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Abstract

This paper is concerned with synthesizing images con-
ditioned on a layout (a set of bounding boxes with ob-
ject categories). Existing works construct a layout-mask-
image pipeline. Object masks are generated separately and
mapped to bounding boxes to form a whole semantic seg-
mentation mask (layout-to-mask), with which a new image
is generated (mask-to-image). However, overlapped boxes
in layouts result in overlapped object masks, which reduces
the mask clarity and causes confusion in image generation.
We hypothesize the importance of generating clean and se-
mantically clear semantic masks. The hypothesis is sup-
ported by the finding that the performance of state-of-the-
art LostGAN decreases when input masks are tainted. Mo-
tivated by this hypothesis, we propose Locality-Aware Mask
Adaption (LAMA) module to adapt overlapped or nearby
object masks in the generation. Experimental results show
our proposed model with LAMA outperforms existing ap-
proaches regarding visual fidelity and alignment with input
layouts. On COCO-stuff in 256×256, our method improves
the state-of-the-art FID score from 41.65 to 31.12 and the
SceneFID from 22.00 to 18.64.

1. Introduction
This paper is concerned with image generation from lay-

outs, a specific task of conditional image synthesis. A lay-
out is a set of bounding boxes with object categories, repre-
senting the positions, sizes and classes of objects in an im-
age. The layout-to-image generation task is to convert the
bounding boxes to a photorealistic image without segmenta-
tion annotation [37]. This task remains a challenging prob-
lem but provides a promising approach to understanding vi-
sual relations in images via analysis-by-synthesis. It also
has a wide range of applications such as human-computer
collaborative creation, where a potentially desired picture is
generated according to the layout given by a human.

Existing works construct an effective layout-mask-image

(a) Input layout (b) Generated masks (c) Generated images

(d) Generation process

Mask
Generation
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Figure 1. An illustration of image generation from layouts
(bounding boxes with categories). Based on the input layout as
shown in column (a), the generator first synthesizes a semantic
mask in (b) and then translates the mask to an image in (c). (d)
summarizes the generation process. Masks and images are gener-
ated by our model with the Locality-Aware Mask Adaption.

pipeline [32, 38]. As a layout only provides a coarse con-
figuration of the desired image, a semantic segmentation
mask is generated first and then translated to the final image
(Fig. 1). A semantic segmentation mask specifies the cate-
gory distribution of each pixel [7]. In the degraded and sim-
ple case, each pixel belongs to only a single category. How-
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ever, a generated mask may not be “clean” and semantically
clear but has overlapping masks and mixed categories of
pixels. This is because the overall semantic mask is formed
by aggregating object masks generated separately [32, 38].
As a result, when the bounding boxes overlap, which is a
common situation, the object masks also overlap and the
category of pixels can be confusing. Such an ambiguous
semantic mask causes difficulty for image generation, as it
is not clear for the generator to synthesize which object in
the overlapped area. Therefore, we hypothesize that a se-
mantically clear mask with little overlaps is important for
high-quality image generation.

Hypothesis justification. To test our hypothesis, we
train the mask-to-image component of LostGAN [32] with
ground-truth masks (Sec. 3). When also tested on ground-
truth masks, this mask-to-image model has a significantly
better performance than the original layout-to-image one on
visual fidelity and layout alignment. When tested with in-
creasingly tainted masks, the model’s performance decays
gradually (Fig. 2). This shows the impact of mask clarity on
image quality and supports our hypothesis.

Our method. Motivated by the above hypothesis, we
propose Locality-Aware Mask Adaption (LAMA) module
in the context of layout-to-image generation (Sec. 4). Af-
ter a raw semantic mask is formed by combining object
masks, LAMA aims to adapt the raw mask to a cleaner one
by considering objects’ local relation (Fig. 3). It scales the
mask values of each object in each pixel individually with
a learned matching mechanism. Empirically, when two ob-
ject masks originally overlap, LAMA enables the mask of
the background category to shrink precisely in pixels where
the foreground mask is located (Fig. 4). Finally, the gen-
erated mask and the category are injected into the image
generation pipeline via normalization layers.

Experimental results. Empirically the proposed model
outperforms the state-of-the-art methods in terms of visual
quality of images and layout alignment (Sec. 6.1). On
COCO-stuff in 256×256, our method improves the state-of-
the-art FID [10] score from 41.65 to 31.12 and the Scene-
FID [35] from 22.00 to 18.64. Besides, a quantitative com-
parison show LAMA refines the raw masks to cleaner ones
with smaller entropies (Sec. 6.2). In addition, the contri-
bution of LAMA module is exemplified in a control ex-
periment. The performance of our model decays without
LAMA, while that of LostGAN [32] is improved when
combined with LAMA (Sec 6.3).

Our main contribution lies in three aspects:
1. Conceptual contribution. A hypothesis on the im-

portance of generating clean semantic masks is presented
and preliminarily verified by experimental results.

2. Technical contribution. Locality-Aware Mask Adap-
tion (LAMA) is proposed for generating a clean and sharp
semantic mask to facilitate image generation. Our contribu-

tion of LAMA is orthogonal to existing works, and LAMA
can be easily integrated with other methods.

3. Metric contribution. An new and challenging eval-
uation metric termed YOLO scores is proposed to measure
the layout alignment of objects.

