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Abstract

Ultra-high resolution image segmentation has raised in-
creasing interests in recent years due to its realistic appli-
cations. In this paper, we innovate the widely used high-
resolution image segmentation pipeline, in which an ultra-
high resolution image is partitioned into regular patches for
local segmentation and then the local results are merged
into a high-resolution semantic mask. In particular, we in-
troduce a novel locality-aware contextual correlation based
segmentation model to process local patches, where the
relevance between local patch and its various contexts
are jointly and complementarily utilized to handle the se-
mantic regions with large variations. Additionally, we
present a contextual semantics refinement network that as-
sociates the local segmentation result with its contextual
semantics, and thus is endowed with the ability of reduc-
ing boundary artifacts and refining mask contours dur-
ing the generation of final high-resolution mask. Further-
more, in comprehensive experiments, we demonstrate that
our model outperforms other state-of-the-art methods in
public benchmarks. Our released codes are available at
https://github.com/liqiokkk/FCtL.

1. Introduction

With the advance of photography and sensor technolo-
gies, the accessibility to ultra-high resolution images (i.e.,
2K, 4K, or even higher resolution images) has opened new
horizons to the computer vision community. It will benefits
a wide range of imaging applications, e.g., urban planning
and remote sensing based on high-resolution geospatial im-
ages and high-resolution medical image analysis, and thus
the demand for studying and analyzing such images has ur-
gently increased in recent years.

In this paper, we aim at the specific task of semantic seg-
mentation for ultra-high resolution geospatial images cap-
tured from aerial view. The recent development of deep
convolutional neural networks (CNNs) has given rise to
remarkable progress of semantic segmentation techniques.

*Wenxi Liu and Yuanlong Yu are the corresponding authors.

Figure 1. For the task of ultra-high resolution image segmentation,
the most common approach is to segment cropped local patches
and then combine them into a high-resolution mask. To address the
core problem on local segmentation quality, we propose a locality-
aware contextual correlation based model that exploits rescaled
various contexts (×1,×2,×3 large as local patch in the original
image) to produce refined results.

Yet, most CNN-based segmentation models target on full
resolution images and perform pixel-level class prediction,
which requires more computation resources comparing to
image classification and object detection. This hurdle be-
comes significant when the image resolution grows to be
ultra high, leading to the pressing dilemma between mem-
ory efficiency (even feasibility) and segmentation quality.

Particularly, in order to segment an ultra-high resolu-
tion image, the prevailing practice is either to downsam-
ple it to a smaller spatial dimension before performing seg-
mentation, or to separately segment the partitioned patches
and merge their results into a high-resolution one. These
trivial practices sacrifice the segmentation quality for the
model efficiency. Additionally, the recent attempts propose
to utilize the well-pretrained segmentation models to ob-
tain the coarse segmentation masks and another model to
refine the contours of the masks [5, 37]. However, these
methods mainly focus on high-resolution natural images or
daily photos concerning with large objects, while the high-
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resolution geospatial images are captured from aerial views
covering a large field of view, which may contain many ob-
jects/regions with large contrast in scale and shape. Hence,
it requires the segmentation model to be capable of cap-
turing not only the semantics over large image regions but
also the image details of different granularity. The recent
work GLNet [4] proposes to incorporate the local and global
information via a two-stream network that separately pro-
cesses the downsampled global image and cropped local
patches, as well as a feature sharing module that shares
the concatenated local and global features in both streams.
Their method can achieve obvious improvements over ex-
isting methods, which embodies the importance of contex-
tual information for segmentation performance. Neverthe-
less, their feature sharing scheme does not spatially asso-
ciate local features with the global ones and thus does not
well exploit their correlation, which makes their model too
complex to optimize and their performance suboptimal.

