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Abstract

A high quality disparity remapping method that pre-
serves 2D shapes and 3D structures, and adjusts disparities
of important objects in stereo image pairs is proposed. It is
formulated as a constrained optimization problem, whose
solution is challenging, since we need to meet multiple
requirements of disparity remapping simultaneously. The
one-stage optimization process either degrades the qual-
ity of important objects or introduces serious distortions in
background regions. To address this challenge, we propose
a two-stage warping process to solve it. In the first stage,
we develop a warping model that finds the optimal warping
grids for important objects to fulfill multiple requirements
of disparity remapping. In the second stage, we derive an-
other warping model to refine warping results in less im-
portant regions by eliminating serious distortions in shape,
disparity and 3D structure. The superior performance of the
proposed method is demonstrated by experimental results.

1. Introduction

Stereoscopic 3D visual contents have been popular
nowadays. With recent hardware development, stereo vi-
sual content can be viewed in various environments with
different viewing conditions (e.g. theaters, computers and
VR devices). The disparity (or depth) dimension of
stereo images often introduces unsatisfactory viewing ex-
perience [9, 29]. For example, a pair of stereo images with
a large disparity range may yield a strong depth effect on a
large screen, which may exceed the comfort zone of the hu-
man visual system. In contrast, stereo images with a small
disparity range tend to exhibit a small depth effect, leading
to poor 3D viewing experience. Consequently, it is impor-
tant to develop disparity remapping tools that can adjust the
disparity to meet various viewing conditions and adjust the
disparity according to the viewer’s preference.

Figure 1: Illustration of the advantage of our method. The
disparities of the man and monkey are decreased to enhance
their depth strength. The state-of-the-art method [11] fails
to preserve the 3D structure of monkey. Our method faith-
fully adjusts the disparities while preserving the 3D struc-
ture well. Original frame is from The Monkey King 2.

Being different from 2D images, stereo images offer vir-
tual 3D scenes to viewers through the inherent disparity in-
formation. In a 3D scene, an object has not only a spa-
tial shape projected on the x-y plane but also a geometric
structure (i.e. 3D structure) along the depth direction. This
structure information is crucial to human viewing experi-
ence. For example, given an object (see Figure 1 ), the 3D
structure determines whether the object is parallel with the
display screen or tilted in the 3D scene. To enhance the 3D
viewing experience, we aim to design a disparity remap-
ping method that adjusts the disparity, while preserving the
3D structure for important objects.

Lang et al. [11] adopt content-aware warping for dispar-
ity remapping. Image regions are non-uniformly warped to
preserve the shapes of important objects and the disparity is
adjusted by constraining the disparity values of a few corre-
spondence pairs to be identical to their target values. Differ-
ent from classical disparity remapping methods, warping-
based methods [11][38] do not need to resort to image com-
pletion to fill in holes with synthesized content. On the other
hand, they often distort the 3D structure of an object, since
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they do not have a proper mechanism to directly preserve
this structure. The set of sparse correspondences and/or the
spatial shape information cannot characterize the structural
information of 3D objects well. As shown in Figure 1, for a
3D object whose surface is parallel with the display screen,
its flat surface is bent when the method in [11] is applied.

In this paper, we propose a novel warping-based method
for disparity remapping, which adjusts disparity while pre-
serving 2D shape and 3D structure for important objects.
We derive a 3D structure-preserving constraints by explic-
itly taking the 3D structure information into account. With
these constraints, we formulate disparity remapping as a
constrained optimization problem. That is, we minimize the
total distortion of 2D shapes, 3D structures, and disparities
of important objects in a stereo image pair.

