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Abstract

Unsupervised pretraining has achieved great success
and many recent works have shown unsupervised pretrain-
ing can achieve comparable or even slightly better transfer
performance than supervised pretraining on downstream
target datasets. But in this paper, we find this conclusion
may not hold when the target dataset has very few labeled
samples for finetuning, i.e., few-label transfer. We analyze
the possible reason from the clustering perspective: 1) The
clustering quality of target samples is of great importance
to few-label transfer; 2) Though contrastive learning is es-
sential to learn how to cluster, its clustering quality is still
inferior to supervised pretraining due to lack of label super-
vision. Based on the analysis, we interestingly discover that
only involving some unlabeled target domain into the un-
supervised pretraining can improve the clustering quality,
subsequently reducing the transfer performance gap with
supervised pretraining. This finding also motivates us to
propose a new progressive few-label transfer algorithm for
real applications, which aims to maximize the transfer per-
formance under a limited annotation budget. To support our
analysis and proposed method, we conduct extensive exper-
iments on nine different target datasets. Experimental re-
sults show our proposed method can significantly boost the
few-label transfer performance of unsupervised pretraining.

1. Introduction
Model pretraining plays a key role for deep transfer

learning. By pretraining the model on a large auxiliary
source dataset and then fine-tuning on the small-scale tar-
get dataset, it can achieve better performance than the train-
from-scratch counterpart. The recent work BiT [25] has
shown that supervised pretraining on large scale source
dataset can achieve very strong transfer performance. De-
spite the great success of supervised pretraining, a large
amount of labeled source data is required. Recently, unsu-
pervised pretraining [20, 7, 18, 6, 8, 19] has achieved great
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Figure 1: t-SNE visualization of features on Pet [30] by using dif-
ferent models: (a) unsupervised pretrained model, (b)supervised
pretrained model, (c) target-aware unsupervised pretrained(TUP)
model, (d) finetuned TUP model by using a few labeled samples.

progress. By directly pretraining on the larger-scale unla-
beled data (e.g., ImageNet), many state-of-the-art (SOTA)
unsupervised learning works [7, 18, 19, 6] demonstrate that
unsupervised pretraining can achieve comparable or even
slightly better transfer performance than supervised pre-
training on many downstream target datasets.

In this paper, we ask the question “does unsuper-
vised pretraining really achieves comparable transfer per-
formance as supervised pretraining?”. And we empirically
find the answer is “no” when the downstream target dataset
has limited label samples for finetuning, i.e., “few-label
transfer”. We seek to investigate the underlying reason
from the clustering perspective. We hypothesize that the
clustering of target samples in the feature space is of great
importance for few-label transfer and unsupervised pre-
training has worse clustering quality than supervised pre-
training. Intuitively, if the pretrained representation has a
very good clustering in the target space, it will only need
very few labels to learn a good classifier boundary. To ver-
ify our hypothesis, we compare the clustering quality of un-
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supervised and supervised pretrained models on the target
dataset in Figure 1 (a) (b). Obviously, the target samples are
better clustered by using the supervised pretrained models.
The following analysis (Table 2) will also show the positive
correlation between the clustering quality and the few-label
transfer performance.

To understand why unsupervised pretraining has inferior
clustering quality, we follow the work [34] to analyze the
widely used contrastive loss. Specifically, the contrastive
loss can be decomposed into two terms: an alignment term
that encourages two samples of a positive pair should be
as close as possible, and a uniformity term that encour-
ages the learned representation to uniformly distribute on
the unit hypersphere. With the alignment term, by using
strong augmentation during training, the sub-space of simi-
lar images will overlap and be pulled closer. In other words,
contrastive learning is trying to cluster the pretraining unla-
beled data, but it encourages the learned representation to
distribute in the whole space. Therefore, if the target data
has a large domain gap with the source data, their feature
representations will scatter in the whole space and hard to
cluster. By contrast, supervised pretraining does not encour-
age the learned representation to be uniformly distributed
and the label supervision also provides stronger alignment
force across different images. So the learned representation
is more compact and better clustered even for the same tar-
get domain.

