification in stage-2 is still the most powerful way to

fool PointRCNN. Besides, attacking rotation achieves more

performance drop compared to attacking translation, e.g.,

in easy, moderate, and hard situations, AP is respectively

decreased by 45.09 (95.0%), 20.76 (96.3%) and 20.30
(97.1%) in comparison with original PointRCNN. More-

over, fooling regression in stage-1 achieves the second best

attacking quality, proving the effectiveness of attacking the

fundamental proposal generation. Besides, attacking re-

gression of stage-2 has the worst attacking quality, proving

that attacking the refinement of box size has no significant

effect. Compared to the random attack, attacking stage-2’s

classification has realized additional AP drop (9.95, 4.07,

4.52), validating the merits of adversarial learning.

Attack Full Trajectory. As shown in Table 1, fooling

the full trajectory has achieved the best attacking quality,

7904

a) Original Predictions b) FLAT (Full Trajectory) c) FLAT (Polynomial) d) Polynomial Trajectory Perturbation

Figure 4: Point cloud visualization and qualitative results of black box attack. a) Raw detections of the original detector PointPillar++ [11]. b) The

output of the detector after attacking the full trajectory. c) The output of the detector after polynomial trajectory perturbation in the euclidean space. d) The

polynomial translation perturbation visualized in xyz space, the units of three axes are all meters. Green/red boxes denote the ground truth/prediction.

e.g., while attacking classification of stage-2, AP can be de-

creased to nearly zero. Compared to original PointRCNN,

AP is respectively lowered by 47.25 (99.6%) in easy sce-

narios, indicating that the detector is completely blinded.

Attack with Regularization. As shown in Table 3, for

regularizing trajectory smoothness, average trajectory vari-

ation is slightly lowered and the performance is still on

par with attacking without regularization. For regularizing

point cloud change, when λ = 0.01, point distance is de-

creased by 47.6% (�p norm) and 51.7% (Chamfer distance),

while the APs in three scenarios are still very low, thus an

advanced imperceptible attack can be realized with regular-

ization. Qualitative examples are in the supplementary.

5.5. Black Box Attack

We choose voxel-based PointPillar++ [11] to test the

transferability across different input representation. The

quantitative results on ten categories are shown in Table 2:

the performance is still largely dropped by our attack, e.g.,

mAP on ten categories can be reduced by 20.6 (58.2%), and

the AP on car is decreased by 35.0 (43.8%). Meanwhile,

our method has demonstrated satisfactory transferability

across categories. With only adversarial learning against

the car detector, the detection of other categories are also

deceived. For small object like pedestrian/motorcycle, AP

can be dropped by 48.3 (72.2%)/18.0 (97.3%), which has

demonstrated the superior attacking quality of our method

against small object detector. This superiority is mainly

because the small object with less points is more suscep-

tible to the perturbation compared to the large object like

bus (dropped by 32.1, 59.3%) or truck (dropped by 17.5,

48.9%). Several qualitative examples are displayed in Fig. 4

and more examples are in the supplementary.

6. Conclusion

We proposed a generic and feasible DNN attack pipeline

based on the trajectory against LiDAR perception. We con-

duct experiments on the well-studied 3D object detection

task. In white box attack, even only with a 10cm perturba-

tion in translations, the precision can be dropped by around

70%. While attacking the full trajectory, the precision can

be decreased to nearly zero, yet the attack is less perceptible

(especially the point clouds). Our attack also shows good

transferability across various input representations and tar-

get categories, raising a red flag for perception systems us-

ing LiDAR and DNN jointly.

Acknowledgment. The research is supported by
NSF FW-HTF program under DUE-2026479. The au-
thors gratefully acknowledge the useful comments and
suggestions from Yong Xiao, Wenxiao Wang, Chen-
zhuang Du, Wang Zhao, Ziyuan Huang, Hang Zhao
and Siheng Chen, and also thank Yan Wang, Shaoshuai
Shi and Peiyun Wu for their helpful open-source code.