Besides 3D-structure-preserving constraints, we propose
a two-stage warping for disparity remapping, different from
existing methods that find the optimal solution for the whole
stereo image pair in one stage. In particular, since we have
to meet multiple requirements of disparity remapping si-
multaneously, solving this constrained problem is challeng-
ing by itself. The obtained results either degrade the perfor-
mance in important objects or introduce serious distortions
in background regions using only one-stage warping. To
address this challenge, we build two warping models and
search for the optimal solution at two stages. In the first
stage, we develop a warping model that finds the optimal
warping grids for important objects to fulfill multiple re-
quirements of disparity remapping. In the second stage, we
derive another warping model that is used to refine warp-
ing results in less important regions by eliminating serious
distortions in shape, disparity and 3D structure. Compared
with one-stage warping, our two-stage warping is more ef-
fective in finding optimal grids meeting multiple require-
ments and generates better warping results.

Contributions: There are four major contributions of
this work. (1) We propose a new energy function to pre-
serve the 3D structures of objects explicitly. (2) By de-
composing disparity remapping into a two-stage optimiza-
tion problem, our method can meet multiple requirements
of disparity remapping simultaneously, significantly outper-
forming existing methods that use one-stage optimization
and often degrade disparity adjustment performance on im-
portant objects. (3) To the best of our knowledge, this is
the first work that uses the vertex-based warping to refine
disparity remapping results of axis-aligned warping locally.
With axis-aligned warping as initialization, we speed up the
convergence of the algorithm and mitigate distortions. (4) It
is easy to incorporate additional requirements (e.g., object
size adjustment and temporal consistency) in our method,
which can facilitate future stereo visual editing tasks that
find applications in creating highly realistic 3D structures
and special effects.

2. Related Work
Stereo image retargeting has been widely used to resize

stereo images to different sizes and aspect ratios. Several
retargeting methods were proposed to preserve the depth
information for stereo image [3, 12] [15, 39, 1, 14]. The
methods in [3, 12, 15, 39] extended the warping-based 2D
image retargeting methods [5, 19, 40] to stereo images and
added a depth preservation constraint to preserve the depth.
As compared with depth-preserving retargeting, disparity
remapping adjusts the depth information of stereo images
to meet new requirements due to display devices and/or
viewer’s preference. The additional requirements make the
optimization problem more difficult, leading to more se-
vere distortion in 3D object and scene structures. In other
words, disparity remapping is a more demanding problem
than disparity-preserving retargeting.

Disparity remapping approaches [37, 20, 11, 3, 10, 33,
18] can be roughly categorized into three types: view in-
terpolation methods, shifting-based methods, and warping-
based methods. View interpolation methods [22, 43, 42]
treat disparity remapping as a view interpolation problem.
They rely on accurate camera parameters to calculate a
depth map with respect to a virtual camera and, then, inter-
polate a new view for the virtual camera. Usually, the new
view demands post-processing such as image completion
to fill in dis-occluded regions (i.e. holes), which is compu-
tationally demanding. It is also not easy to estimate cam-
era parameters accurately for most stereo images. Recently,
some methods [42, 4] proposed to extrapolate high-quality
views via neural networks, which, however, require a large
labeled training dataset with camera parameters.

Shifting-based methods [26, 31, 13] first select objects
by interactive segmentation tools. Then, the selected ob-
jects are horizontally shifted so that its disparity is identical
to a target value. Object shifting yields dis-occluded re-
gions in edited stereo image pairs and image completion is
required to fill holes. Moreover, segmentation errors affect
the quality of disparity remapping results.

Warping-based methods modify the disparity by non-
uniformly warping image regions. Unlike view interpola-
tion methods which can only adjust the disparity to a vir-
tual camera, warping-based methods can flexibly adjust the
disparity to various values. Lang et al. [11] were the first
to adopt image warping for disparity remapping and to de-
vise disparity constraints for warping. These constraints
adjust the disparity by demanding the disparity values of
a few corresponding pairs to be identical to target values.
Chang et al. [3] improved upon this technique by refining
the shape-preserving constraints for linear disparity remap-
ping. The disparity constraints in [11] are employed by
later work with additional requirements, e.g. stereo video
remapping [38], visual discomfort reduction [30], and size
and depth adjustment [13]. Since warping yields contin-
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uous change of visual content, these methods [11, 3, 38]
do not yield holes. However, these disparity constraints
do not consider the 3D structure information of the stereo
image explicitly. This often results in severe 3D structure
distortions in edited stereo images. Besides, vertex-based
warping usually has difficulty in meeting multiple require-
ments of disparity remapping in [11, 13, 38]. Differently,
we adopt axis-aligned warping and combine it with vertex-
based warping in a novel manner to generate high-quality
remapping images.