Based on the above analysis, we discover that only in-
volving some unlabeled target data into the unsupervised
pretraining process (“target-aware”unsupervised pretrain-
ing, or TUP) can significantly improve its clustering qual-
ity (Figure 1 (c)), thus subsequently reducing the perfor-
mance gap with supervised pretraining. This finding is very
interesting and useful in real application scenarios where
some small-scale unlabeled data is easy to obtain. On the
other hand, considering data annotation is often conducted
after unlabeled data collection, we further study the ques-
tion that “can we leverage the clustering property to max-
imize the target performance under a limited annotation
budget”. And we propose a simple progressive few-label
transfer algorithm for practical usage. Specifically, given
the pretrained representation, we first conduct the cluster-
ing on the unlabeled target data to find the most representa-
tive samples to annotate, and then use the annotated samples
to finetune the pretrained model. The finetuned model can
further improve the clustering quality (Figure 1 (d)), thus
making data annotation and model finetuning form an ac-
tive co-evolution loop.

To demonstrate our finding and the proposed method,
extensive experiments are conducted on nine different tar-
get datasets. The experimental results demonstrate that the
proposed method can significantly improve the few-label
transfer performance for unsupervised pretraining, and even

outperform supervised pretraining. For example, when
each target dataset has 10 labeled samples per category,
our proposed TUP can boost the average transfer perfor-
mance of unsupervised pretraining from 67.49% to 74.15%,
slightly better than supervised pretraining 73.27%. By fur-
ther equipping our progressive transfer strategy, the transfer
performance can increase to 76.69% under the same anno-
tation budget. To summarize, our contributions are three-
fold: 1) We are the first that points out the few-label transfer
gap between unsupervised pretraining and supervised pre-
training, which is not studied in the research field yet; 2)
We analyzed the possible underlying reasons and discover
a simple and effective strategy for real applications where
some small-scale unlabeled data can be collected; 3) We
further propose a progressive few-label transfer strategy to
boost the performance under the limited annotation budget.

2. Related works

Supervised Pretraining and Unsupervised Pretraining.
Model pretraining is very important in the deep learning lit-
erature. Before the surgence of unsupervised pretraining,
the main success and study focused on supervised pretrain-
ing [22, 21]. And the work BiT [25] shown large scale su-
pervised pretraining is very effective on downstream tasks.
In recent two years, the representative works [35, 20, 7] ig-
nited the interests of the research field in studying unsu-
pervised pretraining, and made great progress [6, 19, 8].
By evaluating the performance on many downstream target
datasets, they demonstrate that unsupervised pretraining has
shown comparable transfer performance to supervised pre-
training. In this paper, we find this conclusion does not hold
when the target dataset has few labeled samples for finetun-
ing. Our work is complementary to existing unsupervised
pretraining works, and proposed two practical strategies to
improve the transfer performance for real applications.

Few-shot Learning and Active Learning. Though our
focus is to analyze the transfer performance of unsuper-
vised pretraining, our work is loosely related to few-shot
learning [16, 31, 29] and may benefit the finetuning based
few-shot learning methods [10, 14]. We demonstrate that,
if some small-scale unlabeled data exists in the target do-
main, we can leverage it to improve the pretrained rep-
resentation and can achieve better few-shot performance.
For semi-supervised learning [28, 33, 3], the improved pre-
trained representation can also provide better initialization
and boost the performance. Our progressive transfer strat-
egy shares the similar spirit as the classical active learning
[27, 32, 4, 2, 17]. However, most active learning methods
only consider the target domain and involve very compli-
cated sampling strategies. In this paper, we aim to im-
prove the transfer performance from both the pretraining
and transfer perspective and propose a simple and effective
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Method DTD Food101 CIFAR10 CIFAR100 EuroSAT Pet37

2

MoCoV2 38.06 15.80 41.29 22.95 60.20 56.87
DCV2 37.18 20.08 43.12 22.36 53.84 49.38
SimCLRV2 35.23 17.44 40.52 18.33 57.17 37.40
BiT 44.66 24.99 59.05 37.40 68.31 63.95

4

MoCoV2 48.20 25.49 50.30 35.08 69.18 68.94
DCV2 46.47 30.63 49.90 33.11 58.34 57.28
SimCLRV2 46.54 27.42 48.78 28.80 70.42 51.12
BiT 53.69 35.26 71.90 47.79 79.05 76.08

6

MoCoV2 53.00 31.01 56.44 42.74 72.15 72.35
DCV2 50.93 36.51 49.57 39.70 65.00 60.09
SimCLRV2 50.90 34.08 53.59 35.42 72.97 58.87
BiT 57.64 41.26 75.62 54.17 82.55 79.85

10

MoCoV2 58.68 38.38 59.92 51.87 75.69 77.62
DCV2 56.32 43.92 53.06 48.06 75.26 64.24
SimCLRV2 55.89 42.10 59.64 43.57 75.77 69.11
BiT 63.06 48.77 79.99 59.92 86.25 84.81

Table 1: The few-label transfer performance on six differ-
ent target datasets for three SOTA unsupervised pretrained
models, including MoCoV2 [11], SimCLRv2 [8] and Deep-
ClusterV2 (DCV2) [6], and supervised pretrained models
from BiT [25]. All the results are averaged by 5 trials.

strategy. But we believe combining our method with more
sophisticated active learning strategies can achieve better
performance, which we leave for future study.