To thoroughly utilize the rich information within ultra-
high resolution geospatial images, we present an ultra-high
resolution geospatial image segmentation model featuring
with the locality-aware contextual correlation scheme. Sim-
ilar to [4, 25], our framework is based on the widely used
practice for high-resolution image segmentation, in which
image patches are regularly cropped from the original im-
age, then individually segmented, and finally their local re-
sults are overlayingly merged. However, each local patch of
the ultra-high resolution geospatial images often contain se-
mantic regions with large contrast in sizes (e.g., house and
forest), which challenges the local segmentation model. In-
spired by prior practices (e.g. [4]), contextual information
turns out effective to resolve this problem. But, unlike pre-
vious methods, we propose that the semantics within local
patches can be structually and complementarily associated
and inferred by their contextual regions of different scales.
For instance, in Fig. 1, the contexts with varied coverage
guide the model to the attentive regions relevant to the ob-
jects of different granularity in the image (e.g., small or
large building). Hence, we propose a locality-aware con-
textual correlation based deep network model to exploit the
correlation between local patch and its contextual regions.
In concrete, we first present a locality-aware contextual cor-
relation module to capture the positional relevance of local
patch and context, which is enabling to attentively enhance
the relevant features of local patch, i.e., locality-aware fea-
tures. Then, we propose an adaptive context fusion scheme
to balance and combine the locality-aware features associ-
ated by various contexts. As shown in Fig. 1, the contexts
can lead to different yet complementary locality-aware fea-
tures, thus allow tolerance to misleading information in a
single context. To do so, the corresponding spatial weight
maps of different locality-aware features are predicted on-
the-fly to accomplish the complementary fusion.

Furthermore, to obtain the final segmentation result of
the ultra-high resolution image, the results of local patches
will be put back together. Directly montaging local seg-
mentation masks may cause boundary vanishing artifacts
for adjacent patches, so the prior practice is to overlap ad-
jacent patches partially and compute the average results for
overlap regions. To some extent, this trivial approach can
reduce the artifacts, yet cannot achieve the optimal results.
Therefore, we propose an effective contextual semantics re-
finement network that utilizes the correlation of local mask
and context mask to enhance the relevant semantic regions
and thus adaptively refine the local results without intro-
ducing boundary vanishing artifacts. Besides, our proposed
model can also leverage the contextual semantics to polish
the contours of segmentation masks.

To evaluate our model, we conduct comprehensive ex-
periments and demonstrate that our proposed model out-
performs the state-of-the-art approaches on public ultra-
high resolution arerial image datasets, DeepGlobe and Inria
Aerial. The main contributions of our paper are summarized
as below:

• We present an ultra-high resolution image segmenta-
tion framework based on a novel local segmentation
model. It leverages the locality-aware contextual cor-
relation and the adaptive feature fusion scheme, which
associates and combines local-context information to
strengthen local segmentation.

• We present a contextual semantics refinement network
that leverages the relevance of local segmentation and
context mask to avoid boundary vanishing artifacts and
refine the local semantic mask.

• Our method achieves the state-of-the-art semantic seg-
mentation performance in several public ultra-high res-
olution geospatial image datasets.

2. Related Works
Semantic Segmentation. In recent years, semantic seg-

mentation has achieves remarkable progress [2,7,10–12,18,
19,27,30]. Fully convolutional network (FCN) [18] was the
first CNN architecture adopted for high-quality segmenta-
tion. U-Net [25] used skip-connections to concatenate low
level features to high-level ones. Similar structures were
also adopted by [1, 22]. Unfortunately, these models suf-
fer from prohibitively high GPU memory demand for ultra-
high resolution images. ENet [23] and ICNet [34] reduced
GPU memory via model compression. However, these
models were not effective on ultra-high resolution images.
Recently, CascadePSP [5] is proposed to refine the coarse
segmentation results from a pretrained model to generate
high-quality results. GLNet [4] preserves both global and
local information and interact each other through deeply
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Figure 2. Main procedure of high-resolution image segmentation,
consisting of (i) cropping local patches from the ultra-high resolu-
tion image; (ii) local patch segmentation; (iii) merging local masks
into a high-resolution mask.

shared layers, which is able to balance its performance and
GPU memory usage. Compared with GLNet, the key dif-
ference rests in our proposed multi-context based local seg-
mentation model, while GLNet relies on the holistic image
as the only context and simply concatenates the local and
cropped global features for segmentation. Additionally, we
also present a new contextual refinement model for merging
local results into a HD one, which has not been studied.

