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Abstract

Recently, backdoor attacks pose a new security threat to
the training process of deep neural networks (DNNs). At-
tackers intend to inject hidden backdoors into DNNs, such
that the attacked model performs well on benign samples,
whereas its prediction will be maliciously changed if hidden
backdoors are activated by the attacker-defined trigger. Ex-
isting backdoor attacks usually adopt the setting that trig-
gers are sample-agnostic, i.e., different poisoned samples
contain the same trigger, resulting in that the attacks could
be easily mitigated by current backdoor defenses. In this
work, we explore a novel attack paradigm, where backdoor
triggers are sample-specific. In our attack, we only need
to modify certain training samples with invisible perturba-
tion, while not need to manipulate other training compo-
nents (e.g., training loss, and model structure) as required
in many existing attacks. Specifically, inspired by the recent
advance in DNN-based image steganography, we generate
sample-specific invisible additive noises as backdoor trig-
gers by encoding an attacker-specified string into benign
images through an encoder-decoder network. The mapping
from the string to the target label will be generated when
DNNs are trained on the poisoned dataset. Extensive ex-
periments on benchmark datasets verify the effectiveness of
our method in attacking models with or without defenses.
The code will be available at https://github.com/
yuezunli/ISSBA.

1. Introduction
Deep neural networks (DNNs) have been widely and

successfully adopted in many areas [11, 25, 49, 19]. Large
amounts of training data and increasing computational
power are the key factors to their success, but the lengthy
and involved training procedure becomes the bottleneck for
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Figure 1. The comparison of triggers in previous attacks (e.g.,
BadNets [8]) and in our attack. The triggers of previous attacks
are sample-agnostic (i.e., different poisoned samples contain the
same trigger), while those of our method are sample-specific.

users and researchers. To reduce the overhead, third-party
resources are usually utilized in training DNNs. For exam-
ple, one can use third-party data (e.g., data from the Internet
or third-party companies), train their model with third-party
servers (e.g., Google Cloud), or even adopt third-party APIs
directly. However, the opacity of the training process brings
new security threats.

Backdoor attack1 is an emerging threat in the training
process of DNNs. It maliciously manipulates the predic-
tion of the attacked DNN model by poisoning a portion
of training samples. Specifically, backdoor attackers in-
ject some attacker-specified patterns (dubbed backdoor trig-
gers) in the poisoned image and replace the corresponding
label with a pre-defined target label. Accordingly, attack-
ers can embed some hidden backdoors to the model trained
with the poisoned training set. The attacked model will
behave normally on benign samples, whereas its predic-

1Backdoor attack is also commonly called ‘neural trojan’ or ‘trojan at-
tack’ [26]. In this paper, we focus on the poisoning-based backdoor attack
[21] towards image classification, although the backdoor threat could also
happen in other scenarios [1, 46, 43, 20, 29, 36, 44].
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tion will be changed to the target label when the trigger is
present. Besides, the trigger could be invisible [3, 18, 34]
and the attacker only needs to poison a small fraction of
samples, making the attack very stealthy. Hence, the insidi-
ous backdoor attack is a serious threat to the applications of
DNNs.

Fortunately, some backdoor defenses [7, 41, 45] were
proposed, which show that existing backdoor attacks can
be successfully mitigated. It raises an important question:
has the threat of backdoor attacks really been resolved?

In this paper, we reveal that existing backdoor attacks
were easily mitigated by current defenses mostly because
their backdoor triggers are sample-agnostic, i.e., different
poisoned samples contain the same trigger no matter what
trigger pattern is adopted. Given the fact that the trigger
is sample-agnostic, defenders can easily reconstruct or de-
tect the backdoor trigger according to the same behaviors
among different poisoned samples.

Based on this understanding, we explore a novel attack
paradigm, where the backdoor trigger is sample-specific.
We only need to modify certain training samples with invis-
ible perturbation, while not need to manipulate other train-
ing components (e.g., training loss, and model structure) as
required in many existing attacks [34, 27, 28]. Specifically,
inspired by DNN-based image steganography [2, 51, 39],
we generate sample-specific invisible additive noises as
backdoor triggers by encoding an attacker-specified string
into benign images through an encoder-decoder network.
The mapping from the string to the target label will be gen-
erated when DNNs are trained on the poisoned dataset. The
proposed attack paradigm breaks the fundamental assump-
tion of current defense methods, therefore can easily bypass
them.

