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Abstract

We consider the shuffled linear regression problem where
the correspondences between covariates and responses are
unknown. While the existing formulation assumes an ideal
underlying bijection in which all pieces of data should match,
such an assumption barely holds in real-world applications
due to either missing data or outliers. Therefore, in this work,
we generalize the formulation of shuffled linear regression
to a broader range of conditions where only part of the
data should correspond. Moreover, we present a remarkably
simple yet effective optimization algorithm with guaranteed
global convergence. Distinct tasks validate the effectiveness
of the proposed method.1

1. Introduction
Linear regression has always been a powerful tool for

parameter estimation problems in science and engineering.
In the conventional form, it is designed to estimate the pa-
rameters of a linear system given pairs of matched data. Its
objective function is written as2

min
x∈X

∥Ax− b∥22 , (1)

where A ∈ Rn×d (n ≫ d) and b ∈ Rn denote the collec-
tions of covariates and responses, respectively, and x is the
regression variable belonging to set X .

There also exist cases where the correspondences between
A and b are unknown. For example, in computer vision tasks
such as point cloud registration, shape matching, perspective-
n-points, and image registration, the regression variable x
stands for the rigid transformation, spectral mapping, cam-
era projection, and transformation matrices, respectively. In
such cases, correspondences among points, vertices, or pix-
els are often unknown. Similar situations also appear in
other fields, such as data de-anonymization [25] in data sci-
ence, artifacts dating [12] in archaeology, and sampling with
jitter [28] in signal processing.

1Source code can be found at https://github.com/SILI1994/
Generalized-Shuffled-Linear-Regression.

2Without loss of generality, we assume the Euclidean norm as a metric.

All these issues lead to a recently raised variant of linear
regression, namely, the shuffled linear regression (SLR) prob-
lem. It aims at simultaneously recovering both correspon-
dences between data and the regression variable x [28, 45].
Formally, its objective function is written as

min
P∈Π⋆, x∈X

∥PAx− b∥22 , (2)

where P is an n-dimensional square permutation matrix
from the discrete and finite set Π⋆ satisfying

P1 = PT1 = 1, Pij ∈ {0, 1}, (3)

where 1 is the all-one vector, and Pij denotes the ijth en-
try of P. Intuitively, constraints (3) bring some plausible
properties on the relations between each covariate Ai and
response bj :

• Pij ∈ {0, 1} ensures Ai and bj are either absolutely
matched or completely independent from each other.

• Together with the binary property, P1 = PT1 = 1 fur-
ther guarantees bijectivity, i.e., each Ai and bj possess
exactly one match.

This vanilla formulation of SLR demands exactly the same
cardinalities of {Ai} and {bj}, and all of them to be inliers.
However, such requirements are seldom satisfied in practice
due to missing data and outliers. Therefore, it is desired to
extend SLR to work well for real-world applications.

In this work, we generalize SLR to a broader range of
cases where the cardinalities of covariates {Ai} and re-
sponses {bj} can be different, and only part of them should
match. We denote this generalized setup of SLR as General-
ized Shuffled Linear Regression (GSLR). Our contributions
are summarized as follows:

• We present GSLR, a generalized formulation of SLR,
making it applicable to practical situations, where only
parts of the data should correspond.

• We propose a remarkably simple yet effective algorithm
with a detailed theoretical analysis for optimization.

• We employ distinct examples to demonstrate how
GSLR can benefit computer vision tasks in achieving
state-of-the-art accuracies.
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Figure 1: NN-based corresponding strategy may violate
the one-to-one correspondences by either assigning a single
point to multiple queries or leaving points unmatched.

2. Related work
In this section, we review the prior-arts related to (G)SLR

and discuss about relevant techniques and problems.

Shuffled linear regression Some pioneering works of
SLR focus on solvability analysis. For example, Unnikr-
ishnan et al. [37] prove that for a given set of covariates
A ∈ Rn×d, n ≥ 2d is necessary for obtaining a unique
solution of the regression variable x in noiseless case. Panan-
jady et al. [28] further provide conditions for unique recovery
under noisy data. There also exists a work [19] that provides
theoretical guidance on the design of global algorithms with
polynomial time complexity. However, they are still imprac-
ticable due to the O

(
nd

)
time complexity.