We provide a complete implementation with PyTorch
[27] including source code and evaluation metrics1.

Table 1. A brief summary of how existing methods aggregate over-
lapped object masks/features. ⋄ means masks are generated with
BiConvLSTM [31] modeling mask relations during generation.

Methods Trained with Aggregating overlapped
GT masks object masks/features

Layout2Im [37, 38] No ConvLSTM
LostGAN [32, 34] No Normalize

OC-GAN [35] No Normalize and concaten-
ate with layout boundaries

Hong et al. [13] Yes Sum ⋄
Obj-GAN [20] Yes Maxpooling ⋄

OP-GAN [11, 12] Yes Sum in global pathway and
replacement in object path

SG2IM [15] Yes Sum
Ashual and Wolf [1] Yes Normalize

Ours No Adapt and normalize

2. Related Works
Image Generation from Layouts. Existing layout-to-

image methods divide the task into generating semantic
masks from layouts and image synthesis from masks. Lay-
out2Im [37] proposes the layout-to-image task, and it gener-
ates features for bounding boxes to form masks and styles of
objects. Its extension [38] further generates a mask directly
for each box. Similarly, LostGAN-V1 [32] generates masks
for boxes individually and forms a whole semantic mask,
and the semantic mask is injected into the mask-to-image
generator via ISLA-Norm layers. LostGAN-V2 [34] fur-
ther integrate masks learned from feature maps at different
generation stages. From another perspective, OC-GAN [35]
improves layout fidelity by maximizing the similarity be-
tween the image embeddings and the scene graph inferred
from the layout. Additionally, DCL [33] maps the gener-
ated mask and the inferred mask from the generated image
to maximize structural consensus. These methods use only
layouts and images. BachGAN [21] and Attribute-Guided
Layout2Im [22] further use masks and attribute annotations.
Layout-to-image generation also serves as a useful subpro-
cess in text-to-image translation [11, 12, 13, 20] and image
generation from scene graphs [1, 15].

Aggregating overlapped bounding boxes and masks.
Bounding boxes inevitably overlap in real or generated lay-
outs, so in the layout-to-image generation generated ob-

1https://github.com/ZejianLi/LAMA
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ject masks also overlap and give confusing pixelwise fea-
tures. The overlap problem has been noticed by exist-
ing works [35, 38]. Existing method use operations like
sum, normalization, maxpooling, replacement or ConvL-
STM [31] to aggregate overlapped object masks or features
(Tab. 1). The sum and normalization operation do not alle-
viate overlap. When the real masks are not available, max-
pooling and replacement allow the model to show wrong
objects without passing gradients to correct ones. Zhao et
al. [38] shows aggregating masks with ConvLSTM [31] has
a better performance than with sum operation, as ConvL-
STM models object relations and thus considers overlaps.
Sylvain et al. [35] finds overlapped boxes of the same cat-
egory results in unclear object boundaries and proposes to
concatenate semantic masks with layout boundaries. Differ-
ent from existing works, our method uses pixelwise adap-
tion and normalization. Our adaption module learns to scale
mask values according to neighborhood mask configura-
tions and gives more clear semantic masks.

3. An Experiment on Impacts of Mask Clarity

A control experiment is conducted to test our hypothesis
by investigating the impacts of mask clarity on the perfor-
mance. We train the mask-to-image component of Lost-
GAN [32] with ground-truth masks and test it on ground-
truth or tainted masks. The component has a GauGAN-
like architecture [26]. It stacks ResNet blocks [9] with
ISLA-Norm layers [32]. The ISLA-Norm transforms the
generated mask to modulation parameters applied on batch-
normalized [14] features to propagate mask information.

Formally, the model is trained to generate an image
based on a given semantic mask M . A semantic mask with
m objects M ∈ [0, 1]m×W×H describes the object each
pixel belongs to, where W and H are the width and height.
We denote the ground-truth mask as M̄ and a tainted mask
as (1− τ)× M̄ + τ

m × 1(M̄) where τ ∈ [0, 1] and 1(M̄)
is the all-one tensor with the same size as M̄ . A larger τ
results in an unclear semantic mask. The experiment is per-
formed on COCO-stuff [4] in 128× 128, with FID [10] and
SceneFID [35] to estimate generative quality. Both metrics
are introduced in Sec 5.

The result is shown in Fig. 2. When tested with ground-
truth masks (τ = 0), the model has a significantly better
performance than the original LostGAN. As τ increases and
masks become unclear and ambiguous, the performance de-
cays. This shows the positive impact of mask clarity on
generative quality and supports our hypothesis. More re-
sults are in Tab. 5. A concurrent work [5] performs a similar
experiment, and the result is consistent with ours. We also
present the performance of our model. With LAMA mod-
ule and other modifications, our performance is better than
LostGAN with ground-truth masks in SceneFID.
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Ours
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LostGAN (GT masks)
LostGAN-V1
LostGAN-V2
Ours

Figure 2. Results in the experiment on mask clarity (Sec. 3).
Models are evaluated with FID [10] and SceneFID [35]. LostGAN
(GT masks) is the LostGAN [32] model trained with ground-truth
semantic masks but tested with tainted masks. A larger τ results
in more ambiguous masks. Dotted lines label performances of the
original LostGANs [32, 34] and ours for reference.