The main contributions of this paper are as follows: (1)
We provide a comprehensive discussion about the success
conditions of current main-stream backdoor defenses. We
reveal that their success all relies on a prerequisite that
backdoor triggers are sample-agnostic. (2) We explore a
novel invisible attack paradigm, where the backdoor trig-
ger is sample-specific and invisible. It can bypass existing
defenses for it breaks their fundamental assumption. (3)
Extensive experiments are conducted, which verify the ef-
fectiveness of the proposed method.

2. Related Work
2.1. Backdoor Attack

The backdoor attack is an emerging and rapidly growing
research area, which poses a security threat to the training
process of DNNs. Existing attacks can be categorized into
two types based on the characteristics of triggers: (1) visible
attack that the trigger in the attacked samples is visible for
humans, and (2) invisible attack that the trigger is invisible.
Visible Backdoor Attack. Gu et al. [8] first revealed the

backdoor threat in the training of DNNs and proposed the
BadNets attack, which is representative of visible backdoor
attacks. Given an attacker-specified target label, BadNets
poisoned a portion of the training images from the other
classes by stamping the backdoor trigger (e.g., 3× 3 white
square in the lower right corner of the image) onto the be-
nign image. These poisoned images with the target label,
together with other benign training samples, are fed into the
DNNs for training. Currently, there was also some other
work in this field [37, 22, 27]. In particular, the concurrent
work [27] also studied the sample-specific backdoor attack.
However, their method needs to control the training loss ex-
cept for modifying training samples, which significantly re-
duces its threat in real-world applications.
Invisible Backdoor Attack. Chen et al. [3] first dis-
cussed the stealthiness of backdoor attacks from the per-
spective of the visibility of backdoor triggers. They sug-
gested that poisoned images should be indistinguishable
compared with their benign counter-part to evade human
inspection. Specifically, they proposed an invisible attack
with the blended strategy, which generated poisoned images
by blending the backdoor trigger with benign images in-
stead of by stamping directly. Besides the aforementioned
methods, several other invisible attacks [31, 34, 50] were
also proposed for different scenarios: Quiring et al. [31] tar-
geted on the image scaling process during the training, Zhao
et al. [50] targeted on the video recognition, and Saha et
al. [34] assumed that attackers know model structure. Note
that most of the existing attacks adopted a sample-agnostic
trigger design, i.e., the trigger is fixed in either the training
or testing phase. In this paper, we propose a more power-
ful invisible attack paradigm, where backdoor triggers are
sample-specific.

2.2. Backdoor Defense

Pruning-based Defenses. Motivated by the observation
that backdoor-related neurons are usually dormant during
the inference process of benign samples, Liu et al. [24] pro-
posed to prune those neurons to remove the hidden back-
door in DNNs. A similar idea was also explored by Cheng
et al. [4], where they proposed to remove neurons with high
activation values in terms of the `∞ norm of the activation
map from the final convolutional layer.
Trigger Synthesis based Defenses. Instead of eliminating
hidden backdoors directly, trigger synthesis based defenses
synthesize potential triggers at first, following by the second
stage suppressing their effects to remove hidden backdoors.
Wang et al. [41] proposed the first trigger synthesis based
defense, i.e., Neural Cleanse, where they first obtained po-
tential trigger patterns towards every class and then deter-
mined the final synthetic trigger pattern and its target label
based on an anomaly detector. Similar ideas were also stud-
ied [30, 9, 42], where they adopted different approaches for
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generating potential triggers or anomaly detection.
Saliency Map based Defenses. These methods used the
saliency map to identify potential trigger regions to filter
malicious samples. Similar to trigger synthesis based de-
fenses, an anomaly detector was also involved. For exam-
ple, SentiNet [5] adopted the Grad-CAM [35] to extract crit-
ical regions from input towards each class and then located
the trigger regions based on the boundary analysis. A simi-
lar idea was also explored [13].
STRIP. Recently, Gao et al. [7] proposed a method, known
as the STRIP, to filter malicious samples through superim-
posing various image patterns to the suspicious image and
observe the randomness of their predictions. Based on the
assumption that the backdoor trigger is input-agnostic, the
smaller the randomness, the higher the probability that the
suspicious image is malicious.