3. Few-Transfer Analysis
We formulate the problem of few-label transfer in the

paradigm of pretraining and finetuning. Under the super-
vised pretraining setting, the model is first pretrained on a
large-scale labeled source dataset S# = {xs

i , y
s
i }Mi=1, and

then finetune the model on the small-scale target dataset
T = {xj , yj}Nj=1 with few labeled samples, where N ≪
M . Under the unsupervised pretraining setting, the source
dataset S = {xs

i}Mi=1 is fully unlabeled and the target
dataset T is the same.

To compare the few-label transfer ability we adopt three
existing SOTA unsupervised pretraining methods, i.e., Mo-
CoV2 [11], SimCLRV2[8] and DeepClusterV2(DCV2)[6],
and the supervised pretraining models from BiT [25].
The ImageNet [13] is used as the large-scale source data
for pretraining, and the subsets of six small-scale tar-
get datasets are used for few-label transfer: Pet37 [30],
DTD [12], CIFAR10 and CIFAR100 [26], Food101 [5]
and EuroSAT [23]. The detailed comparison results are
shown in the Tab.1. It can be seen that all the unsupervised
pretrained models show inferior few-label transfer perfor-
mance than the supervised counterpart.

We continue to compare the transfer performance be-
tween unsupervised pretraining and supervised pretraining
in depth, from few-label transfer to full-label transfer. Here,
full-label transfer means finetuning the pretrained model on
the full labeled target dataset. Specifically, we take the

Figure 2: The transfer performance comparison by vary-
ing different number of labeled samples during finetuning,
“MoCo-TUP” is our target-aware unsupervised pretraining.

Dataset Unsup-1k Sup-100 Sup-1k TUP

Pet
Cluster Acc. 47.72 12.82 67.44 61.69
Transfer Acc. 70.93 45.65 77.94 75.10

Food101
Cluster Acc 11.86 4.03 17.23 39.23
Transfer Acc. 28.39 18.29 38.69 52.25

Table 2: The clustering accuracy and few-label trans-
fer performance of different pretrained models. “Un-
sup, Sup, TUP” are unsupervised, supervised and target-
aware unsupervised pretraining respectively, and “-1k/100”
is ImageNet-1k/100.

DTD dataset (80 labeled samples per category) as an ex-
ample, and test the transfer performance of different pre-
trained models by varying the number of labeled samples
during finetuning. As shown in Figure 2, although super-
vised pretraining is superior to the unsupervised pretrain-
ing by a considerable margin, the performance gap becomes
much smaller as the number of labeled samples increases. A
similar trend can also be observed in other datasets. There-
fore, we have the following observations:

• The unsupervised pretrained representation itself is not
bad. Given a moderate number of labels, it can match
or even beat the transfer performance of the super-
vised counterpart. This is consistent with the full-label
transfer conclusion in existing unsupervised learning
works [7, 18].

• But for few-label transfer, unsupervised pretraining is
often inferior to supervised pretraining.

Clustering Matters to Few-label Transfer. We pro-
pose a clustering perspective to analyse the reason why
unsupervised pretraining shows poor few-label transfer
performance than supervised pretraining. Here we use
MoCoV2[11] as the instantiation of unsupervised pretrain-
ing, and compare unsupervised and supervised pretraining
in terms of the target sample distribution in the feature space
through t-SNE [24]. The visualization is shown in Figure 1
and the target Pet37 dataset [30] is used as the example.
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As we can see in Figure 1 (a) and (b), the features ob-
tained from the supervised pretrained model are better clus-
tered than those obtained from the unsupervised pretrained
model. Based on this observation, we make intuitive sense
that the clustering quality matters to few-label transfer.