4. Method
In this section, we describe our layout-to-image method.

We first summarize the overall pipeline in Sec. 4.1 and then
mainly introduce our proposed Locality-Aware Mask Adap-
tion module in Sec. 4.2.

4.1. Overview

Layout-to-mask. Given a layout L of m objects, the
layout-to-mask stage is to generate a semantic mask M . A
layout L is formalized as {(b1, c1), . . . , (bm, cm)}. A
bounding box bi is a subset of the image lattice describing
the position and size (wi,hi) of the ith object, while ci is
the object category, for i ∈ {1, . . . ,m}.

To form a raw semantic mask, object masks are gener-
ated separately and mapped to bounding boxes. For each
object, an object feature oi ∈ Rd contains the category and
the object size. It is formed as oi = [yi, zi, wi, hi]. Here
yi ∈ Rdy is the embedding of category ci, zi ∈ Rdz is a
stochastic variation, and d = dy + dz + 2. Given a set
of object features O = [o1, . . . , om], the generator Fom

transform them to m object masks of size 32 × 32. These
masks are resized and mapped to the corresponding bound-
ing boxes to form the raw mask M̃ [32]. Finally, M̃ is
adapted to the final mask M with our proposed locality-
aware mask adaption module (Fig. 3).

Mask-to-image. This stage is to generate an image
given the generated semantic mask M . We adopt the mask-
to-image component of LostGAN-V1 [32] and have three
modifications. Firstly, inspired by Batch-Instance Normal-
ization [25], we replace Batch Normalization with Batch-
Group Normalization (BGN) in the ISLA-norm layers [32].
BGN further utilizes information across channels when the
batch size is small. Secondly, noise injection [16] is ap-
plied after convolution layers to introduce more stochastic-
ity. Thirdly, we use ReZero [2] to stabilize the training. Our
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m × d
Object features

dy
<latexit sha1_base64="lSdXRsQgCmYJsXNXCUxMAP0m1Tc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWw2m3bpZjfsboQQ+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo2WqCG0TyaXqBVhTzgRtG2Y47SWK4jjgtBtMbmd+94kqzaR4NFlC/RiPBIsYwcZKD+EwG1Zrbt2dA60SryA1KNAaVr8GoSRpTIUhHGvd99zE+DlWhhFOp5VBqmmCyQSPaN9SgWOq/Xx+6hSdWSVEkVS2hEFz9fdEjmOtsziwnTE2Y73szcT/vH5qoms/ZyJJDRVksShKOTISzf5GIVOUGJ5Zgoli9lZExlhhYmw6FRuCt/zyKuk06t5FvXF/WWveFHGU4QRO4Rw8uIIm3EEL2kBgBM/wCm8Od16cd+dj0Vpyiplj+APn8wdbpo3Y</latexit>

dz
<latexit sha1_base64="HmyZ8dOIpb7hMldjXps5kZ/lpg8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM1m0i7dbMLuRqilP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZIphg2WiES1A6pRcIkNw43AdqqQxoHAVjC8mfqtR1SaJ/LBjFL0Y9qXPOKMGivdh72nXqnsVtwZyDLxclKGHPVe6asbJiyLURomqNYdz02NP6bKcCZwUuxmGlPKhrSPHUsljVH749mpE3JqlZBEibIlDZmpvyfGNNZ6FAe2M6ZmoBe9qfif18lMdOWPuUwzg5LNF0WZICYh079JyBUyI0aWUKa4vZWwAVWUGZtO0YbgLb68TJrVindeqd5dlGvXeRwFOIYTOAMPLqEGt1CHBjDowzO8wpsjnBfn3fmYt644+cwR/IHz+QNdKo3Z</latexit>

2<latexit sha1_base64="jk/1fpohXujb3eq/tOFNvjxoFrw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZq1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ffW+Mug==</latexit>

Object masks Raw mask
m × W × H

Adapted mask
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O
<latexit sha1_base64="Y7tw/+DOfe7VSlqdsSfwwjF6McU=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFN+6sYB/QjiWTSdvQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScniDnTxnW/ncLK6tr6RnGztLW9s7tX3j9oaZkoQptEcqk6AdaUM0GbhhlOO7GiOAo4bQfj68xvP1KlmRT3ZhJTP8JDwQaMYGOlh14geagnkb3S22m/XHGr7gxomXg5qUCORr/81QslSSIqDOFY667nxsZPsTKMcDot9RJNY0zGeEi7lgocUe2ns9RTdGKVEA2kskcYNFN/b6Q40lk0OxlhM9KLXib+53UTM7j0UybixFBB5g8NEo6MRFkFKGSKEsMnlmCimM2KyAgrTIwtqmRL8Ba/vExatap3Vq3dnVfqV3kdRTiCYzgFDy6gDjfQgCYQUPAMr/DmPDkvzrvzMR8tOPnOIfyB8/kDFk2S5A==</latexit>