3. A Closer Look of Existing Defenses
In this section, we discuss the success conditions of cur-

rent mainstream backdoor defenses. We argue that their
success is mostly predicated on an implicit assumption that
backdoor triggers are sample-agnostic. Once this assump-
tion is violated, their effectiveness will be highly affected.
The assumptions of several defense methods are discussed
as follows.
The Assumption of Pruning-based Defenses. Pruning-
based defenses were motivated by the assumption that
backdoor-related neurons are different from those activated
for benign samples. Defenders can prune neurons that are
dormant for benign samples to remove hidden backdoors.
However, the non-overlap between these two types of neu-
rons holds probably because the sample-agnostic trigger
patterns are simple, i.e., DNNs only need few independent
neurons to encode this trigger. This assumption may not
hold when triggers are sample-specific, since this paradigm
is more complicated.
The Assumption of Trigger Synthesis based Defenses.
In the synthesis process, existing methods (e.g., Neural
Cleanse [41]) are required to obtain potential trigger pat-
terns that could convert any benign image to a specific class.
As such, the synthesized trigger is valid only when the
attack-specified backdoor trigger is sample-agnostic.
The Assumption of Saliency Map based Defenses. As
mentioned in Section 2.2, saliency map based defenses re-
quired to (1) calculate saliency maps of all images (toward
each class) and (2) locate trigger regions by finding univer-
sal saliency regions across different images. In the first step,
whether the trigger is compact and big enough determines
whether the saliency map contains trigger regions influenc-
ing the defense effectiveness. The second step requires
that the trigger is sample-agnostic, otherwise, defenders can
hardly justify the trigger regions.
The Assumption of STRIP. STRIP [7] examined a ma-
licious sample by superimposing various image patterns to

the suspicious image. If the predictions of generated sam-
ples are consistent, then this examined sample will be re-
garded as the poisoned sample. Note its success also re-
lies on the assumption that backdoor triggers are sample-
agnostic.

4. Sample-specific Backdoor Attack (SSBA)
4.1. Threat Model
Attacker’s Capacities. We assume that attackers are al-
lowed to poison some training data, whereas they have no
information on or change other training components (e.g.,
training loss, training schedule, and model structure). In
the inference process, attackers can and only can query the
trained model with any image. They have neither informa-
tion about the model nor can they manipulate the inference
process. This is the minimal requirement for backdoor at-
tackers [21]. The discussed threat can happen in many real-
world scenarios, including but not limited to adopting third-
party training data, training platforms, and model APIs.
Attacker’s Goals. In general, backdoor attackers intend
to embed hidden backdoors in DNNs through data poison-
ing. The hidden backdoor will be activated by the attacker-
specified trigger, i.e., the prediction of the image containing
trigger will be the target label, no matter what its ground-
truth label is. In particular, attackers has three main goals,
including the effectiveness, stealthiness, and sustainability.
The effectiveness requires that the prediction of attacked
DNNs should be the target label when the backdoor trig-
ger appears, and the performance on benign testing samples
will not be significantly reduced; The stealthiness requires
that adopted triggers should be concealed and the propor-
tion of poison samples (i.e., the poisoning rate) should be
small; The sustainability requires that the attack should still
be effective under some common backdoor defenses.

4.2. The Proposed Attack
In this section, we illustrate our proposed method. Be-

fore we describe how to generate sample-specific triggers,
we first briefly review the main process of attacks and
present the definition of a sample-specific backdoor attack.
The Main Process of Backdoor Attacks. Let Dtrain =
{(xi, yi)}Ni=1 indicates the benign training set containingN
i.i.d. samples, where xi ∈ X = {0, · · · , 255}C×W×H and
yi ∈ Y = {1, · · · ,K}. The classification learns a function
fw : X → [0, 1]K with parameters w. Let yt denotes the
target label (yt ∈ Y). The core of backdoor attacks is how
to generate the poisoned training set Dp. Specifically, Dp

consists of modified version of a subset ofDtrain (i.e.,Dm)
and remaining benign samples Db, i.e.,

Dp = Dm ∪ Db, (1)

where Db ⊂ Dtrain, γ = |Dm|
|Dtrain| indicates the poisoning

rate, Dm = {(x′, yt)|x′ = Gθ(x), (x, y) ∈ Dtrain\Db},
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Figure 3. The training process of encoder-decoder network. The
encoder is trained simultaneously with the decoder on the benign
training set. Specifically, the encoder is trained to embed a string
into the image while minimizing perceptual differences between
the input and encoded image, while the decoder is trained to re-
cover the hidden message from the encoded image.