Multi-Scale and Context Aggregation. Multi-scale in-
formation [2, 3, 9, 16, 31, 36, 38] has proven to be effec-
tive for segmentation, via integrating high-level and low-
level features to capture patterns of different granularity.
RefineNet [13] introduced a multi-path refinement block
to combine multi-scale features via upsampling lower-
resolution features. [8] adopted a Laplacian pyramid to uti-
lize higher-level features to refine boundaries reconstructed
from lower-resolution maps. Feature Pyramid Networks
(FPN) [14] progressively upsampled feature maps of differ-
ent scales and aggregated them in a top-down fashion. On
the other hand, context aggregation also plays a key role in
encoding the local spatial neighborhood, or even non-local
information [2, 4, 17, 28, 29, 32, 35]. ParseNet [17] incor-
porated global pooling to aggregate different levels of con-
texts. DeepLab [2] proposed dilated convolution and atrous
spatial pyramid pooling module to aggregate global con-
texts into local information. In recent works [4, 21, 24, 33],
the deep/shallow branches are combined to aggregate global
context and high-resolution details. Unlike previous works,
we propose that the local segmentation can be spatially cor-
related with various contexts, and we propose an adaptive
fusion scheme to combine different locality-aware features.

3. Methodology

Our proposed ultra-high resolution image segmentation
framework follows the three-step procedure as shown in
Fig. 2), which is consistent with the common practice ap-
plied in prior works (e.g., [4,25]). First, given an ultra-high
resolution image İ with width W and height H , we evenly
partition it into N local patches {Ik} (k = [1, · · · , N ],
Ik ⊂ İ) with width w and height h (w < W and h < H).

Next, a local semantic segmentation model computes the
local result for each patch. Last, we merge the local re-
sults into one piece as the final high-resolution segmenta-
tion mask. Our main contributions rest in how to generate
fine local segmentation (the second step) and refined results
that can be seamlessly merged into a high-resolution mask
(the third step). As follows, we will elaborate the technical
details.

3.1. Our Proposed Local Segmentation Model

As the core of our ultra-high resolution segmentation
framework, we propose a novel local segmentation model
to process each cropped patch (Fig. 3). Yet, each local
patch only covers a confined field of the ultra-high reso-
lution image, which often contains regions of varied scales
or truncated objects, and thus it tends to deliver incomplete
information and may easily cause erroneous semantic seg-
mentation. To address this concern, we propose a locality-
aware contextual correlation based segmentation model for
processing each local patch.

As illustrated in Fig. 3, our local segmentation model
is based on a multi-stream encoder-decoder architecture,
consisting of the feature extraction modules (i.e., encoder),
locality-aware contextual correlation module, multi-context
fusion module, and decoder. In specific, a local patch along
with contexts of different scales, which are rescaled into the
same size for reducing computation overhead, are fed into
the network for feature extraction. Then, the features of
contexts are separately associated with the features of local
patch via the locality-aware contextual correlation module
and adaptively fused. In final, the features will be upsam-
pled to obtain the local segmentation mask.

As follows, we will first introduce how to choose the
context of local patch, and then describe the locality-
aware contextual correlation module and multi-context fu-
sion scheme.

3.1.1 Context of Local Patch

Regarding of the k-th patch Ik, Uk is denoted as another
image region within the input image İ , which is not smaller
than and covers Ik. Uk has the width wu and height hu, s.t.
w ≤ wu ≤W and h ≤ hu ≤ H .