Fom
<latexit sha1_base64="xUG/z0Cyh7LnDQuwBgMzSWtgZrM=">AAACGHicbVBNS8NAEN3Urxq/oh69LJaCp5pUQY9FQbxZwX5AG8Jms22XbrJhdyOUkJ/hxb/ixYMiXnvz37hpc6itA8u+eTPDvHl+zKhUtv1jlNbWNza3ytvmzu7e/oF1eNSWPBGYtDBnXHR9JAmjEWkpqhjpxoKg0Gek449v83rnmQhJefSkJjFxQzSM6IBipDTlWedV2Pc5C+Qk1F/6kJmL6Z2X9kOkRlSlPMyyzDQ9q2LX7FnAVeAUoAKKaHrWtB9wnIQkUpghKXuOHSs3RUJRzIhel0gSIzxGQ9LTMEIhkW46OyyDVc0EcMCFfpGCM3ZxIkWhzKXqzlymXK7l5H+1XqIG125KozhRJMLzRYOEQcVh7hIMqCBYsYkGCAuqtUI8QgJhpb3MTXCWT14F7XrNuajVHy8rjZvCjjI4AafgDDjgCjTAPWiCFsDgBbyBD/BpvBrvxpfxPW8tGcXMMfgTxvQXZt2goQ==</latexit>

M̃
<latexit sha1_base64="TRnn2nWUKL2VelLgv0IQaIzkJY4=">AAACMnicbVBNS8NAEN34WeNX1aOXxVLwVJIq6LEoiB7EClaFppTNZtsubrJhdyKUkN/kxV8ieNCDIl79EW7aHGrrwLKP92aYN8+PBdfgOG/W3PzC4tJyacVeXVvf2Cxvbd9qmSjKWlQKqe59opngEWsBB8HuY8VI6At25z+c5vrdI1Oay+gGhjHrhKQf8R6nBAzVLV9UsedLEehhaL70KrP/Emfd1AsJDDikMsyyzJ4UPeAiYOmloW27W644NWdUeBa4Baigoprd8osXSJqELAIqiNZt14mhkxIFnApmNiWaxYQ+kD5rGxiRkOlOOjo5w1XDBLgnlXkR4BE7OZGSUOcuTWduX09rOfmf1k6gd9xJeRQnwCI6XtRLBAaJ8/xwwBWjIIYGEKq48YrpgChCwaSch+BOnzwLbus196BWvz6sNE6KOEpoF+2hfeSiI9RA56iJWoiiJ/SKPtCn9Wy9W1/W97h1zipmdtCfsn5+AQeOqzw=</latexit> M<latexit sha1_base64="aBDrBW4fi0OeEOhRCgKyWdWsfsc=">AAACRXicbVDLSgMxFM34rPVVdekmWAquykwVdFkUxI1YwT6gU0omk7ahmcmQ3BHK0J9z496df+DGhSJuNTPtog8PhBzOuZd77/EiwTXY9pu1srq2vrGZ28pv7+zu7RcODhtaxoqyOpVCqpZHNBM8ZHXgIFgrUowEnmBNb3id+s0npjSX4SOMItYJSD/kPU4JGKlbcEvY9aTw9SgwX3I/zs8LN93EDQgMOCQyGI8XbRe48FlyZ4xZORPy+W6haJftDHiZOFNSRFPUuoVX15c0DlgIVBCt244dQSchCjgVzMyINYsIHZI+axsakoDpTpKlMMYlo/i4J5V5IeBMne1ISKDT/UxlepFe9FLxP68dQ++yk/AwioGFdDKoFwsMEqeRYp8rRkGMDCFUcbMrpgOiCAUTfBqCs3jyMmlUys5ZufJwXqxeTePIoWN0gk6Rgy5QFd2iGqojip7RO/pEX9aL9WF9Wz+T0hVr2nOE5mD9/gHqoLMZ</latexit>

Fma
<latexit sha1_base64="eHt98nEXqxqxiVLvx257hH1d1ZU=">AAACZHicdVHLSgMxFM2M71p1qrgSJFgKrsqMCrosCuJGrGBtoS0lk0k1NJkMyR2hhP6kO5du/A4zbRfa6oWQwzn3lZM4E9xAGH54/srq2vrG5lZpu7yzuxdU9p+NyjVlLaqE0p2YGCZ4ylrAQbBOphmRsWDteHRT6O03pg1X6ROMM9aX5CXlQ04JOGoQ2BruxUokZizdZR8mpd/E7cD2JIFXDlbJyWRR7gEXCbP3S8KU+qeRJEWjUmkQVMN6OA28DKI5qKJ5NAfBey9RNJcsBSqIMd0ozKBviQZOBXPzcsMyQkfkhXUdTIlkpm+nJk1wzTEJHirtTgp4yv6ssESaYleXWexpFrWC/Evr5jC86lueZjmwlM4GDXOBQeHCcZxwzSiIsQOEau52xfSVaELB/UthQrT45GXwfFaPzutnjxfVxvXcjk10hE7QKYrQJWqgO9RELUTRp7fhBV7F+/LL/oF/OEv1vXnNAfoV/vE362y5dg==</latexit>

Figure 3. An illustration of layout-to-mask generation. The object masks are generated according to object features, which are the
concatenation of category embeddings, the size of boxes and the stochastic variations. Then the object masks are resized and mapped to
bounding boxes. The formed raw mask is adapted to alleviate overlappings and reduce semantic ambiguity.

ablation study shows both BGN and noise injection improve
the model performance (Sec. 6.3).

4.2. Locality-Aware Mask Adaption

We propose Locality-Aware Mask Adaption (LAMA)
module to adapt the raw mask to a more clean mask by
diminishing mask overlapping. Mask overlapping means
that objects share a large area in the semantic segmentation
mask, and in the shared area objects have similar strength.
In the raw mask M̃ of m objects, each channel represent
an object’s mask, and a pixel may belong to more than one
object simultaneously. See the raw mask in Fig. 3 for an
example. Such overlap results in reduced clarity and causes
difficulty in image generation (Sec. 3).