Gθ : X → X is an attacker-specified poisoned image gen-
erator. The smaller the γ, the more stealthy the attack.

Definition 1. A backdoor attack with poisoned image
generator G(·) is called sample-specific if and only if
∀xi,xj ∈ X (xi 6= xj), T (G(xi)) 6= T (G(xj)), where
T (G(x)) indicates the backdoor trigger contained in the
poisoned sample G(x).

Remark 1. Triggers of previous attacks are not sample-
specific. For example, for the attack proposed in [3],
T (G(x)) = t,∀x ∈ X , whereG(x) = (1−λ)⊗x+λ⊗t.

How to Generate Sample-specific Triggers. We use a
pre-trained encoder-decoder network as an example to gen-
erate sample-specific triggers, motivated by the DNN-based
image steganography [2, 51, 39]. The generated triggers are
invisible additive noises containing a representative string
of the target label. The string can be flexibly designed by
the attacker. For example, it can be the name, the index of
the target label, or even a random character. As shown in
Figure 2, the encoder takes a benign image and the repre-
sentative string to generate the poisoned image (i.e., the be-
nign image with their corresponding trigger). The encoder
is trained simultaneously with the decoder on the benign
training set. Specifically, the encoder is trained to embed
a string into the image while minimizing perceptual dif-
ferences between the input and encoded image, while the

decoder is trained to recover the hidden message from the
encoded image. Their training process is demonstrated in
Figure 3. Note that attackers can also use other methods,
such as VAE [17], to conduct the sample-specific backdoor
attack. It will be further studied in our future work.
Pipeline of Sample-specific Backdoor Attack. Once the
poisoned training set Dpoisoned is generated based on the
aforementioned method, backdoor attackers will send it to
the user. Users will adopt it to train DNNs with the standard
training process, i.e.,

min
w

1

N

∑
(x,y)∈Dpoisoned

L(fw(x), y), (2)

where L indicated the loss function, such as the cross-
entropy. The optimization (2) can be solved by back-
propagation [33] with the stochastic gradient descent [48].

The mapping from the representative string to the target
label will be learned by DNNs during the training process.
Attackers can activate hidden backdoors by adding triggers
to the image based on the encoder in the inference stage.

5. Experiment
5.1. Experimental Settings

Datasets and Models. We consider two classical im-
age classification tasks: (1) object classification, and (2)
face recognition. For the first task, we conduct experiments
on the ImageNet [6] dataset. For simplicity, we randomly
select a subset containing 200 classes with 100, 000 im-
ages for training (500 images per class) and 10, 000 im-
ages for testing (50 images per class). The image size is
3 × 224 × 224. Besides, we adopt MS-Celeb-1M dataset
[10] for face recognition. In the original dataset, there are
nearly 100,000 identities containing different numbers of
images ranging from 2 to 602. For simplicity, we select the
top 100 identities with the largest number of images. More
specifically, we obtain 100 identities with 38,000 images
(380 images per identity) in total. The split ratio of training
and testing sets is set to 8:2. For all the images, we firstly
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Figure 4. Poisoned samples generated by different attacks. BadNets and Blended Attack use a white-square with the cross-line (areas in
the red box) as the trigger pattern, while triggers of our attack are sample-specific invisible additive noises on the whole image.

perform face alignments, then select central faces, and fi-
nally resize them into 3×224×224. We use ResNet-18 [11]
as the model structure for both datasets. More experiments
with VGG-16 [38] are in the supplementary materials.

Baseline Selection. We compare the proposed sample-
specific backdoor attack with BadNets [8] and the typical
invisible attack with blended strategy (dubbed Blended At-
tack) [3]. We also provide the model trained on the be-
nign dataset (dubbed Standard Training) as another baseline
for reference. Besides, we select Fine-Pruning [24], Neural
Cleanse [41], SentiNet [5], STRIP [7], DF-TND [42] , and
Spectral Signatures [40] to evaluate the resistance to state-
of-the-art defenses.