This hypothesis can be further elucidated. If the target
features are well clustered after pretraining, it is much eas-
ier to learn a good classifier even though only a few labeled
samples are available in the following finetuning. We fur-
ther quantitatively study the relationship between the clus-
tering quality and few-label transfer performance with only
5 labeled samples per class on different pretrained mod-
els: unsupervised pretrained ResNet-50 on ImageNet-1k,
supervised pretrained ResNet-50 on ImageNet-100(a sub-
set of ImageNet-1K with 100 categories) and ImageNet-1k
respectively. We use the BCubed Precision (Cluster Acc)
as the metric of clustering quality [1]. The results shown in
Table 2 demonstrate that the few-label transfer performance
has a positive correlation to the clustering accuracy.

Understand Contrastive Learning. To further understand
why unsupervised pretraining has worse clustering quality
than supervised pretraining, we follow [34, 9] and decou-
ple the widely used unsupervised learning loss, i.e., con-
trastive loss, into two terms: one alignment term and one
uniformity term. Formally, following the definition in [7],
the contrastive loss between two augmentations (i, j) of the
same image for a mini-batch B is:

Lctr = − 1

N

∑
i,j∈B

log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)

(1)
where zi, zj are the normalized representations extracted
from the target model for the two augmented views of the
same example. sim(u,v) is the cosine similarity between
u and v. N is the batch size and τ is the temperature hyper-
parameter. By expanding the loss, the above loss can be
rewritten as:

Lctr = − 1

Nτ

∑
i,j

sim(zi, zj)+

1

N

∑
i

log

2N∑
k=1

1[k ̸=i] exp(sim(zi, zk)/τ)

(2)

The first term of Eq.2 is the alignment term, which encour-
ages two augmentations of each image in the mini-batch
(a positive pair) to have similar features. By using strong
augmentation during training, the sub-space of similar im-
ages will overlap and be pulled closer. The second term
is closely connected to the pairwise potential in a Gaus-
sian kernel and can be minimized with a perfect uniform
encoder, thus named as the uniformity term. The unifor-
mity term encourages the feature vectors to be roughly uni-
formly distributed on the unit hypersphere (the normalized

whole feature space). In this sense, we can find that con-
trastive learning is indeed to cluster the pretraining unla-
beled data, but it encourages the learned representation to
uniformly distribute in the whole space. Therefore, if the
target dataset has some domain gap with the source dataset,
their feature representations will scatter and hard to cluster.
By contrast, there is no such uniformity term in the super-
vised pretraining and the label supervision can also provide
stronger alignment force across different images than the
alignment force from two augmentations of the same image
in the contrastive loss. Therefore, the supervised pretrained
representation may reside in a more compact space.

4. Target-aware Unsupervised Pretraining
Target-aware Unsupervised Pretraining. Based on the
above analysis, in order to boost the few-label transfer per-
formance of unsupervised pretraining, we should improve
the clustering quality of the pretrained representation in the
target domain. Considering contrastive learning is able to
cluster the pretraining unlabeled data, we propose a sim-
ple and effective strategy called Target-aware Unsupervised
Pretraining(TUP). It is designed for the typical applications
where some small-scale unlabeled data is relatively easy to
obtain. Specifically, besides the large-scale source data, we
also add the unlabeled target data into the unsupervised pre-
training stage, so that the unsupervised pretrained model
can also have a better clustering quality of the target data.
By contrast, existing unsupervised pretraining that only uti-
lizes the source data can be regarded as “target-agnostic”.
The improved clustering will significantly boost the trans-
fer performance. In Table 2, we show TUP’s clustering ac-
curacy and its corresponding transfer performance on the
target domain, and the corresponding feature visualization
is shown in Figure 1 (c).

Sample Re-balancing. Empirically, we find naively mix-
ing the small-scale unlabeled target data and the large-scale
unlabeled source data with the ratio 1 : 1 in the pretrain-
ing does not work well. Because the amount of the unla-
beled target images in T is much smaller than the auxiliary
source dataset S, it will cause serious learning imbalance
and make target-aware unsupervised pretraining degrade to
the vanilla unsupervised pretraining. To mitigate this is-
sue, we propose a simple and effective sample re-balancing
strategy which increases the percentage p of target data in
the mixture of target data T and source data S. Besides,
we observe finding a proper percentage p is necessary, a too
large or small percentage p will both cause the degradation
of performance, which we will study in the ablation part.