The mask overlapping problem derives from overlapped
bounding boxes, and it is also caused by two issues. On
the one hand, object masks are generated separately with-
out considering their relations. On the other hand, object
masks are aggregated by operations like sum or normaliza-
tion which does not improve clarity. Our method tries to
solve the problem from the aggregation part.

The proposed LAMA module adapts masks by scaling
mask values of all objects in each pixel, which allows all
pixels to choose the object they belong to. It determines the
scaling based on the local mask configuration by matching
embeddings of patches with the object embeddings. Specif-
ically, given a pixel in the raw mask, the adaption module
first aggregates the object information in the neighborhood
as a query representation. Besides, the module also trans-
forms the set of object features into a key representation.
Then by matching the query and the key, LAMA forms the
scaling factors of the pixel, which are applied to the raw
mask values. By applying this scaling process to all pixels,
LAMA adapts the whole raw mask (Fig. 4).

Formally, the adaption module Fma takes the raw mask
M̃ and object features O as input and outputs the scaling
factors Fma(M̃ ,O). Then the adapted mask is

M = Fma(M̃ ,O)⊙ M̃ (1)

Here ⊙ is the elementwise multiplication. The object fea-
tures O are first transformed into object key and query
Kobj ,Qobj ∈ Rm×d′

with a fully-connected (FC) layer,
respectively. Here d′ is ⌊d

4⌋ by default. To aggregate the ob-

ject information of pixels in M̃ , pixel query Qpix∈Rd′×W×H

is defined as the sum of the object query weighted by the
pixelwise raw mask strength.

Qpix = QobjT ⊗ M̃

where Qpix
kj =

m∑
i=1

Qobj
ik M̃ ij

(2)

The symbol ⊗ means dot product operation. Here k ∈
{1, . . . , d′} and j denotes a spatial position in the W × H
lattice of Qpix and M̃ . Namely, the pixel query in the jth

pixel Qpix
·j is the sum of object query Qobj weighted by

M̃ ·j , the raw mask values in the jth pixel. When one ob-
ject mask dominates the jth pixel of M̃ , the pixel query
represents the only object. When several masks overlap on
the jth pixel, the pixel query represents the mixed objects.

Next, the pixel query is divided into patches and ag-
gregated to form a local query. A local query Qloc ∈
Rd′×W×H represents the object configuration in the local-
ity of each pixel. To summarize these configurations, two
ResNet blocks with a convolutional kernel size of 3 are ap-
plied to the pixel query Qpix . Therefore, the local query
represents the configurations of 5 × 5 patches centered at
pixels, and thus LAMA is locality-aware. Such locality is
important as we will show the performance decays without
aggregating pixel query as local query (Sec. 6.3).

The local query Qloc is matched to object key Kobj with
a dot product operation.

E = Kobj ⊗Qloc

where Eij =

d′∑
k=1

Kobj
ik Qloc

kj

(3)

Here the local query of the jth position Qloc
·j is matched

with the ith object’s key Kobj
i· . A matching value Eij rep-
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Raw mask
m × W × H

m × d
Object feature

dy
<latexit sha1_base64="lSdXRsQgCmYJsXNXCUxMAP0m1Tc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWw2m3bpZjfsboQQ+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo2WqCG0TyaXqBVhTzgRtG2Y47SWK4jjgtBtMbmd+94kqzaR4NFlC/RiPBIsYwcZKD+EwG1Zrbt2dA60SryA1KNAaVr8GoSRpTIUhHGvd99zE+DlWhhFOp5VBqmmCyQSPaN9SgWOq/Xx+6hSdWSVEkVS2hEFz9fdEjmOtsziwnTE2Y73szcT/vH5qoms/ZyJJDRVksShKOTISzf5GIVOUGJ5Zgoli9lZExlhhYmw6FRuCt/zyKuk06t5FvXF/WWveFHGU4QRO4Rw8uIIm3EEL2kBgBM/wCm8Od16cd+dj0Vpyiplj+APn8wdbpo3Y</latexit>
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Figure 4. LAMA’s mask adaption procedure. The example is identical to Fig. 3. Here ⊗ means the dot product operation and ⊙ element-
wise multiplication. Object query is aggregated according to the raw mask as pixel query. With ResNet [8] blocks, pixel query in the
locality is summarized as local query, which is matched with the object key to form the scaling factors. In the part of scaling factors, the
second image of the first row shows the scaling factor of “building-other”. Notice that the mask is shrunk precisely in the area where the
“person” masks shown in the second row are located. This exemplifies LAMA’s adaption ability.

resents the importance of the ith object in the jth position.
Accordingly, the scaling factors is formed by:

Fma(M̃ ,O) = tanh(αE) + 1 (4)

The scaling factors are in (0, 2) and allow both shrinkage
and enlargement of masks. A learnable parameter α con-
trols the strength of adaption, initialized as 0. The adapted
mask is normalized to form the pixelwise object distribu-
tion as the final semantic mask. The main adaption process
is summarized in Fig. 4. Components to learn in LAMA
include two FC layers, two ResNet blocks and α.