Given a local patch, there are many candidate context re-
gions. In practice, we design the following three types of
context regions. (1) We set the size of the candidate context
subject to wu = λw and hu = λh, (λ ≥ 1, wu ≤ W,hu ≤
H), and its center aligned with the center of the local patch
(see the examples in Figs. 1 and 3). (2) The largest con-
text we can utilize is exactly the whole image, i.e., Uk ≡ İ ,
dubbed global context. (3) The smallest context is the patch
itself, dubbed local context, i.e., wu ≡ w and hu ≡ h. Gen-
erally, the larger contexts offer more contextual cues that
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Figure 3. Illustration of our local segmentation model. In specific, a certain local patch cropped from the high-resolution image and its
contexts are passed into the network branches separately to extract features and then measure their relevances against local patch to obtain
the locality-aware features. Last, these features are adaptively fused for producing high-quality local segmentation results.

may be responsible for large regions or objects, while the
smaller ones provide more details that may be attributed to
small regions or objects. Before feeding into network, the
contexts will be normalized as the same dimension as the
local patch.

3.1.2 Locality-aware Contextual Correlation

To strengthen the segmentation of a local patch, we would
like to associate the contextual information with the local
information. Thus, we propose a locality-aware contextual
correlation module Flcc to evaluate the relevance between
the features of Ik and Uk, and then utilize it to obtain its
locality-aware features.

The structure of our produced module is specified in
Fig. 3. First, the features of Ik and Uk are separately ex-
tracted through the same network structure (i.e., Conv1 to
Conv3 of the pretrained VGG16 [26]), denoted as Xi

k and
Xu

k (Xi
k,X

u
k ∈ Rc×hx×wx ). Next, the relevance of Ik and

Uk is calculated via the inner product of local features Xi
k

and contextual features Xu
k , i.e., Rk = 〈Xi

k,X
u
k〉, which

measures the non-local correlation by establishing the pair-
wise pixel-level relation for Xi

k and Xu
k . Hence, the rel-

evance can be further applied as an attention map to en-
hance the local features, Xi

k, which attends to the seman-
tic regions more relevant with the locality. Specifically,
Rk is passed through a softmax layer to obtain the atten-
tion map and then perform inner product with Xi

k, i.e.,
Xk = 〈Softmax(Rk),Xi

k〉. For the sake of clarity, we de-
note the procedure as Xk = Flcc(Ik, Uk).

3.1.3 Multi-context Fusion Module

For the ultra-high resolution geospatial images that often
contain a large number of objects with large size variations,
the contexts of different scales may be attributed to the seg-
mentation of the objects with various granularity. There-
fore, properly combining different contextual information
can be complementary for extracting semantics and remov-
ing artifacts.

Specifically, we assume that there are T correspond-
ing context regions that may affect the local segmentation.
Formally, given the patch Ik, we have several correspond-
ing context regions, U t

k (t = [1, · · · , T ]) and pass them
into each stream of our local segmentation model to obtain
locality-ware features Xt

k (Xt
k = Flcc(Ik, U

t
k)). To effec-

tively exploit and combine the locality-aware features that
stem from various contexts, as shown in Fig. 3, we integrate
a multi-context fusion scheme into our local segmentation
model. Here, we propose a novel network module Fest that
estimates the weight maps {Ht} corresponded to the fea-
tures {Xt

k}, respectively.
Specifically, the locality-aware features are first con-

catenated and passed through a squeeze-and-split structure,
which compresses and entangles the multi-scale features
before predicting the normalized weights for the features
from different sources, i.e., {Ht} = Fest({X

t
k}). In par-

ticular, the squeeze-and-split structure squeezes the con-
cated features via a convolutional layer with the kernel size
1 × 1, which blends the locality-aware features. Then,
the squeezed features are reconstructed to the original di-
mension via another 1 × 1 convolutional layer and passed
through a softmax to obtain T normalized weight maps
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Figure 4. Illustration of contextual semantics refinement network.
Given a crude high-resolution semantic mask, we feed a local
mask and its context mask into a two-branch network to refine
the local mask.

{Ht} (Ht ∈ Rhx×wx , t = [1, · · · , T ]) which balance the
contributions of each term. Hence, we have the fused fea-
tures Xk as below:

Xk =

T∑
t=1

Ht � Xt
k,

s.t.