Other literature focuses on practically solving the SLR
problem. For example, Abid et al. [1, 2] establish a Monte-
Carlo expectation-maximization framework by treating cor-
respondences as the hidden parameter. Zhang et al. [45]
reformulate objective (2) by eliminating x with maximum
likelihood criterion, which in fact leads to a quadratic assign-
ment problem (QAP).

There also exist works that concentrate on simplified
versions of objective (2). For example, Ashwin et al. [27]
estimate PTAx as a whole in the manner of the denois-
ing problem. Slawski and Ben-David [34] assume only a
small amount of data is disordered and propose to model the
sparsely-shuffled property via L1-norm. Based on the same
assumption, they later suggest rejecting the mismatched ones
as outliers via robust estimation [35].

In contrast to these approaches that assume an ideal un-
derlying bijection, our GSLR formulation aims at general
cases where only part of the data should correspond.

Similar problems in applications Although it is only re-
cently that SLR was formally formulated [28], the problem
itself has already been approximately handled in various
applications. For example, the rigid point cloud registration
problem, which aims at recovering the spatial transformation
T with unknown point-wise correspondences, can perfectly
fit in the (G)SLR formulation. However, existing approaches,

such as iterative closet point (ICP) [3] and its variants, are
infeasible algorithms for the SLR problem. In detail, as
shown in Fig. 1, their nearest neighbors (NN)-based match-
ing strategy may either link a point to multiple queries or
leave it unmatched, which consequently violates the one-to-
one matching constraint of permutation matrices. As we will
show later in Sec. 5, it is this violation that prevents them
from achieving stably accurate results. For a solution, some
literature proposes to strengthen the bijectivity. For example,
both Jing et al. [30] and Szymon [32] propose to symmetrize
the registration process; and Gold et al. [14] convert the
assignment matrix to a doubly stochastic one to balance the
weights of correspondences. However, contrary to our GSLR
formulation, these attempts still cannot guarantee strict one-
to-one correspondences. There also exist works [38, 39] that
cast the matching problem into a linear assignment problem
(LAP) by maximizing kernel densities in product spaces,
whereas their generalizability is limited for assuming the
correspondences between the covariates {Ai} and responses
{bj} to be partial-to-all instead of partial-to-partial.

Robust estimation Robust estimation aims at alleviating
the effects of outliers on regression problems. A popular tool
to realize so are the M-estimators [36], which propose to
either down-weight or completely reject suspected outliers.
The ability of a robust estimator is typically assessed by two
criteria, namely, breakdown point and efficiency [48]. Specif-
ically, the breakdown point, theoretically upper-bounded by
0.5, demonstrates the proportion of outliers an estimator can
tolerate before providing an incorrect result. The efficiency,
calculated as the ratio of the theoretically minimal variance
provided by the Cramer-Rao bound w.r.t. the actual one of
the estimator, stands for the quality of an estimator.

Relation to QAP QAP (e.g., second-order graph match-
ing [46]) is another popular problem subject to permutational
constraints. However, different from QAP, (G)SLR addition-
ally requires to estimate the regression variable x. Thus,
converting (G)SLR to QAP is hardly possible unless the
optimal x can be explicitly expressed by A, b, and P [45]
(e.g., when x ∈ Rd, we can eliminate x from (G)SLR by
x =

(
ATPTPA

)−1
ATPTb). However, in general cases

where x ∈ X ≠ Rd, such an elimination can only present
coarse results as mentioned in [22].

3. Formulation and optimization of GSLR
Following the formulation of SLR shown in objective (2),

the GSLR problem can be similarly written as

min
P∈Π, x∈X

∥PAx− b∥22 , (4)

where A ∈ Rm×d, b ∈ Rn (m ̸= n in general), and Π is
the set of generalized permutation matrices.
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3.1. Properties of Π

Given objective (4), we first explore the properties that
a generalized permutation matrix P ∈ Π should satisfy.
Specifically, apart from the binary and one-to-one matching
properties inherited from the ordinary counterpart Π⋆, we
also desire it to be capable of characterizing outliers, as

• Pij = 1 if Ai and bj should match otherwise 0.

• Pij = 0 if either Ai or bj is an outlier.

•
∑

i Pij ,
∑

j Pij ∈ {0, 1} to guarantee that each Ai

and bj can have one correspondence at most.