Technically LAMA shifts pixelwise object distributions,
but theoretically LAMA has an underlying assumption dif-
ferent from those of existing works. In existing works [32,
35], object masks are generated individually, which as-
sumes masks are mutually independent. The layout-to-
image task is ill-posed and thus the mask configuration
is highly uncertain. Without ground-truth segmentations,
the training of mask generation is weakly-supervised and
relies on strong assumptions like independence. Lay-
out2Im [37, 38] and Obj-GAN [20] use ConvLSTM [31]
to generate or aggregate object masks, which assumes all
objects are correlated. Our proposed LAMA has a different
assumption that overlapped or adjacent boxes have masks
correlated on visibility and appearance. This assumption is
more general than independence but preserves locality. It al-
lows the generative model to consider relations only among
overlapped or nearby objects. With this local correlation as-
sumption, LAMA boasts reconfigurability [34]. Reconfig-
urability means keeping most generated objects unchanged
while moving, altering or adding a bounding box, which
enables generative results to be more controllable.

LAMA module is expected to adapt masks but does not
directly encourage a pixel to choose only one object. This is

because if the wrong object is chosen in the overlapped area,
the correct one will get little gradient and the convergence
becomes difficult. Such incorrect appearances often hap-
pen in the early stage of training. Similarly, over-adaption
is harmful at the beginning, so the model has an adaption
strength α initialized as 0 and begins the training without
adaption. As the training proceeds, the model optimizes α
as needed to minimize the training loss. As α can be ab-
sorbed in the computation of object key (Eq. 3), α does not
affect the final solution. We further discuss convergence is-
sues when directly inferring new masks, reconfigurability,
causal relations and other related topics in Sec. S2 of our
supplementary material.

In summary, we design LAMA with a trade-off between
alleviating overlaps and facilitating convergence. Empiri-
cally we find our model spontaneously improves mask clar-
ity with LAMA (Sec. 6.2).

4.3. Training

Loss. Following LostGAN [34], we use the adversarial
training strategy [6, 23] to train our layout-to-image genera-
tion model with a discriminator. The discriminator consists
of ResNet [8] blocks with Spectral Normalization [23]. To
classify objects in bounding boxes, it uses ROI Align [7] to
extract feature maps and identifies the objects with a pro-
jection discriminator [24]. The whole training loss consists
of an adversarial hinge loss and a classification loss [24].

We do not adopt reconstruction loss in our training, be-
cause it may mislead the model to ignore inputs of stochas-
tic variation. The reconstruction binds layouts to associated
ground-truth images. To optimize the loss, the model may
consider only the input boxes and thus generate a fixed mask
to fit the training image. As stochastic variation is discour-
aged, the capacity of the model is limited. This analysis is
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Figure 5. Examples of generated 256× 256 images on COCO-Stuff by our methods and LostGAN-V2 [34]. Samples in the same column
share the layout in the first row. Our generated masks before and after adaption are also presented.

supported by our ablation study (Sec. 6.3), where the per-
formance of our model decays with the reconstruction loss.

Training details. The model is trained for 200 epoches
with Adam optimizer [17] with β = (0, 0.999). The learn-
ing rate is 0.0003 for the discriminator and is 0.0001 for
the generator, and both are decayed by 0.1 in the 120th

and 160th epoch. The batch size is 32 for the resolution
of 64 × 64 and 20 for 128 × 128 when trained on a single
NVIDIA RTX 2080TI card. The size is 24 for 256 × 256
when trained on four 2080TI cards. Horizontal flip augmen-
tation of training images and layouts is adopted [34, 35].

5. Experimental Setup
5.1. Datasets

Experiments are conducted on images and annotations
of bounding boxes from COCO-Stuff 2017 [4] and Vi-
sual Genome dataset [18]. Segmengtation annotation is
not used. The COCO-Stuff 2017 dataset contains bound-
ing boxes of 80 thing and 91 stuff classes. Following
SG2Im [15], objects covering less than 2% of the whole
image are ignored, and only images with 3 to 8 objects are

used. Thus, we have 74, 777 training and 3, 097 validatation
images. For the Visual Genome dataset, we use the train-
validation division and the selecting strategy of SG2Im [15].
Thus, we have 62, 565 training and 5, 062 validation sam-
ples, each with less than 10 objects from 178 categories.

5.2. Baselines

We mainly compare our method with leading layout-
to-images methods, including Layout2Im [37] as well as
its extension [38], LostGAN-V1 [32], LostGAN-V2 [34]
and OC-GAN [35]. Particularly, we use the official imple-
mentation of Layout2Im, LostGAN-V1 and LostGAN-V2
to generate new images for comparison. Although Bach-
GAN [21] and Attribute-Guided Layout2Im [22] perform a
similar task, they require extra annotations and are not in-
cluded in our comparison.

5.3. Metrics

Models are evaluated mainly from two aspects: the over-
all visual quality and diversity of generated images, and the
fidelity and alignment of generated objects.
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Table 2. Quantitative results on COCO-Stuff [4] and Visual Genome (VG) [18]. ↑ means a higher value is better, and vice versa. Best
performances are highlighted. The results of other methods are taken from the original papers unless labeled. ◦ and ⋆ denote results taken
from [35] and [34], respectively. † denotes results on samples from pre-trained models or trained models with the official implementation.