T∑
t=1

Ht = 1, (1)

where� refers to the element-wise multiplication and 1 rep-
resents the matrix where all elements are 1. Note that, the
elements of T weight maps along each channel are summed
to be 1.

Last, the fused features will be joined with the features
of the local patch via a skip connection to form a residual
structure, and then used to compute the segmentation mask
of the patch via several upsampling layers in the decoder. In
this way, our feature fusion scheme is able to take advantage
of the complementary information from different contexts.
Last, we apply the focal loss [15] as the objective function,
in which γ is set as 3.

3.2. Contextual Semantics Refinement Network

In prior practices, montaging the computed segmenta-
tion masks of all cropped patches easily cause boundary ar-
tifacts, so the local masks are stacked together in an overlap-
ping manner (see the third step in Fig. 2) and the results on
the overlap regions are computed in average, which some-
what reduces the artifacts. Merging all the local masks in
this way eventually leads to the final high-resolution result.
However, this trivial approach can hardly achieve the opti-
mal results without adaptively considering the semantic cor-
relation between local patch and its context. To address this
issue, we propose a contextual semantics refinement net-
work to exploit contextual semantic mask to refine the local
mask.

Given the computed local segmentation masks, we can
spawn the crude high-resolution mask via simply montag-

ing local patches or merging masks in an overlapping man-
ner. Although this coarse result may contain artifacts, the
semantics from context play the important role to embody
the geospatial layout of neighboring regions, and thus facil-
itate the refinement of the local mask. In specific, as shown
in Fig. 4, our refinement network bases on a two-stream
variant of U-Net architecture which incorporates a local-
context relevance module to associate the context and lo-
cal mask. The local-context relevance module is similar to
the locality-aware correlation module in our local segmen-
tation model, which measures the correlation between the
features of local mask and context mask that are rescaled to
be the same dimension as local mask, and then attentively
enhances the local mask. To this end, the contextual seman-
tics can be leveraged to not only remove the boundary van-
ishing artifacts but also improve the contours of the local
mask. Besides, same as the standard U-Net structure, our
network bridges the features of the downsampling and up-
sampling layers via skip connections that deliver low level
details to deep layers so as to achieve the refined results.
Moreover, we adopt the focal loss as the objective function
as well. All the refined local results can be further applied
to montage a better quality high resolution semantic mask.

4. Experimental Results

In this section, we demonstrate the comprehensive ex-
perimental results over public benchmarks. We thoroughly
compare our model against the state-of-the-art methods to
show the segmentation quality and conduct the ablation
study to evaluate the capability of our model.

4.1. Datasets

DeepGlobe [6]. This dataset contains 803 ultra-high res-
olution images (2448×2448 pixels). Following [4], we split
images into training, validation and testing sets with 455,
207, and 142 images respectively. The dense annotation
contains seven classes of landscape regions, including cyan
represents ”urban”, yellow represents ”agriculture”, purple
represents ”rangeland”, green represents ”forest”, blue rep-
resents ”water”, white represents ”barren”, where one class
out of seven called ”unknown” region is not considered in
the challenge.

Inria Aerial [20]. This dataset covers diverse urban
landscapes, ranging from dense metropolitan districts to
alpine resorts. It provides 180 images (from five cities)
of 5000 × 5000 pixels, each annotated with a binary mask
for building/non-building areas. Unlike DeepGlobe, it splits
the training/test sets by city. We follow the protocol as [4]
by splitting images into training, validation and testing sets
with 126, 27, and 27 images, respectively.
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Input Image Ground-truth Ours GLNet [4] CascadePSP [5] FCN-8s [18]
Figure 5. We illustrate several examples of semantic segmentation in ultra-high resolution images, comparing with the state-of-the-arts.
In the figures, masks with varied colors represent different semantic regions. Particularly, cyan represents “urban”, yellow represents
“agriculture”, purple represents “rangeland”, green represents “forest”, blue represents “water”, and white represents “barren”.