These requirements can be summarized as

P1 ≤ 1, PT1 ≤ 1, Pij ∈ {0, 1}. (5)

However, conditions (5) cannot be directly used for opti-
mization. If done so, the global minimum of objective (4)
would be anchored to 0 with the associated trivial solution
P = 0. Therefore, it is necessary to introduce some other
constraints to ensure the existence of matches.

A simple yet effective solution is to manually designate
the number of matches [40,41]. Specifically, we introduce an
integer k ∈

[
min(m,n)

2 ,min (m,n)
]

and force
∑

Pij = k,
indicating that there must exactly exist k inlier matches
between the sets of covariates and responses. Consequently,
the trivial solution can be avoided, and the constraints over
the set of generalized permutation matrices Π is

P1 ≤ 1, PT1 ≤ 1, Pij ∈ {0, 1},
∑

Pij = k. (6)

For notational simplicity, we hereafter keep using Π to de-
note the set of all the generalized permutation matrices under
all possible k. Similar to the ordinary counterpart Π⋆, con-
straints (6) imply that Π is discrete and combinatorial, and
degenerates to Π⋆ when k = m = n. Now, we can obtain
the formal formulation of GSLR by joining (4) and (6):

min
P, x∈X

∥PAx− b∥22

s.t. P1 ≤ 1, PT1 ≤ 1, Pij ∈ {0, 1},
∑

Pij = k.
(7)

3.2. A bi-global optimization algorithm

In this section, we consider the optimization method for
objective (7). Its difficulties are threefold. First, the discrete
property of the permutation P hinders optimizers designed
for smooth functions. Second, its high non-convexity re-
quires careful initialization. Last, the number of matches k
is unknown. As a solution, we propose a simple and effective
algorithm, which can effectively maintain the discreteness
and alleviate the initialization problem. For clarification,
we hereby temporally assume that k is known and put its
estimation in Sec. 3.3.

The key observation of our proposal is that slight reformu-
lation of objective (7) can result in a bi-globally optimizable
form. Specifically, per the definitions of linear regression,
we can facilely rewrite it into the summation form of

min
P∈Π, x∈X

∑
Pji ∥Aix− bj∥22 . (8)

If we apply alternative optimization to objective (8), by
treating the correspondences Pji as known, updating the
regression variable x leads to a weighted linear least square
problem, which should be globally solvable in most applica-
tions. On the other hand, if x is fixed, the objective function
for updating P is in the form of

min
P∈Π

DijPji, (9)

where D is the cost matrix formulated by ∥Aix− bj∥22.
When the number of matches k = min (m,n), problem

(9) is a standard LAP, which can be globally optimized via
efficient approaches such as the Hungarian algorithm [20].
For an LAP with arbitrary k, it forms a k-cardinality linear
assignment problem (k-LAP), which can be transformed into
a standard one via paddling the cost matrix [40]. Therefore,
we can conclude that the GSLR problem is facilely solvable
via alternative optimization.

3.3. k as an M-estimator

It is obvious that the number of matches k characterizes
the ability of GSLR in rejecting outliers. In detail, it acts sim-
ilarly to the trimming operator in robust estimation, which
sets the weights of a specific proportion of suspected outliers
to zero. In fact, such a technique has already been broadly
used in various similar tasks. For example, the Trim-ICP
algorithm [8] for point cloud registration suggests removing
a portion of paired points with large residuals; and the par-
tial graph matching algorithm [41] assumes only half of the
nodes as inliers, which leads to k = 1

2 min (m,n).
However, we hesitate to directly use the trimming opera-

tor for its well-studied limitation on simultaneously maintain-
ing a high breakdown point and high efficiency. Specifically,
although a breakdown point of 0.5 can be facilely achieved
by ignoring 50% of the data, the associated statistical effi-
ciency would only be 7% [11]. Moreover, it is also preferable
for some applications [26, 31] to preserve as many matches
as possible while maintaining high robustness.

In this work, we employ another M-estimator to deter-
mine k, namely, the Huber-skip estimator [16]. Apart from
inheriting the complete-rejection (i.e., set weights as binary)
and easy-to-calculate properties of the trimming operator, it
also achieves much higher efficiency while being capable of
maintaining a breakdown point of 0.5. Specifically, given
some data (r1, r2, ..., rn), it rejects ri that violates∣∣∣∣ri −median (r)

MAD(r)

∣∣∣∣ ≤ threshold, (10)
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Algorithm 1: A bi-global algorithm for GSLR

Input: A ∈ Rm×d, b ∈ Rn

Initialization: x = x0 ∈ X
while not converged do

• Calculate P̆t by solving the standard LAP
with kt = min (m,n) and xt−1.