3. Method
Problem Formulation. Given stereo image pair

{IL, IR}, disparity remapping is to generate a high-quality
stereo image pair {ĨL, ĨR}, where their current disparities
are adjusted to target ones, while maximizing a viewer’s
3D experience. We first partition each of the input stereo
pair into grid meshes. Then, the remapped images can be
obtained by finding optimal warped meshes that satisfy the
requirements of disparity remapping. Therefore, we formu-
late the disparity remapping as a minimization problem of
the following energy function:

E = EG + αES + βED, (1)
where EG is the energy for 3D structure preservation in the
left image IL and the right image IR, ES is the energy
of spatial shape distortion, ED is the energy of the differ-
ence between the disparity of remapped stereo images and
its target value, and α and β are two weighting factors. The
derivation of EG, ES and ED will be elaborated later.

Minimizing the total energy function E in Eq. (1) has
two challenges. First, how to preserve the 3D structure of
objects for disparity remapping? This have not been ex-
plored yet, to the best of our knowledge. Second, one pos-
sible solution to Eq. (1) is to apply vertex-based warping
like existing methods. However, since Eq. (1) aims to meet
multiple requirements simultaneously (shape preservation,
disparity adjustment, and 3D structure preservation), it is
difficult to find a high quality warped grid mesh based on
vertex-based warping alone. To address this challenges, we
propose a new energy function for 3D structure preserving
in Sec. 3. We also propose a novel two-stage optimization
algorithm in Sec. 3.3.

3.1. 3D Structure-Preserving Constraint

The 3D-structure distortion energy,EG, is derived in this
subsection and it is a contribution of this paper. To preserve
the 3D structures of objects, we first construct the 3D scene
of warped images and, then, investigate what warping con-
straints can preserve the 3D structure of objects. The fol-
lowing constraint is found to be most effective:

C: Corresponding pixels/regions are consistently
warped between the resulting left and right image.

Original Inconsistently warped Consistently warped

Figure 2: Illustration of the influence of inconsistent warp-
ing on the 3D structure.

We show that this constraint is sufficient in preserving
the 3D structure in the supplemental material. An illustra-
tive example is given in Figure 2. The structure of a green
patch is a flat surface in the original 3D scene. Inconsistent
warping of the corresponding green patches in the left and
right images distorts the flat surface and makes it slanted.
In contrast, consistent warping preserves its flat structure.

Based on constraint C, a 3D-structure-preserving cost
function, EG, can be defined. We first define a way to
measure warping inconsistency for a pair of corresponding
grids. Specifically, given a grid gLk in left image IL, gRk′ is
its corresponding grid in right image IR. The warping in-
consistency function between gLk and gRk′ , E

G(gLk , g
R
k′), can

be measured by the vector difference:

EG(gLk , g
R
k′) =

∑
(i,j)∈ek

‖
−−−→
ṽLi ṽ

L
j −
−−−→
ṽRi ṽ

R
j ‖2, (2)

where ṽz(z ∈ {L,R}) is a vertex of the warped version of
gz ,
−−→
ṽzi ṽ

z
j is an edge vector from ṽzi to ṽzj in the warped grid,

and ek is the set of grid edges of gzk in the counter-clockwise
direction. Then, the 3D structure-preserving energy EG for
a stereo image pair can be defined by summing up warping
inconsistency values of all corresponding grids as:

EG =
∑
k

EG(gLk , g
R
k′) · λk, (3)

where λk is the weight used to control the warping incon-
sistency between gLk and gRk′ . We set λk to the average grid
importance of gLk and gRk′ , where grid importance are de-
fined in Sec. 3.3.