Size Methods FID ↓ DS ↑ CAS ↑ SceneFID ↓
COCO VG COCO VG COCO VG COCO VG

64×64

Layout2Im [37] 38.14 31.25 0.15 ± 0.06 0.17 ± 0.09 ⋆ 27.32 ⋆ 23.25 † 23.26 † 33.67
Layout2Im + OWA [38] 40.19 33.54 0.09 ± 0.05 0.09 ± 0.11 - - - -
LostGAN-V1 [32] 34.31 34.75 0.35 ± 0.09 0.34 ± 0.10 28.81 27.50 † 10.50 † 5.15
OC-GAN [35] 29.57 20.27 - - - - - -
Ours 19.76 18.11 0.37 ± 0.10 0.37 ± 0.09 33.23 30.70 9.17 4.15

128×128

LostGAN-V1 [32] 29.65 29.36 0.40 ± 0.09 0.43 ± 0.09 28.70 25.89 ◦ 20.03 ◦ 13.17
LostGAN-V2 [34] 24.76 29.00 0.45 ± 0.09 0.42 ± 0.09 31.98 29.35 † 19.23 † 15.02
OC-GAN [35] 36.31 28.26 - - - - 16.76 9.63
Ours 23.85 23.02 0.46 ± 0.09 0.47 ± 0.09 34.15 32.81 12.35 8.28

256×256
LostGAN-V2 [34] 42.55 47.62 0.55 ± 0.09 0.53 ± 0.09 30.33 28.81 † 22.00 † 18.27
OCGAN [35] 41.65 40.85 - - - - - -
Ours 31.12 31.63 0.48 ± 0.11 0.54 ± 0.09 30.52 31.75 18.64 13.66

Inception Score (IS) [30] and Frèchet Inception Dis-
tance (FID) [10] measure overall visual quality. Specifi-
cally, we compute FID between generated images and val-
idation sets. Diversity Score (DS) estimates the diversity
of generated images. It is the perceptual similarity of deep
features extracted from two generated images with the same
layout. We use LPIPS [36] with a pre-trained AlexNet [19].

Classification Accuracy Score (CAS) [28] and Scene-
FID [35] measure the visual quality of objects. SceneFID is
the FID between the resized 224 × 224 images of cropped
objects from the generated and validation set. CAS score
measures generated objects’ quality with an auxiliary clas-
sifier. A ResNet-101 [8] is trained on generated object crops
and tested on validation crops, and the testing accuracy is
reported as the metric. Notice that a similar metric used in
Layout2Im [37] and OC-GAN [35] is based on a classifier
trained on training samples but tested on generated ones,
and it may not consider the diversity of generated samples.

YOLO Scores are proposed to evaluate the alignment
and fidelity of generated objects. We propose this met-
ric based on the insight that layout-to-image generation is
a reverse task of object detection. While SceneFID and
CAS estimate the generative quality of object crops, YOLO
Scores measure how generated objects are recognizable
when even the layout is unknown. YOLO (You Only Look
Once) [3, 29] is a series of object detection models, which
infer layouts from images. By comparing the ground-truth
and the inferred layout of a generated image, we can mea-
sure object alignment and visual fidelity. In practice, we
use a YOLOv4 [3] model pre-trained on MS COCO dataset
without stuff and report AP (Average Precision), AP50 and
AP75. The generated images are upsampled to 512 × 512
when tested.

Mask Entropy. We also evaluate the clarity of a gen-
erated mask with mask entropy, defined as the mean pixel-

wise entropy. Given a mask M of m objects, we have

H(M) = − 1

W ×H

W×H∑
j=1

m∑
i=1

Mij logMij . (5)

The entropy value is in [0, logm]. A larger value means a
more unclear mask, and the value of an ideal mask is 0.

6. Results

6.1. Qualitative and Quantitative Results

Fig. 5 presents generated 256 × 256 images on COCO-
Stuff as qualitative results. Our models generate visu-
ally appealing images as compared with state-of-the-art
LostGAN-V2. Tab. 2 reports quantitative results of base-
line methods and ours. Our model outperforms the exist-
ing methods in most cases. In terms of image quality, our
model has lower FID values and higher diversity scores. On
COCO-Stuff and Visual Genome in 256 × 256, our model
improves state-of-the-art FID from 41.65 to 31.12 and from
40.85 to 31.63, respectively. Both are over 20% relative
improvements. In terms of object quality, our model also
has lower SceneFID values and higher CAS scores. On Vi-
sual Genome in 256 × 256, the challenging CAS accuracy
is improved by 2.94%. On datasets in 256×256, SceneFID
is improved from 22.00 to 18.64 and from 18.27 to 13.66,
respectively. Both are over 15% relative improvements.

Tab. 3 reports the YOLO Scores of LostGANs [32, 34]
and our proposed model. Ours outperforms the baselines
consistently. Especially on images in 256×256, our model’s
AP is 4.1% higher than that of LostGAN-V2, which is a
45% improvement. Furthermore, the scores of on images
in the validation set are also reported for comparison. The
validation images are downsampled to 128× 128 or 256×
256 and then upsampled back to 512× 512 for testing.
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Table 5. Ablation studies on COCO-Stuff [18] of 128 × 128. Main performance differences between variants and the original model are
labeled. See text in Sec. 6.3 for more details.