• Compute residuals under P̆t and xt−1 and
apply the Huber-skip estimator to get kt.

• Set kt = min (kt, kt−1)

• Calculate P̂t by solving the k-LAP with the
updated kt and xt−1.

• Get xt ∈ X by solving the weighted linear
regression problem under P̂t.

Output: x ∈ X , P ∈ Π

where MAD is the median absolute deviation, and the thresh-
old is set to 3.5 throughout the paper as suggested by [16].
More details are provided in the supplementary material.

To embed the Huber-skip estimator into our aforemen-
tioned optimization scheme, we directly follow the formula-
tion of least trimmed squares (LTS) [18] and compute k as
the number of pairs whose residuals satisfy Eq. (10). How-
ever, such a naive formulation would break the monotonicity
of the alternative optimization scheme and make its conver-
gence non-guaranteed. As a solution, in the tth iteration, we
set k̂t = min (kt−1, kt) to ensure a convergence. The entire
algorithm is summarized in Algorithm 1.

4. Algorithm analysis
In this section, we analyze the time and space complexi-

ties of Algorithm 1. Moreover, we also prove that it mono-
tonically decreases the objective function and converges
globally to a critical point.

4.1. Complexity

We analyze the space and time complexities of Algo-
rithm 1 under the assumption that #{A1, . . . ,Am} ≥
#{b1, . . . ,bn} (i.e., m ≥ n) without loss of generality.
The main space complexity comes from the cost matrix D,
which is O (mn) theoretically and O (mnd) in our imple-
mentation to avoid loops. As for time complexity in each
iteration, the Hungarian algorithm for solving the k-LAP is
O
(
n (m+ n− k)

2
)

, and the Huber-skipping procedures
is with O (n log n) time complexity.

4.2. Monotonicity

We now show that the total energy E (P,x) of objective
(8) monotonically decreases with Algorithm 1. Specifically,

since the linear least square problem on the regression vari-
able x is globally optimizable, it is easy to see that

E (Pt,xt+1) ≤ E (Pt,xt) , (11)

where the equality holds if and only if xt is already a
global optimum. Furthermore, we define a temporary per-
mutation matrix Ptmp by randomly removing kt+1 − kt
non-zero assignments from Pt. Since the cost matrix
Dij = (Aix− bj)

2 is non-negative, we can obtain that

E (Ptmp,xt+1) ≤ E (Pt,xt+1) . (12)

Since Ptmp satisfies the constraints of the k-LAP formulated
by xt+1 and kt+1, it is also within the solution space. On
the other hand, as Pt+1 is a global optimum of this objective
function, we can further derive that

E (Pt+1,xt+1) ≤ E (Ptmp,xt+1) , (13)

where the equality holds if and only if Ptmp is already within
the set of global minima. Moreover, we can obtain the
following relationship by summarizing Eqs. (11)-(13):

E (Pt+1,xt+1) ≤ E (Ptmp,xt+1) ≤ E (Pt,xt) , (14)

where the equality holds if and only if (Pt,xt) is an criti-
cal point of the objective function. From Eq. (14), we can
conclude that Algorithm 1 has a monotonic property.

4.3. Convergence

Our proposal can globally converge to an critical point
owing to the monotonicity. To be precise, we first make two
assumptions about the domain of the regression variable x:

• The set X for x ∈ X is compact.

• f (x) = Ax is continuous on X .

These assumptions are rather weak and can be satisfied in
most practical applications formulated in the GSLR manner.
For example, the orthogonal groups raised in geometric com-
puter vision and geometric processing tasks can satisfy both
conditions. For the general real coordinate space Rn, despite
not being compact by itself, we can reasonably assume that
x lies in a closed and bounded subset of it, since infinities
are barely meaningful solutions in practical applications.

Similar to the proof of the global convergence of the
expectation-maximization algorithm [42] and the general-
ized alternative optimization [15], the global convergence
property of GSLR is a direct instantiation of the convergence
theorem of Zangwill [44]:

Theorem 1 (Zangwill’s global convergence theorem). Let
H be a set-valued map on S that, given s0 ∈ S, generates
a sequence {sk}∞k via iterating sk+1 ∈ H (sk). Also, let a
solution set Γ ⊂ S be given. Suppose that
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• The sequence {sk}∞k ⊂ S ′ for S ′ ⊂ S is compact.