3.2. Shape preservation and Disparity Adjustment

Shape Preservation. For shape preservation, we can-
not employ ES of axis-aligned warping in Eq. (6), since
vertex-based warping allows a warped grid to be an arbi-
trary quadrilateral. We define ES as the sum of the grid
deformation energy in background regions:

ES =
∑
z

∑
gz
k∈gu

ES(gzk) · δzk (4)

where gu be a set that contains grids in background regions
of the stereo image, ES(gzk) is the shape distortion of gzk.
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Figure 3: Illustration of the proposed two-stage warping. Stage I finds optimal warped grids for important object, and Stage
II then locally adjusts grids on less important regions, where the grids on less important regions are marked in red.

Disparity Adjustment. To meet the disparity require-
ment, we adjust the horizontal disparity using a few corre-
spondence pairs. The disparity adjustment energy demands
the disparity of each correspondence pair in the warped
stereo image to be as close as possible to the target value.
In particular, the disparities of the correspondence pairs in
important regions should be mapped more faithfully. This
is different from existing methods [3, 11] that treat all cor-
respondence pairs equally. Let f̃c = {f̃Lc , f̃Rc } denote the
c-th pair of corresponding points in the warped left and right
image, where fzc is a point in Iz , z ∈ {L,R}}. We express
ED as

ED =
∑
c

ED(x̃c, d̃c) =
∑
c

‖x̃Lc − x̃Rc − d̃c‖2 · δzc (5)

where d̃c is the target disparity value of fc, ED(x̃c, d̃c) is
the disparity adjustment energy of f̃c, x̃zc is the x-coordinate
of f̃zc in the warped image Ĩz and xc = {x̃Lc , x̃Rc }. The
value, x̃zc , can be represented by grid width w̃z

k. Nonzero
vertical disparities often introduce 3D fatigue or eye strain
to viewers [21, 23]. To eliminate the vertical disparity, we
constrain warped grids lying at the same row to have the
same height between left and right images.

3.3. Two-Stage Warping Algorithm

Existing methods [11][38][13] resort to vertex-based
warping for finding optimal warped meshes. However, di-
rectly employing vertex-based warping has two shortcom-
ings. First, its optimization problem is non-convex. Second,
since vertex-warped allows the shape of a warped grid to be
an arbitrary quadrilateral, its high degree of freedom can
introduce unsatisfactory foldover (i.e. self-intersection of
grids) or shape distortion of structured objects [25] (see Fig-
ure 4). To address this issue, complex or even non-convex
constraints can be used [5, 7, 36, 28]. However, it is diffi-
cult to optimize all warped vertices, coupled with complex
constraints, to meet all energy constraints simultaneously,
thus degrading the performance of disparity remapping.

Original mesh Vertex-based warping Axis-aligned warping

Figure 4: Warped meshes by vertex-based warping and
axis-aligned warping, respectively. Vertex-based warping
introduces foldovers (marked in red dash ellipse), whereas
axis-aligned warping sacrifices the flexibility of local trans-
formation. Original frame is from movie Chronicles,
c©CFGC.

Our insight is that we can combine vertex-based warp-
ing with axis-aligned warping to complement their short-
comings for disparity remapping, which have not yet been
explored by existing methods. Axis-aligned warping con-
strains all warped grids to be rectangular, which has proven
to be robust and effective for content-aware retargeting
[25, 17] in two aspects. First, axis-aligned warping re-
duces the degree of freedom for transformation and elim-
inates foldovers without imposing additional complex con-
straints. Second, its optimization problem is convex and is
of low computational complexity. However, its shortcom-
ing lies in that simplification in transformation tends to sac-
rifice the flexibility of local transformation, yielding severe
distortions of 3D structure and disparity in less important
regions for disparity remapping.