4.2. Implementation Details

Settings for contexts. In practice, we apply three con-
texts in our model, which are denoted as local, medium, and
large contexts. The sizes of contexts differ for two bench-
marks. We evaluate the performance of different context
settings in Sec. 4.4.

Training details. We implement our framework using
Pytorch on a computer with a single NVIDIA GTX 1080Ti
GPU. In particular, we adopt VGG16 [26] as our backbone
and our baseline model is similar to FCN-8s [18]. All the in-
put images (i.e., local patches) are normalized to 508× 508
and the output size is 508 × 508, which follows the set-
ting of [4] in order to trade-off performance and efficiency.
When merging local results into a high-resolution one, we
let neighboring patches have a 120×508 overlapping region
to avoid boundary vanishing.

During training our local segmentation model, we adopt
the Adam optimizer and a mini-batch size of 6 by gradient
accumulation. The initial learning rate is set to 5×10−5 and
it is decayed by a poly learning rate policy where the initial
learning rate is multiplied by (1 − iter

total iter )
0.9 after each

iteration. In practice, it takes 50 epochs to converge our
model. Besides, as our baseline and comparison method,
FCN-8s [18] also follows the training strategy above.

Regarding the independent training of the contextual se-
mantics refinement network, we adopt similar training set-
tings as the local segmentation model. Note that, the inputs
of the refinement network (i.e., local and context masks)
stem from our trained segmentation model. Once the re-
finement network shares the same training dataset as local

segmentation model, it can easily lead to the overfitting of
refinement network and degrades its inference performance.
To address this problem, we apply a simple strategy. In-
stead of thoroughly training the local segmentation model,
we early stop its training after 20 epochs and leverage the
non-converged segmentation model to generate samples to
train the refinement network, which turns out to work well.

4.3. Comparison with State-of-the-arts

For evaluation, we compare our approach against U-
Net [25], ICNet [34], PSPNet [35], SegNet [1], DeepLab
v3+ [2], FCN-8s [18], CascadePSP [5], and GLNet [4] over
the benchmarks DeepGlobe and Inria Aerial, in terms of
mIOU(%), F1(%), and Accuracy(%). Their results are de-
picted in Table 1 and Table 2, in which we follow most of
the quantitative results provided by [4]. Most of these meth-
ods are not designed for ultra-high resolution images (de-
noted as Generic Model in Table 1), so there are two ways
to train these models: 1) training from the local patches and
merging local results; and 2) training from the downscaled
global images. Thus, we provide their corresponding met-
rics on DeepGlobe as Local Inference and Global Inference
in Table 1. CascadePSP and GLNet are specifically tai-
lored for the task of ultra-high resolution image semantic
segmentation (denoted as High-Res Model in Table 1). In
particular, CascadePSP mainly aims to handle natural im-
ages, while GLNet can be applied for geospatial images.
Note that, in Table 1, GLNet* refers to the model without
its global-local feature sharing module. All of the results
are obtained following the same training and testing proto-
col. Besides, since the original paper of CascadePSP has
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Generic Model Local Inference Global Inference

mIOU F1 Acc. mIOU F1 Acc.

U-Net [25] 37.3 - - 38.4 - -
ICNet [34] 35.5 - - 40.2 - -

PSPNet [35] 53.3 - - 56.6 - -
SegNet [1] 60.8 - - 61.2 - -

DeepLab v3+ [2] 63.1 - - 63.5 - -
FCN-8s [18] 71.8 82.6 87.6 68.8 79.8 86.2
GLNet* [4] 57.3 64.6 72.2 66.4 79.5 85.8

High-Res Model mIOU F1 Acc.

CascadePSP [5] 68.5 79.7 85.6
GLNet [4] 71.6 83.2 88.0

Ours 73.5 83.8 88.3
Table 1. Comparison with state-of-the-arts on DeepGlobe.

Model mIOU F1 Acc.