Attack Setup. We set the poisoning rate γ = 10% and tar-
get label yt = 0 for all attacks on both datasets. As shown in
Figure 4, the backdoor trigger is a 20×20 white-square with
a cross-line on the bottom right corner of poisoned images
for both BadNets and Blended Attack, and the trigger trans-
parency is set to 10% for the Blended Attack. The triggers
of our methods are generated by the encoder trained on the
benign training set. Specifically, we follow the settings of
the encoder-decoder network in StegaStamp [39], where we
use a U-Net [32] style DNN as the encoder, a spatial trans-
former network [15] as the decoder, and four loss-terms for
the training: L2 residual regularization, LPIPS perceptual
loss [47], a critic loss, to minimize perceptual distortion on
encoded images, and a cross-entropy loss for code recon-
struction. The scaling factors of four loss-terms are set to
2.0, 1.5, 0.5, and 1.5. For the training of all encoder-decoder
networks, we utilize Adam optimizer [16] and set the initial
learning rate as 0.0001. The batch size and training itera-
tions are set to 16 and 140, 000, respectively. Moreover, in
the training stage, we utilize the SGD optimizer and set the
initial learning rate as 0.001. The batch size and maximum
epoch are set as 128 and 30, respectively. The learning rate
is decayed with factor 0.1 after epoch 15 and 20.

Defense Setup. For Fine-Pruning, we prune the last convo-
lutional layer of ResNet-18 (Layer4.conv2); For Neural

Cleanse, we adopt its default setting and utilize the gen-
erated anomaly index for demonstration. The smaller the
value of the anomaly index, the harder the attack to defend;
For STRIP, we also adopt its default setting and present the
generated entropy score. The larger the score, the harder
the attack to defend; For SentiNet, we compared the gen-
erated Grad-CAM [35] of poisoned samples for demonstra-
tion; For DF-TND, we report the logit increase scores be-
fore and after the universal adversarial attack of each class.
This defense succeeds if the score of the target label is sig-
nificantly larger than those of all other classes. For Spec-
tral Signatures, we report the outlier score for each sample,
where a larger score denotes the sample is more likely poi-
soned.
Evaluation Metric. We use the attack success rate (ASR)
and benign accuracy (BA) to evaluate the effectiveness of
different attacks. Specifically, ASR is defined as the ra-
tio between successfully attacked poison samples and total
poison samples. BA is defined as the accuracy of testing
on benign samples. Besides, we adopt the peak-signal-to-
noise-ratio (PSNR) [14] and `∞ norm [12] to evaluate the
stealthiness.

5.2. Main Results

Attack Effectiveness. As shown in Table 1, our attack
can successfully create backdoors with a high ASR by poi-
soning only a small proportion (10%) of training samples.
Specifically, our attack can achieve an ASR > 99% on both
datasets. Besides, the ASR of our method is on par with
that of BadNets and higher than that of Blended Attack.
Moreover, the accuracy reduction of our attack (compared
with the Standard Training) on benign testing samples is
less than 1% on both datasets, which are smaller than those
of BadNets and Blended Attack. These results show that
sample-specific invisible additive noises can also serve as
good triggers even though they are more complicated than
the white-square used in BadNets and Blended Attack.
Attack Stealthiness. Figure 4 presents some poisoned
images generated by different attacks. Although our attack
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Table 1. The comparison of different methods against DNNs without defense on the ImageNet and MS-Celeb-1M dataset. Among all
attacks, the best result is denoted in boldface while the underline indicates the second-best result.