5. Progressive Few-label Transfer
Since data annotation is often conducted after the unla-

beled data collection in real applications, the relationship
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Figure 3: The improved unsupervised pretraining framework for few-label transfer in real applications, which has two key
components: target-aware unsupervised pretraining and progressive few-label transfer. By involving target data into pre-
training, target-aware unsupervised pretraining can get better clustering in the target space. Progressive few-label transfer
co-evolves the process of eigen-sample selecting by clustering and model-finetuning.

Algorithm 1 Anchor-Constrained KMeans in κ-th evolution

Input: Set of target featuresF = {fi}Ni=1 (estimated cluster label
of fi is denoted as fL

i ). Number of new clusters K. Set of
anchors A = {aj}mj=1, Maximum iteration of KMeans tmax.

Output: K cluster centers {µj}m+K
j=1

1: – Initialize Centers:
2: µ0

j ←− aj , j = 1, ...,m; randomly initialize µ0
m+1, ..., µ

0
m+K .

3: for t = 1, . . . , tmax do
4: – Assign Samples to Cluster:
5: for i = 1, . . . , N do
6: fL

i = arg min
j
||fi − µj ||2, j = 1, ...,m+K

7: end for
8: – Update Cluster Centers:
9: µt

j = µt−1
j , j = 1, ...,m

10: for j = m+ 1, . . . ,m+K do
11: F t

j = {fi|fL
i = j, fi ∈ F},

12: µt
j = 1

|Ft
j |
∑

f∈Ft
j
f ,

13: end for
14: end for

between the few-label transfer performance and the cluster-
ing quality further motivates us to study the question “can
we leverage this property to maximize the target perfor-
mance under a limited annotation budget”. This is impor-
tant for the applications where data annotation is extremely
difficult and costly. Before elaborating our final strategy, we
first introduce our motivations from two perspectives:

• The target samples closer to the clustering centers are
more representative (called “eigen-samples”), which
suggests choosing such samples to label can be more
effective, especially under a very limited label budget.

• Finetuning the model with such labeled samples can
further improve the clustering quality of all target sam-

ples, and in return, the improved model continues to
help identify more representative samples.

Progressive Few-label Transfer. Integrated with the above
motivations, we propose a new progressive few-label trans-
fer strategy for real applications. As shown in Figure 3, the
progressive few-label transfer follows a co-evolution pro-
cess: “clustering → eigen-samples annotation → model
finetuning in a loopy way”. Specifically, at each evolution
step κ, we first re-cluster the target features and incremen-
tally find some eigen-samples, then annotate the new eigen-
samples, and finally finetune the model with all the labeled
eigen-samples. This co-evolution process will end until we
reach the total annotation budget.

We develop a new KMeans-based clustering algorithm
called Anchor Constrained KMeans (ACKMeans) to im-
plement the incremental eigen sampling. All eigen-samples
found at previous κ − 1 evolution steps are referred to an-
chors. The key idea of ACKMeans (at κ-th evolution) is
that the anchors as cluster centers won’t be changed dur-
ing KMeans and help exclude samples close to these an-
chors; while the remaining of dissimilar samples would be
clustered into K new clusters, which helps select K new
eigen-samples to annotate. This way allows us to optimize
the annotation budget to the most extent, since each eigen-
sample represents a cluster of similar samples associated to
it. At every evolution, supposing b annotation budget per
category, totally K = b× C new eigen-samples are chosen
to be annotated, where C denotes the number of target cat-
egories. Hence, the total annotation budget for target data
would be K × κmax, where κmax is the maximum evolu-
tion steps. The Alg.1 shows the detailed procedure of ACK-
Means.

To apply the progressive few-label transfer strategy in
the real applications, we suggest a practical “1 + ϵ” setting.
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Initially, only “1” image per target category is given. We
think it reasonable since each category needs an indicator
image when the annotation process starts. Next, “ϵ” extra
annotations are required to be labeled for each category on
average, and thus the total annotation cost ϵ × C = K ×
κmax. In this setting, we do not guarantee each category
can get exactly ϵ extra labels.

By contrast, existing few-label transfer setting assumes
all the labels to be pre-known or randomly chooses a cer-
tain percentage (e.g., 5%) of labeled samples per category
to guarantee number of labeled samples are class balanced.
It can be regarded as an “oracle setting”, since consuming
labels beforehand is usually unrealistic in real applications
or it will need the annotator to watch and label more sam-
ples beyond the few labels.