7905

References
[1] W. Brendel, Jonas Rauber, and M. Bethge. Decision-based

adversarial attacks: Reliable attacks against black-box ma-

chine learning models. In International Conference on
Learning Representation, 2018. 2

[2] H. Caesar, Varun Bankiti, A. Lang, Sourabh Vora,

Venice Erin Liong, Q. Xu, A. Krishnan, Yu Pan, Giancarlo

Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset

for autonomous driving. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 11618–11628, 2020.

1, 3, 5, 6, 7
[3] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou,

Won Park, Sara Rampazzi, Q. Chen, K. Fu, and Z. Mor-

ley Mao. Adversarial sensor attack on lidar-based percep-

tion in autonomous driving. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Se-
curity, 2019. 3

[4] Yulong Cao, Chaowei Xiao, Dawei Yang, J. Fang, Ruigang

Yang, M. Liu, and Bo Li. Adversarial objects against lidar-

based autonomous driving systems. ArXiv, abs/1907.05418,

2019. 3
[5] Haoqiang Fan, H. Su, and L. Guibas. A point set generation

network for 3d object reconstruction from a single image. In

IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2463–2471, 2017. 5

[6] Davi Frossard, Simon Suo, S. Casas, J. Tu, Rui Hu, and R.

Urtasun. Strobe: Streaming object detection from lidar pack-

ets. In 4th Conference on Robot Learning, 2020. 3
[7] Andreas Geiger, Philip Lenz, and R. Urtasun. Are we ready

for autonomous driving? the kitti vision benchmark suite. In

IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3354–3361, 2012. 1, 3, 5

[8] Q. Guo, Xiaofei Xie, Felix Juefei-Xu, L. Ma, Zhongguo Li,

Wanli Xue, W. Feng, and Y. Liu. Spark: Spatial-aware on-

line incremental attack against visual tracking. In European
Conference on Computer Vision, 2020. 2

[9] Abdullah Hamdi, S. Rojas, A. Thabet, and Bernard Ghanem.

Advpc: Transferable adversarial perturbations on 3d point

clouds. In European Conference on Computer Vision, 2020.

2, 4
[10] Wei Han, Zhengdong Zhang, Benjamin Caine, B. Yang,

C. Sprunk, O. Alsharif, J. Ngiam, V. Vasudevan, Jonathon

Shlens, and Z. Chen. Streaming object detection for 3-d point

clouds. In European Conference on Computer Vision, 2020.

3
[11] Peiyun Hu, Jason Ziglar, David Held, and D. Ramanan.

What you see is what you get: Exploiting visibility for 3d

object detection. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 10998–11006, 2020. 5, 6, 7,

8
[12] Q. Hu, B. Yang, Linhai Xie, S. Rosa, Yulan Guo, Zhihua

Wang, A. Trigoni, and Andrew Markham. Randla-net: Effi-

cient semantic segmentation of large-scale point clouds. In

IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 11105–11114, 2020. 3

[13] L. Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-

Wing Fu, and Jiaya Jia. Pointgroup: Dual-set point grouping

for 3d instance segmentation. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 4866–4875,

2020. 3
[14] A. Lang, Sourabh Vora, H. Caesar, Lubing Zhou, J. Yang,

and Oscar Beijbom. Pointpillars: Fast encoders for object

detection from point clouds. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 12689–12697,

2019. 3, 5
[15] Itai Lang, Uriel Kotlicki, and S. Avidan. Geometric ad-

versarial attacks and defenses on 3d point clouds. ArXiv,

abs/2012.05657, 2020. 2
[16] M. Liang, B. Yang, Yun Chen, R. Hu, and R. Urtasun. Multi-

task multi-sensor fusion for 3d object detection. In IEEE
Conference on Computer Vision and Pattern Recognition,

pages 7337–7345, 2019. 3
[17] W. Luo, B. Yang, and R. Urtasun. Fast and furious: Real

time end-to-end 3d detection, tracking and motion forecast-

ing with a single convolutional net. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 3569–

3577, 2018. 3
[18] Yi Ma, Stefano Soatto, Jana Kosecka, and S Shankar Sastry.