Dataset → ImageNet MS-Celeb-1M
Aspect → Effectiveness (%) Stealthiness Effectiveness (%) Stealthiness
Attack ↓ BA ASR PSNR `∞ BA ASR PSNR `∞

Standard Training 85.8 0.0 — — 97.3 0.1 — —
BadNets [8] 85.9 99.7 25.635 235.583 96.0 100 25.562 229.675

Blended Attack [3] 85.1 95.8 45.809 23.392 95.7 99.1 45.726 23.442
Ours 85.5 99.5 27.195 83.198 96.5 100 28.659 91.071
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Figure 5. Benign accuracy (BA) and attack success rate (ASR) of
different attacks against pruning-based defense.
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Figure 6. The synthesized triggers generated by Neural Cleanse.
The red box in the figure indicates ground-truth trigger areas.

does not achieve the best stealthiness regarding PSNR and
`∞ (we are the second-best, as shown in Table 1), poisoned
images generated by our method still look natural to the hu-
man inspection. Although Blended Attack seems to have
the best stealthiness regarding adopted evaluation metrics,
triggers in their generated samples still quite obvious, espe-
cially when the background is dark.
Time Analysis. Training the encoder-decoder network
takes 7h 35mins on ImageNet and 3h 40mins on MS-Celeb-
1M. The average encoding time is 0.2 seconds per image.
Resistance to Fine-Pruning. In this part, we compare our
attack to BadNets and Blended Attack in terms of the resis-
tance to the pruning-based defense [24]. As shown in Figure
5, the ASR of BadNets and Blended Attack drop dramati-
cally when only 20% of neurons are pruned. Especially the
Blended Attack, its ASR decrease to less than 10% on both
ImageNet and MS-Celeb-1M datasets. In contrast, the ASR
of our attack only decreases slightly (less than 5%) with the
increase of the fraction of pruned neurons. Our attack re-
tains an ASR greater than 95% on both datasets when 20%
of neurons are pruned. This suggests that our attack is more
resistant to the pruning-based defense.
Resistance to Neural Cleanse. Neural Cleanse [41] com-

putes the trigger candidates to convert all benign images
to each label. It then adopts an anomaly detector to ver-
ify whether anyone is significantly smaller than the oth-
ers as the backdoor indicator. The smaller the value of the
anomaly index, the harder the attack for Neural-Cleanse to
defend. As shown in Figure 8, our attack is more resistant
to the Neural-Cleanse. Besides, we also visualize the syn-
thesized trigger (i.e., the one with the smallest anomaly in-
dex among all candidates) of different attacks. As shown in
Figure 6, synthesized triggers of BadNets and Blended At-
tack contain similar patterns to those used by attackers (i.e.,
white-square on the bottom right corner), whereas those of
our attack are meaningless.
Resistance to STRIP. STRIP [7] filters poisoned samples
based on the prediction randomness of samples generated
by imposing various image patterns on the suspicious im-
age. The randomness is measured by the entropy of the
average prediction of those samples. As such, the higher
the entropy, the harder an attack for STRIP to defend. As
shown in Figure 9, our attack is more resistant to the STRIP
compared with other attacks.
Resistance to SentiNet. SentiNet [5] identities trigger
regions based on the similarities of Grad-CAM of different
samples. As shown in Figure 7, Grad-CAM successfully
distinguishes trigger regions of those generated by BadNets
and Blended Attack, while it fails to detect trigger regions
of those generated by our attack. In other words, our attack
is more resistant to SentiNet.
Resistance to DF-TND. DF-TND [42] detects whether a
suspicious DNN contains hidden backdoors by observing
the logit increase of each label before and after a crafted
universal adversarial attack. This method can succeed if
there is a peak of logit increase solely on the target label.
For fair demonstration, we fine-tune its hyper-parameters
to seek a best-performed defense setting against our attack
(see supplementary material for more details). As shown in
Figure 10, the logit increase of the target class (red bars in
the figure) is not the largest on both datasets. It indicates
that our attack can also bypass the DF-TND.
Resistance to Spectral Signatures. Spectral Signatures
[40] discovered the backdoor attacks can leave behind a de-
tectable trace in the spectrum of the covariance of a feature
representation. The trace is so-called Spectral Signatures,
which is detected using singular value decomposition. This
method calculates an outlier score for each sample. It suc-
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Figure 8. The anomaly index of different attacks. The smaller the
index, the harder the attack for Neural-Cleanse to defend.
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Figure 9. The entropy generated by STRIP of different attacks.
The higher the entropy, the harder the attack for STRIP to defend.
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Figure 10. The logit increase of our attack under the DF-TND.
This method can succeed if the increase of the target label is sig-
nificantly larger than those of all other classes.
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Figure 11. The outlier score of samples generated by Spectral Sig-
nature. The larger the score is, the more likely the sample is an
outlier.

ceeds if clean samples have small values and poison sam-

ples have large values (see supplementary material for more
details). As shown in Figure 11, we test 100 samples, where
0 ∼ 49 are clean samples and 50 ∼ 100 are poison sam-
ples. Our attack notably disturbs this method in that the
clean samples have unexpected large scores.