We argue that axis-aligned warping can more easily ful-
fill all the constraints imposed on the warping of important
objects, thanks to its foldover-free transformation and con-
vex optimization. On the other hand, due to the simplifica-
tion in transformation, axis-aligned warping tends to intro-
duce distortions in the less important regions. We can ex-
ploit the flexibility of vertex-based warping to refine warped
grids in these regions to mitigate the distortions.

The major challenge is that we cannot simply com-
bine vertex-based warping and axis-aligned warping into
a single-step optimization, since they would conflict with
each other. In particular, axis-aligned warping strictly con-
strains all warped grids at the same row/column to have the
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same height/width (see Figure 4). Such hard constraints do
not allow vertex-based warping to locally rotate/scale each
grid edge. To tackle the challenge, we propose a two-stage
optimization algorithm which finds optimal meshes in two
stages (see Figure 3). In the first stage, it adopts an axis-
aligned warping to optimize all grids of the meshes to en-
sure that they fulfill all requirements of disparity remapping
for those important objects identified by an importance map
following [11]. In the second stage, it uses a vertex-based
warping to locally refine warped meshes on less important
regions to alleviate the distortions on these regions.

Stage I: Axis-aligned Warping
The goal of this stage is to obtain warped grid meshes by

optimizing the grid width and height with a computationally
efficient axis-aligned warping. Given grid gzi,j , let wz

k and
hzk be its original grid width and height, respectively, and
w̃z

k and h̃zk be the warped version. To find warped meshes
that minimize E in Eq. (1), we formulate energy functions
ES , ED and EG in terms of w̃z

k and h̃zk.
To preserve the shapes of important objects, the shape

preservation energy, ES , is defined as the weighted sum of
all grid distortions [16, 25]. Given grid gzk, its distortion en-
ergy is the difference between the aspect ratio of its warped
version and that of original one since the shape of a warped
grid is rectangular. Hence, ES can be expressed as

ES =
∑

z∈{L,R}

∑
gz
k

‖wz
k · h̃zk − w̃z

k · hzk‖2 · δzk, (6)

where δzk is grid importance of gzk. We calculate δzk by sum-
ming up pixel importance in gzk, where pixel importance is
defined by importance map. The importance map is defined
as the weighted sum of the image saliency map [41] and the
disparity saliency map[8], following[11].

To preserve 3D structure, we represent EG in Eq. (3)
in terms of w̃z

k and h̃zk. In particular, since the shape of a
warped grid is rectangular, we have

−−→
ṽzi ṽ

z
j = [w̃z

k, 0] in Eq.

(2), if
−−→
ṽzi ṽ

z
j is a bottom/top edge of grid gzk. Otherwise,

we get
−−→
ṽzi ṽ

z
j = [0, h̃zk]. For each grid gLk , we determine its

corresponding grids in IR according to the disparity map.
To find the first-stage warped meshes, we minimize E in

Eq. (1) that contains terms in Eqs. (3), (6) and (5), subject
to the boundary constraints as proposed in [25]. This is a
convex quadratic programming problem, and we can find a
global optimal solution for E using the active-set algorithm
[24] for instance.

Stage II: Vertex Warping
In this stage, we adopt a vertex-based warping to refine

warped grid meshes obtained in the first stage. Since the
stage I has already well optimized the grids on important
objects, we retain the vertex coordinates of these warped
grids, and thereby only optimize grids in regions which do
not contain important objects. We refer to these regions

as background regions, and Ṽu = {ṽi} denotes the set of
warped grids’ vertexes on these regions. Here, vertex-based
warping is to find the optimal positions for vertexes in Ṽu.

To begin with, we need to define ES , ED and EG in
Eq. (1) corresponding to shape preservation, disparity ad-
justment and 3D structure preservation for Ṽu.