• There exists a continuous function Ψ on S that

– if s /∈ Γ: Ψ(s′) < Ψ(s) for all s′ ∈ H (s).

– if s ∈ Γ: Ψ(s′) ≤ Ψ(s) for all s′ ∈ H (s).

• The set-valued map H is closed at all s for s ∈ S \ Γ.

Then, the limit of any convergent subsequence of {sk}∞k is in
the solution set Γ. Furthermore, limk→∞ Ψ(sk) = Ψ (s⋆)
for all limit points s⋆.

An iterative optimization algorithm can be described as
a triplet {Ψ,H,Γ} in the terminology of Theorem 1. For
Algorithm 1, we can straightforwardly set the objective func-
tion of GSLR as Ψ, and H : Π×X → Π×X to one iteration
of it. Also, we can formulate the solution set with all the
critical points that satisfy

Γ = {(P,x) ∈ Π×X : P ∈ argmin
P′

Ψ(P′,x) and

x ∈ argmin
x′

Ψ(P,x′)}.
(15)

We show in the following that all the three requests in Theo-
rem 1 are satisfied by this GSLR triplet.

For the compactness of the feasible region Π × X , we
only need to verify the compactness of Π and X respectively,
since unions of compact sets are still compact. Specifically,
X is compact under our assumption; and for Π, its finite and
discrete properties imply its compactness.

For the continuity and monotonicity of the objective func-
tion Ψ = ∥PAx− b∥22, since it is already demonstrated to
be monotonic in Sec. 4.2, we hereby only focus on the conti-
nuity. For proof, since compositions of continuous functions
are still continuous, we hereby focus on the continuity of
f (P,x) = PAx. Given the fact that such a function is a
bilinear form w.r.t. (P,x), we only need to show that it is
separately continuous w.r.t. both P and x. For proof, per
the assumption mentioned above, we have f (x) = Ax
continuous w.r.t. x ∈ X . Moreover, since the set of all possi-
ble generalized permutations Π is finitely discrete, we have
f (P) = PA continuous w.r.t. P ∈ Π. Therefore, we obtain
that f (P,x) = PAx is continuous and hence so is Ψ.

Definition 1 (Closedness of set-valued map). A set-valued
map H : U → V is said to be closed on a point u ∈ U
provided that the following two characters

• uk → u, where uk ∈ U ,

• vk → v, where v, vk ∈ V ,

• vk ∈ F(uk),

imply v ∈ H (u). Based on this, H is called closed if it is
closed at any u ∈ U .

We now prove that the map (Pt+1,xt+1) ∈ H (Pt,xt)
is closed on Π× X . Specifically, for any (Pt,xt), we can
always obtain some δ1 > 0 and δ2 > 0 that satisfy

∀P′, P′ → P := {P′ : P′ ∈ Nδ1(Pt)} = {Pt},
∀x′, x′ → x := |x′,xt|x < δ2,

(16)

where Nδ1(Pt) is the neighborhood of Pt. Therefore, we
can derive the differences of mapped x as

H (P′,x′) \ H (Pt,xt) = H (Pt,xt) \ H (P′,x′)

=H (Pt,x
′) \ H (Pt,xt)

= argmin
x∈X

Ψ(Pt,x) \ argmin
x∈X

Ψ(Pt,x) = ∅.
(17)

Since Eq. (17) implies that the cost matrix for the k-LAP
generated by the regression variable x ∈ H (P,x) remains
unchanged when the input of H switches from (Pt,xt)
to (P′,x′), so will the mapped P. Therefore, we have
H (Pt,xt) closed by further joining Eqs. (16) and (17).

As all the requirements of the Zangwill’s convergence
theorem are satisfied as presented above, we can now con-
clude that our algorithm is globally convergent to a critical
point as defined by the solution set Γ.

5. Experiments and applications
We conduct experiments to demonstrate the differences

between SLR and GSLR in terms of robust estimation, as
well as to explore how GSLR performs on suitable applica-
tions. We limit the discussion within the computer vision
field, although GSLR itself is a much more general problem.