6. Experiments
6.1. Experimental Setup

Datasets. In the following experiments, we use the
ImageNet-1k dataset [13] as the auxiliary large scale
source dataset, and consider 9 small-scale target datasets:
Pet37 [30], SUN397 [36], DTD [12], CIFAR10 and CI-
FAR100 [26], Caltech101 [15], Food101 [5] and Eu-
roSAT [23]. These datasets are very diverse and differ in
the total image number, input resolution and nature of their
categories, ranging from general object categories (e.g., CI-
FAR10/100) to fine-grained ones (e.g., Pet37). We follow
the standard setting as [7, 18, 25], and report the mean class
accuracy for Pet37, Caltech101 and the Top1 accuracy for
other datasets. All the results are averaged by 5 trials to
reduce randomness.
Pretraining Details. We build our target-aware unsuper-
vised learning based on MoCoV2 [11] and follow its train-
ing protocol. In details, we adopt the SGD optimizer with
momentum 0.9 and the weight decay 0.0001. The initial
learning rate is 0.24 with a cosine scheduler and the batch
size is 2,048. All the pretraining models are trained with
800 epochs. The backbone network for all the experiments
uses ResNet-50 [22]. The default sample re-balancing ratio
varies based on the target dataset size so that the resampled
target data size is about 20% of the source dataset size.
Finetuning Details. We finetune the pretrained model for
60 epochs without weight decay. The learning rate for
the newly added FC layer and pretrained layers is 3.0 and
0.0001 respectively. We only use random crop with resiz-
ing, flips for training and the center crop with resizing for
testing.

6.2. Overall Results

Table 3 reports the few-label transfer performance of the
proposed model on all benchmark datasets. For compari-
son, we consider two models as our strong baseline: vanilla

unsupervised pretrained models (MoCoV2 [11]) and the su-
pervised pretrained models (BiT [25]) under the oracle la-
beling setting, which select “1+ϵ” labeled samples for each
category in a strictly class-balance way. We report both the
performance under the oracle setting and the progressive
“1 + ϵ” few-label transfer setting for our proposed method.
Here, our method adopts the exactly same pretraining and
finetuning setting to MoCoV2, and directly uses the offi-
cially released code for BiT pretraining and finetuning.

We can observe the following main results. 1) Our
target-aware unsupervised pretraining consistently outper-
forms the vanilla unsupervised pretraining baseline Mo-
CoV2 across all the datasets by a large margin. The re-
sults verify the effectiveness of involving target set with
source set into the unsupervised pretraining. 2) Our method
outperforms the supervised pretraining(BiT) on majority of
datasets and is comparable or slightly worse on the rest.
On average, our method performs better than BiT. This
also shows that a large amount of labeling information is
very useful, and that target-aware pretraining can compen-
sate for the gap caused by the lack of labeling informa-
tion. 3) Combining target-aware unsupervised pretraining
with the progressive few-label transfer can achieve better
performance than the counterpart under the oracle setting,
even though our practical “1+ϵ” setting does not assume the
class-balance.

By analyzing the performance among different datasets,
we further get some fine-grained observations:

1) Our method outperforms both vanilla unsupervised
pretraining and supervised pretraining when the gap be-
tween source and target domains is either very large (e.g.,
SUN397) or very small (e.g. Caltech101). For example,
SUN397 is for scene recognition while ImageNet is almost
object-centric. Therefore, either the supervised pretraining
model or the vanilla unsupervised pretraining model cannot
obtain good clustering on the target domain. (their Clus-
ter ACC [1]: 22.93% vs. 20.11%). In contrast, Caltech101
is object-centeric and shares similar categories with Ima-
geNet, therefore both the supervised and the vanilla unsu-
pervised pretrainings on ImageNet can achieve good clus-
tering (their Cluster ACC: 47.11% vs. 53.14%). By involv-
ing the target data, our method can improve the clustering
quality (Cluster ACC: 34.36% on SUN397, 59.88% on Cal-
tech101) especially for large domain gap (SUN397), thus
bringing significant performance gain.

2) Though our method only requires a small-scale unla-
beled target dataset, we empirically find it will bring more
benefits if the target dataset has a larger scale. One typical
example is the Food101 dataset. It has a total of about 75k
high-resolution images and each category has about 750 im-
ages. It is consistent with the common sense that bigger data
can help learn better representation.

3) Our method is comparable to or slightly worse than
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1+ ϵ Method DTD Food101 SUN397 Caltech101 STL10 CIFAR10 CIFAR100 EuroSAT Pet37 Mean Acc.