An invitation to 3-d vision: from images to geometric models,

volume 26. Springer Science & Business Media, 2012. 3
[19] A. Madry, Aleksandar Makelov, L. Schmidt, D. Tsipras, and

Adrian Vladu. Towards deep learning models resistant to

adversarial attacks. In International Conference on Learning
Representation, 2018. 2, 4

[20] Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong,

Wenyuan Zeng, Mikita Sazanovich, Shuhan Tan, Bin Yang,

Wei-Chiu Ma, and Raquel Urtasun. Lidarsim: Realistic lidar

simulation by leveraging the real world. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 11167–

11176, 2020. 2
[21] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and P.

Frossard. Deepfool: A simple and accurate method to fool

deep neural networks. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 2574–2582, 2016. 2

[22] Bilal Muhammad, Valentina Alberti, Alessandro Marassi,

Ernestina Cianca, and Mauro Messerotti. Performance as-

sessment of gps receivers during the september 24, 2011 so-

lar radio burst event. Journal of Space Weather and Space
Climate, 5:A32, 2015. 2

[23] Sashank Narain, Aanjhan Ranganathan, and G. Noubir. Se-

curity of gps/ins based on-road location tracking systems. In

IEEE Symposium on Security and Privacy (SP), pages 587–

601, 2019. 2
[24] Tianyu Pang, Chao Du, Y. Dong, and J. Zhu. Towards robust

detection of adversarial examples. In Advances in Neural
Information Processing Systems, 2018. 2

[25] Tianyu Pang, Kun Xu, Chao Du, N. Chen, and J. Zhu. Im-

proving adversarial robustness via promoting ensemble di-

versity. In ICML, 2019. 2
[26] C. R. Qi, H. Su, Kaichun Mo, and L. Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation.

In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 77–85, 2017. 2, 5

[27] C. R. Qi, L. Yi, H. Su, and L. Guibas. Pointnet++: Deep hi-

erarchical feature learning on point sets in a metric space. In

Advances in Neural Information Processing Systems, 2017.

5
[28] Aditi Raghunathan, J. Steinhardt, and Percy Liang. Certi-

7906

fied defenses against adversarial examples. In International
Conference on Learning Representation, 2018. 2

[29] Mao Shan, J. Berrio, S. Worrall, and E. Nebot. Probabilistic

egocentric motion correction of lidar point cloud and projec-

tion to camera images for moving platforms. In IEEE 23rd
International Conference on Intelligent Transportation Sys-
tems (ITSC), pages 1–8, 2020. 3

[30] Junjie Shen, J. Won, Zeyuan Chen, and Q. Chen. Drift with

devil: Security of multi-sensor fusion based localization in

high-level autonomous driving under gps spoofing (extended

version). In USENIX Security Symposium, 2020. 2
[31] Shaoshuai Shi, X. Wang, and Hongsheng Li. Pointrcnn: 3d

object proposal generation and detection from point cloud.

In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 770–779, 2019. 3, 5, 6

[32] H. Shin, Dohyun Kim, Yujin Kwon, and Y. Kim. Illusion

and dazzle: Adversarial optical channel exploits against li-

dars for automotive applications. In International Confer-
ence on Cryptographic Hardware and Embedded Systems,

volume 2017, page 613, 2017. 3
[33] Ken Shoemake. Animating rotation with quaternion curves.

In SIGGRAPH, 1985. 3
[34] Jiachen Sun, Yulong Cao, Q. Chen, and Z. Morley Mao. To-

wards robust lidar-based perception in autonomous driving:

General black-box adversarial sensor attack and countermea-

sures. In 29th USENIX Security Symposium (USENIX Secu-
rity 20), 2020. 3

[35] Christian Szegedy, W. Zaremba, Ilya Sutskever, Joan Bruna,

D. Erhan, Ian J. Goodfellow, and R. Fergus. Intriguing prop-

erties of neural networks. In International Conference on
Learning Representation, 2014. 2

[36] J. Tu, Mengye Ren, Siva Manivasagam, Ming Liang, Bin

Yang, R. Du, Frank C Z Cheng, and R. Urtasun. Physically

realizable adversarial examples for lidar object detection. In

IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 13713–13722, 2020. 2

[37] Yan Wang, Xiangyu Chen, Yurong You, Li Erran Li, Bharath

Hariharan, Mark Campbell, Kilian Q Weinberger, and Wei-

Lun Chao. Train in germany, test in the usa: Making 3d

object detectors generalize. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 11713–11723,

2020. 5, 6
[38] Yue Wang, Alireza Fathi, Abhijit Kundu, D. Ross, C. Panto-

faru, Tom Funkhouser, and J. Solomon. Pillar-based object

detection for autonomous driving. In European Conference
on Computer Vision, 2020. 3

[39] Xinshuo Weng, Jianren Wang, David Held, and Kris Kitani.