5.1. Task 1: Image registration

We first carry out experiments on image registration to
demonstrate the effectiveness of GSLR over SLR in terms
of robust estimation. Given a pair of images portraying the
same plane, or a non-planar scene subject to 0 translation in
terms of the camera pose, homography describes the relation
of p′ = αHp, where p′ and p are matched pixels on the two
images in homogeneous coordinates, α is a scaling factor,
and H is the homography matrix. Furthermore, if images are
captured with long focal lengths, H can be assumed as affine
transformations [17]. Since such an assumption implies that
the scaling α = 1, we can formulate the problem as

min
H P∈Π

∥PHA−B∥2F , (18)

where A and B stand for the collections of pixels from the
two images in homogeneous coordinates. This problem is
regarded as a GSLR problem rather than an SLR one due to
the inherent existence of outliers.

In the implementation, we use the SIFT feature [21] to
retrieve the sets of pixel locations A and B. The initial
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Source Target GSLR (ours)
Feature matching

w/ RANSAC SLRSource Target Ground-truth SLR GSLR (ours)

Figure 2: Results of image registration experiments. GSLR
achieves visually the same results w.r.t. the ground-truths
whereas SLR presents obvious distortions on all the trials.
On the source and target pairs, outliers detected by GSLR
are marked as red and inliers as green.

transformation H of all the trials is set to the identity ma-
trix. For optimizing SLR, we fix the number of inliers k
of Algorithm 1 to the number of feature points. We use
the mature descriptor and RANSAC-based method [17] to
approximate the ground-truths. Fig. 2 shows the results.
As shown, GSLR can effectively estimate the transforma-
tion matrices and provide visually the same results as the
descriptor-based approach (denoted as Ground-truth) even
without using the descriptors, where SLR results are obvi-
ously affected by outliers on all the trials.

5.2. Task 2: Point cloud registration

Point cloud registration works toward estimating the op-
timal rigid transformation T between two point clouds. Its
objective function can be written as

min
T∈SE(3), P∈Π

∥PTA−B∥2F , (19)

where A and B represent the two point clouds in homoge-
neous coordinates. Usually, they would consist of numerous
outliers that should never be used for estimating T.

Experimental setup, metrics and peer methods We con-
duct experiments on both synthetic and real-world datasets.
All pairs of point clouds are registered back and forth due
to the unknown alignment order. For space limitation,
we only report the transformational errors with the metric
Trans. err =

∥∥TgtT
−1
esti − I

∥∥
F

in the main paper and put
the respective rotational and translational counterparts in the
supplementary material. For competing methods, we use
ICP [3], Trim-ICP [8], SVR [7], CPD [24], FGR [47], and
FilterReg [13] since they represent different strategies on han-
dling outliers. Specifically, ICP works as the basic baseline,
Trim-ICP shares similar outlier-rejection techniques with
GSLR but employs the NN-based matching strategy, SVR
treats both point clouds as mixture distributions and mini-
mizes the robust L2-divergence between them; FGR uses a

Outliers Partial-overlap

Mean Median Mean Median

ICP 1.05 1.04 1.70e-1 1.19e-1

Trim-ICP 1.07 1.09 8.61e-1 8.56e-1

SVR 1.05 1.00 2.16e-1 1.71e-1

CPD 1.58e-2 1.52e-2 9.03e-2 9.09e-2

FilterReg 2.20e-2 1.70e-2 1.12e-1 9.95e-2

FGR 8.55e-2 7.22e-2 1.07 1.12

GSLR (ours) 6.24e-3 5.65e-3 6.52e-2 3.78e-2

ICPOrigin CPD FilterReg GSLR (ours)

Figure 3: Results on the synthetic data. Upper left: Robust-
ness of GSLR under the outlier-contaminated setup. Identi-
fied outliers are marked as green. Upper right: Summary of
the mean and median transformational errors. Bottom: An
example of the partially overlapped data. Trim-ICP, SVR,
and FGR present similar visualizations and thus omitted.

scaled Geman-McClure estimator to remove outliers from
matchings obtained via FPFH features [33], and CPD and Fil-
terReg cast the registration problem into a distribution-fitting
one and use a uniform distribution to cope with outliers.
Other details are given in the supplementary material.