Given gzk, ES(gzk) is measured by the deviation of its
warping from the similarity transformation. Specifically,
ES(gzk) is defined as the difference between each warped
edge and its similarity transformation version, by following
[36, 12]:

ES(gzk) =
∑

(i,j)∈ek

‖ (ṽzi − ṽzj )− szk(vzi − vzj ) ‖2, (7)

where ek is the set containing the four edges of gzk, szk =∑
(i,j)∈ek

(ṽz
i−ṽ

z
j )

T (vz
i−v

z
j )∑

(i,j)∈ek
‖vz

i−vz
j ‖2

.

For ED, we minimize the disparity adjustment energy
given in Eq. (5) for correspondence pairs in background
regions. Accordingly, the coordinates of fk is also repre-
sented in terms of Ṽu via barycentric coordinates. Simi-
larly, for EG, we employ the 3D-structure preservation en-
ergy in Eq. (2) and minimize the energy at grids belonging
to background regions only. By following [34, 38], we also
use the line bending energy, to avoid serious grid transfor-
mation (e.g., foldover, structural object distortions)

We minimize Eq. (1) to obtain optimal positions for Ṽu.
This optimization problem is a non-convex one. It is solved
as an iterative least squares problem. Note that we use the
optimized meshes obtained in the first stage as the initial
guess, which speeds up convergence. Moreover, compared
with optimization of vertices for all grids [11, 38], the num-
ber of parameters in our vertex-based warping is signifi-
cantly less, since only grid vertices in background regions
are optimized. Thus, our optimization coverages faster and
is more efficient than that of [11, 38].

4. Extending to Stereo Video

We can extend our method to stereo video with temporal
constraints. By adding temporal constraints into the stage
I and II, respectively, we can ensure temporal coherence
for remapped stereo video. In particular, we first align cor-
responding grids among frames via motion estimation al-
gorithm (e.g. [2, 32]), for the left/right video of a stereo
video. Then, we build temporal constraints to constrain
aligned grids to be consistently warped among frames at the
stage I and II. More specifically, the temporal constraint of
the stage I is built for axis-aligned warping, which encour-
ages aligned grids to have same width/height. Similarly,
the temporal constraint of the stage II is built in term of
vertex-based warping, which encourages the warped edges
of aligned grids to undergo consistent transformation.
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c© Filmko Films Production

Original VWR [11] DWR [38] Ours
Target

Figure 5: Comparison results on a stereo image from The Monkey King 2. From top to bottom: red-cyan anaglyph image of
the stereo pair, disparity map, and 3D scene reconstructed from the the stereo pair.

5. Experiments
Datasets. We test our method on images with various 3D
scene structures collected from the Flicker [1] and Middle-
bury datasets [27], both of which are widely adopted for
evaluating stereo image editing methods. We also collect
stereo images from 3D movies. These images contain ob-
jects with irregular shapes and different disparity, posing
great challenges to disparity remapping.

We first compare our method with VWR [11] and DWR
[38] which are state-of-the-art in warping-based methods.
We then compare our method with the size and disparity
remapping method (SDR) [13], which jointly adjusts the
size and disparity of an object via vertex-based warping.
This aims to show the benefit of extending our method with
an additional requirement (i.e. size adjustment). Please re-
fer to supplemental materials for more results.
Disparity remapping on stereo image. A good disparity
remapping result faithfully preserves both 2D shapes and
3D structures for important objects, while mitigating the
deviations of its disparity values from its target values. To
evaluate the performance of disparity adjustment, we build
a ground-truth disparity map1 by manually modifying the
disparity values in the original disparity map to their desired
target values. The disparity map is calculated by the algo-
rithm in [8], where the darkest red and darkest blue indicates
the smallest disparity and the largest disparity, respectively.
We reconstruct ground-truth 3D scenes in a similar way, to
evaluate the performance of 3D-structure preservation.