1+1

MoCoV2 38.06 15.80 24.28 63.12 75.06 41.29 22.95 60.20 56.87 45.03
BiT 44.66 24.99 27.21 61.07 74.80 59.05 37.40 68.31 63.95 52.70
Ours 44.79 34.27 33.16 78.75 81.74 59.44 30.24 68.84 65.93 55.24
Ours-Pro 44.86 35.92 35.46 79.87 82.45 62.19 32.74 69.62 68.87 59.30

1+3

MoCoV2 48.20 25.49 35.06 76.54 87.35 50.30 35.08 69.18 68.94 56.84
BiT 53.69 35.26 36.72 73.89 83.28 71.90 47.79 79.05 76.08 63.61
Ours 55.17 48.03 43.30 84.92 88.07 72.86 43.94 76.15 73.65 65.12
Ours-Pro 57.11 49.66 45.38 86.13 88.19 71.20 46.80 76.70 74.07 68.51

1+5

MoCoV2 53.00 31.01 40.71 82.14 89.21 56.44 42.74 72.15 72.35 62.05
BiT 57.64 41.26 41.11 80.41 86.71 75.62 54.17 82.55 79.85 68.30
Ours 60.05 55.35 47.85 87.23 90.10 77.22 52.68 80.58 76.18 70.22
Ours-Pro 61.56 56.50 49.42 88.11 90.14 74.89 53.74 79.29 79.01 72.55

1+9

MoCoV2 58.68 38.38 47.75 86.75 90.85 59.92 51.87 75.69 77.62 67.49
BiT 63.06 48.77 44.96 86.29 90.07 79.99 59.92 86.25 84.81 73.27
Ours 65.57 62.56 53.48 89.19 91.39 79.67 60.91 84.14 80.48 74.15
Ours-Pro 66.58 62.67 54.30 89.55 92.02 80.73 60.63 81.42 84.41 76.69

Table 3: The few-label transfer results on nine benchmark target datasets. “Ours-Pro” means using our progressive few-label transfer
strategy and “Ours” means using the oracle few-label transfer setting. All the results are averaged by 5 trials to reduce randomness.

Dataset Method 1-label/class 4-label/class 10-label/class

DTD
VUP 26.74 48.20 58.68
UF 26.45 48.71 58.34

TUP 32.07 55.17 65.57

Pet37
VUP 41.23 68.94 77.62
UF 40.01 67.03 75.56

TUP 57.28 73.65 80.48

STL10
VUP 53.86 87.35 90.85
VF 45.22 72.43 79.34

TUP 67.94 88.07 91.39

Table 4: Vanilla Unsupervised Pretraining(VUP) vs. Unper-
vised Finetuning(UF) vs. Target-aware Pretraing(TUP). The
transfer accuracy is evaluated under the oracle setting.

supervised pretraining if the target dataset has a low im-
age resolution. For example, the image resolution of CI-
FAR10/100 and EuroSAT is only 32 × 32 and 64 × 64, so
directly upsampling them to match the image resolution on
ImageNet may not be a good way for our method. In addi-
tion, STL10 has similar categories as CIFAR10 but a larger
image resolution, and thus our method achieves better per-
formance in STL10.

6.3. Ablation Study

Benefits from Target-aware Unsupervised Pretraining.
In this experiment, we validate the advantage of target-
aware unsupervised pretraining over vanilla unsupervised
pretraining, and another simple unsupervised finetuning
baseline. In the unsupervised finetuning baseline, we con-
tinue to perform unsupervised pretraining on the unlabeled
target set with a smaller learning rate upon the unsupervised
pretrained representation on the ImageNet. The results of
three representative datasets are shown in the Table 4. As
we can see, directly unsupervised finetuning can not work

Figure 4: Different percentages of unlabeled target data in-
volved into target-aware unsupervised pretraining. The label-
efficient transfer performance is used for evaluation.

well and even degrades the transfer ability of vanilla un-
supvised pretraining. Attributing to the merit of simultane-
ously maintaining the transfer ability learned in large-scale
unlabeled source data and involving the information of tar-
get set, our target-aware pretraining yields consistent per-
formance gain upon these baselines.