Registration with outliers and partial overlaps We use
the synthetic bunny, dragon, and armadillo point clouds [9]
for tests. For the outlier-contaminated cases, we first down-
sample the point clouds to approximately 2500 points and
corrupt them with Gaussian noises. Then outliers are added
with ratios sampled from (0.25, 1), representing that 20% to
50% points are outliers. We repeat this procedure 10 times
to obtain 30 trials in total. For the partial-overlapping setup,
we down-size the point clouds to around 3000 points each,
and randomly crop some parts from them. We retrieve 4
cropped point clouds from each shape and conduct 36 trials
in total. For all the tests, we set the ground-truth rotation to
30◦ in Euler angles along each axis together with a random
translation within [0, 1]. As shown in Fig. 3, SVR fails
to provide accurate results as dense clusters of outliers are
often similarly weighted as inliers. Moreover, compared
to CPD and FilterReg, which can only down-weight the
outliers, GSLR presents more accurate results by completely
rejecting them.

Why ICP-style algorithms suffer from outliers Consid-
ering the fact that Trim-ICP and GSLR are equipped with
similar robust estimation techniques (i.e., binarily weighting
the pairs), it is worthy of analyzing the substandard perfor-
mances of Trim-ICP presented in Fig. 3.
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Figure 4: Sensitivity of different approaches w.r.t. initializa-
tions on outlier-contaminated point clouds.

Mean Median

ICP 5.82e-1 1.65e-1

Trim-ICP 1.64 1.53

SVR 3.03e-1 2.00e-1

CPD 4.97e-1 1.22e-1

FilterReg 7.59e-1 6.62e-1

FGR 1.23 1.06

GSLR (ours) 1.40e-1 1.16e-1

Figure 5: Registration results on the real-world dataset. Left:
An example achieved by our GSLR formulation. Right:
Mean and median transformational errors of all the trials.

It is the matching policy to blame. In detail, we observe
that the NN-based matching strategy of ICP and its vari-
ants makes them extremely sensitive to initializations. For
demonstration, we conduct a test with different initializations
on the aforementioned bunny point clouds with 1/3 points
as outliers. The ground-truth rotations in Euler angles are
split into 6 ranges, and the registration is repeated 10 times
within each of them. Fig. 4 records the results. As shown,
ICP and Trim-ICP can also present reasonable results given
plausible initializations. In such a condition, Trim-ICP can
even provide more accurate estimations compared to the oth-
ers owing to its large trimming ratio. However, they would
fail drastically when the initializations are coarsened. On the
contrary, GSLR can remarkably alleviate this problem via
the one-to-one correspondences, demonstrated by the stable
performances even under large initialization errors.

Real-world registration We also examine the perfor-
mances of GSLR on real-world point clouds. For experi-
mental setup, we establish 7 groups consisting of 5 consecu-
tive frames from the ETH Hauptgebaude dataset [29], and
conduct pairwise registration within each group, resulting
in 140 trials altogether. This dataset is known challenging

because of repeated patterns and a minimum overlap ratio
of 63.9%. To let ICP-style algorithms perform reasonably,
we roughly pre-align the point clouds by fixing the ground-
truth rotations to 15◦ in Euler angles. All point clouds are
down-sampled to around 3500 points. Figure 5 reports the
results. As shown, our method exhibits the highest accu-
racy compared to other state-of-the-art methods. On the
other hand, since the local features are extremely unreliable
when repeated patterns exist, FGR fails to present reasonable
results.

Other results and experiments We have also conducted
other experiments to analyze statistical efficiencies, elapsed
time, as well as sensitivities w.r.t. different scales of noises
and ratios of outliers. The results are provided in the supple-
mentary material for interested readers.

5.3. Task 3: Isometric shape matching

In contrast to point cloud registration that concentrates on
the regression variable, isometric shape matching looks for
vertex-wise correspondences between meshes. Following
functional map [26], its objective function can be written as

min
C∈O(s), P∈Π

∥PCF−G∥2F , (20)

where O(·) denotes the orthogonal group, and F and G
stand for the vertex-wise Laplacian eigenfunctions of the
two meshes. In general, they include outliers since the map-
pings can seldom be ideally isometric. Therefore, robust
estimation is still required although the underlying ground-
truth is a full-rank matching [30].