3d multi-object tracking: A baseline and new evaluation met-

rics. In IEEE International Conference on Intelligent Robots
and Systems, 2020. 3

[40] Xinshuo Weng, Yongxin Wang, Y. Man, and Kris Kitani.

Gnn3dmot: Graph neural network for 3d multi-object track-

ing with 2d-3d multi-feature learning. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 6498–

6507, 2020. 3
[41] Matthew Wicker and M. Kwiatkowska. Robustness of 3d

deep learning in an adversarial setting. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 11759–

11767, 2019. 2

[42] Aming Wu, Yahong Han, Q. Zhang, and Xiaohui Kuang. Un-

targeted adversarial attack via expanding the semantic gap.

In Int. Conf. Multimedia and Expo, pages 514–519, 2019. 2
[43] Pengxiang Wu, Siheng Chen, and D. Metaxas. Motionnet:

Joint perception and motion prediction for autonomous driv-

ing based on bird’s eye view maps. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 11382–

11392, 2020. 3
[44] Chong Xiang, Charles R. Qi, and B. Li. Generating 3d adver-

sarial point clouds. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 9128–9136, 2019. 2, 4, 6

[45] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou,

Lingxi Xie, and A. Yuille. Adversarial examples for semantic

segmentation and object detection. In International Confer-
ence on Computer Vision, pages 1378–1387, 2017. 2

[46] Rui Xu, Mengyu Ding, Ya Qi, Shuai Yue, and Jianye Liu.

Performance analysis of gnss/ins loosely coupled integration

systems under spoofing attacks. Sensors, 18(12):4108, 2018.

2
[47] B. Yan, D. Wang, Huchuan Lu, and Xiaoyun Yang. Cooling-

shrinking attack: Blinding the tracker with imperceptible

noises. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 987–996, 2020. 2

[48] Jiancheng Yang, Qiang Zhang, Rongyao Fang, B. Ni, J. Liu,

and Q. Tian. Adversarial attack and defense on point sets.

ArXiv, abs/1902.10899, 2019. 2
[49] Zhe Yang, YT Jade Morton, Irina Zakharenkova, Iurii Cher-

niak, Shuli Song, and Wei Li. Global view of ionospheric

disturbance impacts on kinematic gps positioning solutions

during the 2015 st. patrick’s day storm. Journal of Geophysi-
cal Research: Space Physics, 125(7):e2019JA027681, 2020.

2
[50] Z. Yang, Y. Sun, Shu Liu, and Jiaya Jia. 3dssd: Point-based

3d single stage object detector. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 11037–11045,

2020. 3
[51] Tao Yu, Shengyuan Hu, C. Guo, Wei-Lun Chao, and Kil-

ian Q. Weinberger. A new defense against adversarial im-

ages: Turning a weakness into a strength. In Advances in
Neural Information Processing Systems, 2019. 2

[52] Kexiong Zeng, Shinan Liu, Y. Shu, Dong Wang, Haoyu Li,

Yanzhi Dou, G. Wang, and Y. Yang. All your gps are belong

to us: Towards stealthy manipulation of road navigation sys-

tems. In USENIX Security Symposium, 2018. 2
[53] Wenyuan Zeng, W. Luo, Simon Suo, A. Sadat, Bin Yang,

S. Casas, and R. Urtasun. End-to-end interpretable neural

motion planner. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 8652–8661, 2019. 3

[54] Hang Zhou, Dongdong Chen, Jing Liao, Kejiang Chen, Xi-

aoyi Dong, Kunlin Liu, Weiming Zhang, Gang Hua, and N.

Yu. Lg-gan: Label guided adversarial network for flexi-

ble targeted attack of point cloud based deep networks. In

IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 10353–10362, 2020. 2

[55] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning

for point cloud based 3d object detection. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages

4490–4499, 2018. 3

7907