Methods FID ↓ DS ↑ CAS ↑ SceneFID ↓ AP ↑ AP50 ↑ AP75 ↑

Ours 23.85 0.46 ± 0.09 34.15 12.35 7.9% 12.0% 8.9%
Ours w/o mask adaption (+3.72) 27.57 0.46 ± 0.09 (−0.56) 33.59 (+4.63) 16.92 (−0.7%) 7.2% 10.6% 8.2%
Ours trained w/ GT masks (−0.53) 23.32 0.32 ± 0.10 (+3.58) 37.73 (+0.69) 13.04 (+5.7%) 13.6% 19.3% 15.0%

Ours matching pixel query only (+5.67) 29.52 0.45 ± 0.09 (−0.56) 33.59 (+6.04) 18.39 (−2.3%) 5.6% 8.9% 6.3%
Ours w/ BN only (+0.64) 24.49 0.45 ± 0.10 (+0.44) 34.59 (+0.73) 13.08 (−1.1%) 6.8% 10.6% 7.1%
Ours w/ GN only (+1.32) 25.17 0.45 ± 0.10 (−2.13) 32.02 (+0.93) 13.28 (−1.0%) 6.9% 10.5% 7.7%
Ours w/o noise injection (+1.33) 25.18 0.41 ± 0.12 (−1.85) 32.30 (+1.77) 14.12 (−0.8%) 7.1% 10.9% 7.8%
Ours w/ reconstruction (+7.12) 30.97 0.44 ± 0.08 (−0.40) 33.75 (+8.76) 21.11 (−2.7%) 5.2% 8.0% 5.7%

LostGAN-V1 [32] 29.65 0.40 ± 0.09 28.70 20.03 4.8% 8.4% 5.1%
LostGAN-V1 [32] w/ mask adaption (−3.52) 26.13 0.43 ± 0.09 (+5.89) 34.59 (+2.71) 22.74 (+0.5%) 5.3% 8.9% 5.9%
LostGAN-V1 [32] w/ GT masks (−8.38) 21.27 0.36 ± 0.11 (+10.35) 39.05 (−5.25) 14.78 (+6.5%) 11.3% 16.9% 12.5%

Table 3. Comparison of YOLO scores in experiments on the MS
COCO dataset. A higher value is better.

Size Methods AP ↑ AP50 ↑ AP75 ↑

128×128

LostGAN-V1 [32] 4.8% 8.4% 5.1%
LostGAN-V2 [34] 5.5% 9.2% 5.8%

Ours 7.9% 12.0% 8.9%
MS COCO val 33.1% 47.0% 36.9%

256×256
LostGAN-V2 [34] 9.1% 15.3% 9.8%

Ours 13.4% 19.7% 14.9%
MS COCO val 42.9% 60.2% 48.2%

Table 4. Mask entropies of our generated masks and α in Eq. 3.
Size Datasets Raw Masks Adapted Masks |α|

64×64 COCO 0.31 ± 0.18 0.11 ± 0.07 0.73
VG 0.18 ± 0.14 0.10 ± 0.09 0.66

128×128 COCO 0.30 ± 0.17 0.14 ± 0.11 0.55
VG 0.45 ± 0.24 0.12 ± 0.09 0.66

256×256 COCO 0.33 ± 0.18 0.14 ± 0.10 0.56
VG 0.50 ± 0.24 0.26 ± 0.17 0.54

6.2. Mask Clarity

We report mask entropy values of raw and adapted masks
generated by our model and adaption strength α in Tab. 4.
The entropy reduces consistently after adaption. For ref-
erences, a tainted mask in Sec. 3 has an entropy of 0.48
when τ = 0.1 and 0.12 when τ = 0.02. Examples of
raw and adapted masks are shown in the last two rows in
Fig. 5. Object masks before adaption seem blurry and over-
lapped, while after adaption they have clear individual areas
and boundaries. These exemplify LAMA generates seman-
tically more clear masks as expected.

6.3. Ablation Study

We conduct ablation and control experiments on variants
of our proposed model and LostGAN (Tab. 5). We con-
duct control experiments on a variant of our model with-
out LAMA and a LostGAN-V1 variant with LAMA. With-
out the LAMA module, our proposed model suffers from

a performance decay, while LAMA also boosts LostGAN-
V1’s performance without other modifications. This shows
LAMA contributes to the improvement of performance. Be-
sides, we also test both models trained with ground-truth
masks, as done in Sec. 3. In this case, the performances
exceed those of models with LAMA. This supports our hy-
pothesis on the importance of mask quality again.

Furthermore, we investigate the contribution of other
components in our model. Firstly, we test whether locality-
awareness is important in LAMA by matching the pixel
query with the object key in (Eq. 3). In this case, adap-
tion is only based on the pixelwise object distribution rather
than the local mask configuration. Secondly, we test the
contribution of BGN and noise injection (Sec. 4.1). Thirdly
we train the model with an extra reconstruction loss. Re-
sults in Tab. 5 show the performance decreases in most case
with these changes and supports our current design.

7. Conclusion
In this paper, we hypothesize the importance of semanti-

cally clear masks in the layout-to-image generation. The
hypothesis is supported by that a LostGAN [32] model
trained with real masks has decayed performances when
given tainted masks. Based on the hypothesis, we propose
Locality-Aware Mask Adaption module. Experimental re-
sults show LAMA substantially improves mask clarity and
contributes to the improvement of performance.
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