As indicated in [11][13], locally adjusting the disparity
of a/some objects is much more complex than globally ad-
justing the disparity of the whole image. We hence set target
disparity values by employing the local disparity adjusting

1The ground-truth disparity map is only used to indicate the disparity
values for objects. In the disparity map of a remapped stereo image, the
locations of objects can be different from those in the ground-truth.

function in [11], to challenge our method. Fig. 5 shows the
disparity remapping results on a stereo image which con-
tains a man and a monkey. We decrease the disparity of the
man and monkey by 280% and 220% respectively, to in-
crease their depth strength. Compared with the ground-truth
disparity map in Figure 5, both VWR[11] and DWR[38] fail
to adjust the disparity of the man or the monkey to target
value. Furthermore, DWR distorts the disparity of other re-
gions (e.g. background). Compared with VWR and DWR,
our method achieves best performance in disparity adjust-
ment, due to our two-stage warping. As to 3D structure
preservation, both VWR and DVW distort the structure of
the monkey’s body in the 3D scene. The structure of the
man’s shoulder is also distorted by DWR. In contrast, even
though the 3D structure of the man and monkey is complex,
our method well preserves the 3D structure of the whole
image, thanks to our 3D-structure preserving energy (see
supplemental materials for more results on various stereo
images).

Disparity remapping on stereo video. We extend our
method to stereo video and test our method on a stereo
video containing a close-up face of a boy. We decrease the
disparity of the boy’s face by 210%. All methods well pre-
serve spatial shape and temporal coherence (see Fig. VI in
supplemental materials). However, VWR and DWR can-
not adjust the disparity of the face to the target value. For
3D-structure preservation, VWR and DWR distort the 3D
structure of the face which is dissimilar to that in ground-
truth 3D scene. In contrast, our method not only preserves
the 3D structure of the face well, but also faithfully adjusts
its disparity to the target value.

Size and disparity remapping. Figure 6 shows the size
and disparity adjustment results on stereo image. To com-
pare with [13], we incorporate size adjustment constraints
into our method. Following [13], the size of the man is in-
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c©Blender Foundation

Original SDR[13] Ours Target

Figure 6: Comparison results of size and disparity remapping on a stereo image from movie Elephants dream. From top to
bottom: left image, right image, disparity map, and 3D scene reconstructed from the left and right images.

c©BDI Films Inc.

Original Ours(w/o. EG) Ours (stage I) Ours Target

Figure 7: Ablation study of the performance of EG and two-stage warping on a frame of movie Monster Hunt. From top
to bottom: red-cyan anaglyph image of the stereo pair, disparity map, and 3D scene reconstructed from the left and right
images.

creased by 8%, while his disparity is accordingly increased
by 300%. Due to the additional requirement of size adjust-
ment, the task of disparity remapping is much more com-
plex. As a result, SDR inconsistently warps the head of the
man between the left and right image, leading that the 3D
structure of the man is distorted. In contrast, our method
faithfully preserve the man’s 3D structure, thanks to our
3D structure preserving constraints. Moreover, our method
also adjusts the size and disparity of the man more accu-
rately than SDR. The results validate that our 3D structure-
preserving constraints and two-stage optimization are bene-
ficial to disparity remapping with addition requirements like
size adjustment.

Quantitative evaluation. We measure shape preservation
performance by IR-SSIM [6] which is a metric measuring

structural similarity between a non-uniformly resized image
and its original image. A higher IR-SSIM value indicates
better shape preservation. The average IR-SSIM values of
VWR, DWR and our method are high in Table 1, indicating
all methods preserve the shape well.

Since 3D structure is non-rigid, it is difficult to mea-
sure 3D structure preservation performance. Instead, we
examined whether the disparity values of grids belonging
to the same foreground/background object are adjusted con-
sistently. This is measured by Kendall’s correlation coeffi-
cient between the remapped and the target disparity values
against the same object. The higher the coefficient is, the
better the 3D-structure preservation is. For four stereo im-
ages (see Figure IV, V, VI and VII in supplemental mate-
rials), Table 1 shows our method significantly outperforms
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Table 1: Quantitative evaluation results in terms of shape
preservation, 3D structure preservation, and disparity dis-
tortion (↑: Higher is better; ↓: Lower is better).