Influence of Target Dataset Scale in Pretraining. To
further verify the hypothesis that our method will benefits
from a larger amount of unlabelled target dataset, we further
conduct a simple ablation experiment on the DTD dataset.
Specifically, during the target-aware unsupervised pretrain-
ing(TUP), we involve different percentages of target data
(25%, 50%, 75%, 100%), and then evaluate the few-label
transfer performance. As shown in Figure 4, involving more
unlabeled target data into pretraining can help learn better
representation, thus producing better performance.
Ablation of Sample Re-balancing Ratio. As stated in the
method part, the target datasets often have a small image
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Figure 5: The number of selected eigen-samples to query label-
ing at each evolution step of the progressive few-label transfer.

balance ratio 1+1 1+3 1+5 1+7 1+9
w/o re-balance 40.27 49.55 54.42 59.28 61.01

20% 44.86 57.11 61.56 64.38 66.58
50% 38.83 50.06 55.27 60.59 63.86

Table 5: Different sampling re-balancing ratios during pre-
training evaluated by using the performance on the DTD dataset.

amount and can be smaller than source dataset by several
magnitudes. Therefore, we find sample re-balancing is in-
dispensable to relieve the data imbalance issue during pre-
training. Here, we use the DTD dataset as an example
and try two variants: without sample re-balancing and with
a large re-balancing ratio (resampled target dataset size is
50% of the source dataset size). As we can see in Table 5,
the transfer performance degrades if no sample re-balancing
is applied, and too large re-balancing ratio will also lead to
inferior results because the benefit from the auxiliary source
dataset is suppressed. We empirically find a re-balancing
ratio ∼ 20% works all the experiments.
Ablation of the Annotation Number b. In our default im-
plementation of progressive few-label transfer, we set b = 1
at each evolution step. However, we can also set b > 1 to
reduce the total evolution step number and annotate more
images at each evolution step. To demonstrate the general-
ization ability with different b values, we design two simple
ablation experiments. In details, suppose the maximum an-
notation budget is 10 × C, we try two different finetuning
strategies on the DTD dataset, namely, we either finish the
whole progressive process with 3 steps by setting b = 3
for each step, or with 2 steps by setting b = 4 for the first
step and b = 5 for the second step. As shown in Figure 5,
these two coarse strategies achieve slightly worse perfor-
mance than the default finegrained strategy (b = 1), but still
outperform the random sampling baseline by a large mar-
gin. By setting b different values, our method can provide
the flexibility to achieve a trade-off between performance
and training efficiency.
Applying to Semi-supervised Transfer. In this paper, we
mainly focus on improving the few-label transfer perfor-

Dataset Method 5-label/class 10-label/class

CIFAR10
MoCoV2 83.64 92.15

Ours 87.91 96.38

CIFAR100
MoCoV2 61.54 70.41

Ours 68.35 73.77

Food101
MoCoV2 43.26 62.98

Ours 64.83 75.75

Table 6: Semi-supervised Transfer performance comparison be-
tween unsupervised pretraining (MoCoV2) and our target-aware
unsupervised pretraining.

mance of unsupervised pretraining and demonstrate the bet-
ter performance of our target-aware unsupervised pretrain-
ing for few-label finetuning. But considering some unla-
beled target data is available, we can also leverage some
semi-supervised transfer methods to utilize both the unla-
beled data and the labeled data. Here we take the SOTA
semi-supervised learning method FixMatch [33] and adopt
different pretraining models as initialization to compare
the final transfer performance. CIFAR10, CIFAR100, and
Food101 are used here because they have a larger image
number. In this setting, different from our method, the
vanilla unsupervised pretraining baseline only leverages the
unlabeled data in the transfer stage. As shown in Table 6,
benefiting from the better pretrained representation as ini-
tialization, our method also achieve better semi-supervised
transfer performance.

7. Conclusion
In recent years, unsupervised pretraining has made

tremendous progress and many recent works show that un-
supervised pretraining can achieve comparable transfer per-
formance to supervised pretraining. But in this paper, we
find unsupervised pretraining still perform much worse for
few-label transfer, where very few labeled target samples
are available for finetuning. This phenomenon has not been
studied in existing methods. We provide some possible rea-
sons from the clustering perspective and propose a simple
target-aware unsupervised pretraining method to mitigate
this issue. This is applicable to the common application
scenarios where some small-scale unlabeled data can be
collected. To further maximize the few-label transfer per-
formance under a given annotation budget, we also propose
a new progressive few-label transfer algorithm, which it-
eractively finds the best samples to annotate and finetunes
the model based on the labeled samples. Through extensive
experiments on multiple different datasets, we demonstrate
that the proposed strategy can significantly boost the few-
label transfer performance of unsupervised pretraining.
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