Experimental setup, metrics and peer methods We
carry out experiments on commonly used datasets. Specifi-
cally, we conduct both intra-class and inter-class matching
on the FAUST dataset [5], and intra-class matching on the
TOSCA one [6]. Inter-class tests on TOSCA are out of scope
due to their high non-isometry. For each task, we randomly
select 30 pairs of shapes and report the mean values as the
final results. For the vertices that are labeled as outliers
by GSLR, we simply map them to their nearest neighbors
with the estimated C, although more complicated methods
(e.g., searching for correspondences within the connected
components) can be employed to improve smoothness. For
evaluation, we employ the commonly used correspondences-
geodesic metric to quantify the performances. Moreover,
we also follow the definition of coverage presented in [30]
to measure the bijectivity, which is defined as the ratio of
vertices that possess at least one correspondence to their total
amount. We select ICP [26], BCICP [30] and ZoomOut [23]
as the competing methods. For setup, we use 50-dimensional
eigenfunctions of the Laplace-Beltrami operator to formu-
late the sets of functions F and G, and initialize all the
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(a) Intra-class matching (b) Inter-class matching

Figure 6: Matching results on the FAUST dataset. Within each sub-figure, left shows an example achieved by GSLR, middle is
the geodesic errors, and right shows the coverage rate. For the labels, FMAP is short for functional map, and FMAP+ZO-50
and FMAP+ZO-100 respectively stand for the ZoomOut algorithm with 50 and 100-dimensional eigenfunctions.

Source FMAP ICP BCICP ZoomOut-100 GSLR (ours)

0 > 0.1

Figure 7: An example of geodesic error maps on the FAUST
dataset. Comparing to the others, more correspondences
estimated by GSLR coincide with the ground-truth.

algorithms with the wave kernel signature [4] and functional
map under the direct operator [30]. More details are given
in the supplementary material.

Results Figure 6 shows the overall results on the FAUST
dataset, and Fig. 7 depicts the estimation errors. Compared
to the others, GSLR can provide more accurate results by
estimating obviously higher percentages of matches that
coincide with the ground-truth. Moreover, it can also effec-
tively maintain the one-to-one correspondences by covering
more than 80% vertices on all the pairs. For the TOSCA
dataset, we decimate the meshes to approximately 3400 ver-
tices each and obtain the error curves via NN-composition.
Fig. 8 records the results. As presented, the GSLR formu-
lation can still champion both the matching accuracy and
the bijectivity. We emphasize that ZoomOut-100 doubles
the dimensions of input eigenfunctions although it achieves
similar results as GSLR in terms of accuracy. An example
of coverages is given in Fig. 9.

6. Discussion and conclusion
In this work, we propose the GSLR formulation together

with an optimization algorithm to generalize SLR to broader-
ranging conditions where only part of the data should match.
Distinct applications demonstrate its effectiveness.

The main limitation of our current algorithm lies in time
efficiency. I.e., while the k-LAP is tractable for medium-

Figure 8: Matching results on the TOSCA dataset. Left:
An example matching achieved by GSLR. Right: Geodesic
errors and coverages.

Source FMAP ICP BCICP ZoomOut-100 GSLR (ours)

94.4%62.0%83.4%52.6%37.1%

Figure 9: An example of coverages on the TOSCA dataset.
Vertices violating bijection are marked as orange. Upper
percentages indicate the coverage rates.

sized problems (e.g., the sizes in our experiments vary from
3k to 8k), the elapsed time would increase significantly when
dealing with giant ones. Fortunately, this problem can be
effectively solved with off-the-shelf CUDA-based Hungarian
algorithms [10, 43], which are hundreds of times faster.

For future work, GSLR requires more theoretical analy-
sis. For example, we are interested in studying whether the
conditions of the unique solution proposed in [28] for SLR
can generalize to GSLR, as well as the convergence rate of
Algorithm 1. For applications, we wish to work on variants
of GSLR for other tasks, such as partial shape matching and
registration with point-to-plane metrics.
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stein, and Daniel Cremers. Product manifold filter: Non-rigid
shape correspondence via kernel density estimation in the
product space. In Proceedings of Conference on Computer
Vision and Pattern Recognition (CVPR), 2017. 2

[40] Anton Volgenant. Solving the k-cardinality assignment prob-
lem by transformation. European Journal of Operational
Research, 157(2):322–331, 2004. 3

[41] Fudong Wang, Nan Xue, Jin-Gang Yu, and Gui-Song Xia.
Zero-assignment constraint for graph matching with outliers.
In Proceedings of Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 3

[42] CF Jeff Wu. On the convergence properties of the em algo-
rithm. The Annals of statistics, pages 95–103, 1983. 4

[43] Satyendra Singh Yadav, Paulo Alexandre Crisóstomo Lopes,
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