VWR DWR Ours

Shape preservation ↑ 0.975 0.980 0.983
3D structure preservation ↑ 0.654 0.672 0.876
Disparity distortion ↓ 3.42 3.61 0.95

Original SMA [42] Ours

Figure 8: Comparisons of our method and a state-of the-
art view interpolation method [42] on a stereo image with
camera parameters. The stereo image is originally used in
[42]. From top to bottom: left image of the stereo pair,
disparity map.

VWR and DWR in 3D-structure preservation.
We evaluate the effectiveness of disparity adjustment by

measuring the average disparity distortion. The average dis-
parity distortion calculates the average difference between
the disparity values of remapped stereo images and the
ground-truth. For four testing stereo images (see supple-
mental materials), Table 1 shows disparity distortion of our
method is significantly lower than that of VWR and DWR.
Ablation study. We first evaluate the influence of our pro-
posed 3D structure-preserving energy EG. As shown in the
first and second columns of Figure 7, the 3D structure of
the man is significantly distorted if EG is removed. More-
over, the average disparity distortion of our method is 0.63,
however, is increased to 2.21 when EG is removed.

We also evaluate the effectiveness of the proposed two-
stage warping model. Figure 7 shows the disparity remap-
ping results obtained in two stages, respectively. We can
observe that the first-stage (axis-aligned warping) preserves
both the 2D shape and 3D structure of Ant-Man well, due
to the smoothness and robustness offered by axis-aligned
warping. However, the first stage also introduces severe
distortions in the background. With the second-stage re-
finement, the distortions in the background are effectively
mitigated, due to the flexibility of vertex warping.
User study. A subjective user study was conducted on an
ASUS 3D 24-inch monitor using the NVIDIA active shutter

glasses. We invited 31 subjects to participate in the subjec-
tive evaluation of disparity remapping results. All of them
had normal stereo perception. We compared our method
with VWR and DWR in a side-by-side pairwise compar-
ison manner [35, 23] on five stereo images. The partici-
pants had no prior knowledge about these disparity remap-
ping methods. We placed the ground-truth stereo image in
the middle, while randomly placing the two to-be-compared
disparity remapped pairs in the left and right sides. We then
asked each subject to answer the following question: Which
edited stereo image is of better visual quality, according
to the ground truth one ? In total, 73.5% of subjects pre-
ferred our method to VWR, and 71.6% of them preferred
our method to DWR, thus, validating that our method offers
better 3D viewing experience for disparity remapping.

Comparison with view interpolation method. We com-
pare our method with Stereo Magnification Approach
(SMA) [42] which is a state-of-the-art in view interpola-
tion. Different from SMA, our method does not requires
camera parameters and training data. As shown in Figure 8,
however, SMA [42] introduces holes in the left boundary
of the images, which provides unsatisfactory viewing expe-
riences. Moreover, SMA also generates blur artifacts into
regions around the red fishes (see regions marked by yel-
low blocks in Figure 8). The average shape preservation of
SMA score (0.88) is lower than that of our method (0.94),
showing our results are of better quality.

Computational complexity. Given a 20×30 grid division,
the run-time cost of our optimization is 0.3s, while that of
[11] is 1.47s averagely on a laptop with a 2.26 GHz Duo
CPU.

6. Conclusion

We propose a novel approach for disparity remapping,
where besides the desired disparity adjustment, both 3D-
structure and 2D shape preservation are considered explic-
itly. To this end, we propose 3D structure-preserving con-
straint and integrate the constraints into an energy cost func-
tion to formulate a constrained optimization problem. We
have also proposed a two-stage warping algorithm con-
sisting of axis-aligned warping followed by vertex-warping
based refinement to solve the optimization problem. Exper-
imental results show that our approach can simultaneously
preserve 2D shape and 3D structure of important objects
well, while accurately adjusting the disparity map to a tar-
get one, without introducing noticeable distortions.
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