ICNet [34] 31.1 - -
DeepLab v3+ [2] 55.9 - -

FCN-8s [18] 69.1 81.7 93.6
CascadePSP [5] 69.4 81.8 93.2

GLNet [4] 71.2 - -
Ours 73.7 84.1 94.6

Table 2. Comparison with state-of-the-arts on Inria Aerial.

not reported the results on these two datasets, we train their
model following the same protocol in our experiments as
well. CascadePSP requires a pretrained model to provide
rough global results. In our experiments, the performances
of their pretrained global models are 66.9% and 69.0% in
DeepGlobe and Inria Aerial, respectively. As observed in
Table 1 and 2, amongst all comparison methods, our model
achieves the state-of-the-art performance comparing to the
competing methods in the respective datasets. Our task of-
ten suffers from severe class imbalance problem, e.g., the
category “agriculture” occupies much more area (i.e. pix-
els) than “water”. The pixel-wise metrics F1 and accuracy
can hardly reflect how the models handle this problem. In-
stead, mIOU measures the average segmentation quality of
each category. Thus, the major improvements on mIOU
(more than ∼ 2%) indicates the effectiveness of our model.
In addition, we show several qualitative comparison results
in Fig. 5. As observed, our model is able to identify strip-
shaped regions (e.g., river) and small regions (e.g. agricul-
ture), which is benefited from the correlation between local
and contexts.

4.4. Ablation Study

In this section, we delve into the modules and settings of
our proposed model and demonstrate their effectiveness.

Efficacy of contexts. Our baseline is based on FCN-
8s [18] without introducing contexts. As shown in Table
3, in general, integrating contexts obviously improves the
segmentation performance, which boosts the performance
from 71.84% to 73.22% in DeepGlobe and from 69.08%
to 73.53% in Inria Aerial. Particularly, the smallest context
(i.e., local context or local patch itself) provides the non-
local self-correlation cues. Yet, the self-correlation features

Context mIOU

Local Medium Large DeepGlobe Inria Aerial

71.84 69.08
X 72.12 72.50

X 72.67 72.48
X 72.67 72.46

X X 73.12 73.18
X X X 73.22 73.53

Table 3. Efficacy of contexts for local segmentation.

Input Image Ground-truth w/ Contexts w/o Contexts
Figure 6. Examples show the efficacy of contexts.

of local patch can hardly provide sufficient information to
further infer the semantics of the patch. On the other hand,
the medium and large contexts bring in the scaled contex-
tual information and thus facilitate the segmentation. But,
relying on medium context or large context alone may not
always give rise to better results. For instance, for Inria
Aerial, the results from the medium or large context are
even slightly worse than the one from local context. Hence,
exploiting the complementary information from the con-
texts of different scales can lead to better results. In Fig. 6,
we show several examples produced by the models with or
without contexts.

Locality-aware contextual correlation. For validation,
we replace it with the naive local-global feature concatena-
tion for comparison, in which our proposed scheme is su-
perior to feature concatenation (73.5% vs 72.2% on Deep-
Globe; 73.7% vs 72.8% on Inria Aerial in mIOU).

Scales of contexts. We investigate how context sizes af-
fect the segmentation performance. We assess the models
with different context sizes for both benchmarks in Table
4. Intuitively, if the context size is close to the size of lo-
cal patch, the local patch and context are highly overlapped
and they share too much redundant information that may
not bring much performance gain. Therefore, for the sizes
of candidate contexts, we choose the multiples of the local
patch size (508 × 508) as the sizes of three contexts (i.e.,
small, medium, and large). For DeepGlobe, the optimal
context sizes are 508×508, 1524×1524, and 2448×2448,
in which the large context is exactly the entire image (i.e.,
the global context). For Inria Aerial, the optimal context
sizes are 508 × 508, 1016 × 1016, and 1524 × 1524. The
different configurations of these two datasets are due to the
characteristics of their images. DeepGlobe includes the
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Context Size (pix.) mIOU Context Size (pix.) mIOU
Small Medium Large Small Medium Large

D
ee

pG
lo

be

508 1016 2448 72.33

In
ri

a
A

er
ia

l

508 762 1524 72.85
508 1524 2032 71.97 508 1016 1270 72.95
508 1524 2448 73.22 508 1016 1524 73.53
508 2032 2448 72.35 508 1270 1524 72.91
1016 1524 2448 72.18 508 1016 2032 72.77

762 1016 1524 72.85

Table 4. Scales of contexts for local segmentation.

geospatial images with different terrains (e.g., water and
forest), while Inria Aerial contains top-down urban views,
in which a large number of buildings can be observed.
Therefore, for DeepGlobe, with the entire image as our
large context can help better understand the semantics. On
the contrary, for Inria Aerial, too large context after being
rescaled into a smaller size will lose details of cities and
makes the model hard to discern the buildings in the im-
ages, which thus causes the performance degradation.

Multi-context fusion. To show the advantage of our
fusion scheme, we compare our module against two triv-
ial fusion methods: 1) simply averaging the locality-aware
features (i.e., 1

T

∑T
t=1 Xt

); and 2) offline estimating the op-
timal weights of locality-aware features (i.e., the estimated
weights remain constant for each dataset). The comparison
analysis results in the term of mIOU are demonstrated in Ta-
ble 5. As observed, our adaptive fusion scheme achieves the
best performance over the trivial fusion methods. In Fig. 7,
we illustrate the exemplar results of our fusion scheme com-
paring to the results without fusion. Note that, our fusion
scheme is essentially the generic version of the average fu-
sion and weighted fusion, so its advantage shown on Table
5 may not be significant yet indicates the effectiveness.

Contextual semantics refinement network. We evalu-
ate the effectiveness of the contextual semantics refinement
network. We compare our approach to the trivial methods
using non-overlapping montaging and overlapping merging
(i.e. averaging). As shown in Table 6, our semantics re-
finement network surpasses the trivial methods in the term
of mIOU. Besides, we study how the context size of this
network influences the refinement network. In specific, we
evaluate the results computed by the context sizes 762×762,
1016× 1016, and 1270× 1270, in which 1016× 1016 con-
text mask leads to the best result. In Fig. 8, we demonstrate
that our model is able to decrease the boundary artifacts and
refine the contour of the semantic mask. Our network can
collaborate with prior models. E.g., along with GLNet [4],
it can also boost its mIOU from 71.6 to 72.6 on DeepGlobe.

Memory cost and timing performance. During the in-
ference stage, our local segmentation model costs around
3167MB memory for each patch of the images in Deep-
Globe and Inria Aerial, which do not increase much com-
putation overhead over FCN-8s (2477MB). As an indepen-
dent model from the segmentation model, our refinement
network costs 1165MB memory. Thus, the memory usage

Fusion method DeepGlobe Inria Aerial

Averaging Fusion 72.67 73.29
Weighted Fusion 72.99 73.43
Adaptive Fusion 73.22 73.53

Table 5. Analysis of feature fusion scheme.
Refinement Context Size DeepGlobe Inria Aerial

Montaging - 73.22 73.45
Averaging - 73.22 73.53

762 73.24 73.63
Ours 1016 73.45 73.66

1270 73.36 73.63

Table 6. Context sizes for mask refinement on public datasets.

Input Image Ground-truth w/ Fusion w/o Fusion
Figure 7. Examples show the efficacy of our adaptive fusion.

Input Image Ground-truth w/ Refinement w/o Refinement
Figure 8. The example shows boundary artifacts on adjacent
patches, where boundary is represented in dash line.

of our model is comparable to existing semantic segmen-
tation models. For the timing performance, our segmenta-
tion model processes each patch in 0.15s and our refinement
model requires 0.06s per patch during inference. Overall,
for each instance from DeepGlobe and Inria Aerial, our
model needs to cost 8s and 26s, compared with FCN-8s (3s
and 9s), GLNet (6s and 19s), and CascadePSP (9s and 37s).

5. Conclusion
We introduce a locality-aware contextual correlation

based segmentation model to process local image patches.
In addition, we present a contextual semantics refinement
network that is enabling to reduce the boundary artifacts
and refine mask contours during the process of creating the
final high-resolution mask.
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