5.3. Discussion
In this section, unless otherwise specified, all settings are

the same as those stated in Section 5.1.
Attack with Different Target Labels. We test our method
using different target labels (yt = 1, 2, 3). Table 2 shows
the BA/ASR of our attack, which reveals the effectiveness
of our method using different target labels.

Table 2. The BA/ASR (%) of our attack with other target labels.
Target Label= 1 Target Label= 2 Target Label= 3

ImageNet MS-Celeb ImageNet MS-Celeb ImageNet MS-Celeb
85.4/99.4 97.3/99.9 85.6/99.3 97.6/100 85.6/99.5 97.2/99.9

The Effect of Poisoning Rate γ. In this part, we discuss
the effect of the poisoning rate γ towards ASR and BA in
our attack. As shown in Figure 12, our attack reaches a
high ASR (> 95%) on both datasets by poisoning only 2%
of training samples. Besides, the ASR increases with an
increase of γ while the BA remains almost unchanged. In
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Table 3. The ASR (%) of our attack with consistent (dubbed Ours)
or inconsistent (dubbed Ours (inconsistent)) triggers. The incon-
sistent trigger is generated based on a different testing image.

ImageNet MS-Celeb-1M
Ours 99.5 100

Ours (inconsistent) 23.3 98.1
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Figure 12. The effect of poisoning rate towards our attack.

Table 4. Out-of-dataset generalization of our method in the attack
stage. See text for details.

Dataset for Classifier → ImageNet MS-Celeb-1M
Dataset for Encoder ↓ BA ASR BA ASR

ImageNet 85.5 99.5 95.6 99.5
MS-Celeb-1M 85.1 99.4 96.5 100

other words, there is almost no trade-off between the ASR
and BA in our method. However, the increase of γ will also
decrease the attack stealthiness. Attackers need to specify
this parameter for their specific needs.
The Exclusiveness of Generated Triggers. In this part,
we explore whether the generated sample-specific triggers
are exclusive, i.e., whether testing image with trigger gen-
erated based on another image can also activate the hidden
backdoor of DNNs attacked by our method. Specifically,
for each testing image x, we randomly select another test-
ing image x′ (x′ 6= x). Now we query the attacked DNNs
with x + T (G(x′)) (rather than with x + T (G(x))). As
shown in Table 3, the ASR decreases sharply when incon-
sistent triggers (i.e., triggers generated based on different
images) are adapted on the ImageNet dataset. However, on
the MS-Celeb-1M dataset, attacking with inconsistent trig-
gers can still achieve a high ASR. This may probably be
because most of the facial features are similar and therefore
the learned trigger has better generalization. We will further
explore this interesting phenomenon in our future work.
Out-of-dataset Generalization in the Attack Stage. Re-
call that the encoder is trained on the benign version of the
poisoned training set in previous experiments. In this part,
we explore whether the one trained on another dataset can
still be adapted for generating poisoned samples of a new
dataset (without any fine-tuning) in our attack. As shown in
Table 4, the effectiveness of attack with an encoder trained
on another dataset is on par with that of the one trained on
the same dataset. In other words, attackers can reuse already
trained encoders to generate poisoned samples, if their im-

Table 5. The ASR (%) of our method attacked with out-of-dataset
testing samples. See text for details.

Dataset for Training →
Dataset for Inference ↓ ImageNet MS-Celeb-1M

Microsoft COCO 100 99.9
Random Noise 100 99.9

age size is the same. This property will significantly reduce
the computational cost of our attack.
Out-of-dataset Generalization in the Inference Stage.
In this part, we verify that whether out-of-dataset images
(with triggers) can successfully attack DNNs attacked by
our method. We select the Microsoft COCO dataset [23]
and a synthetic noise dataset for the experiment. They are
representative of nature images and synthetic images, re-
spectively. Specifically, we randomly select 1,000 images
from the Microsoft COCO and generate 1,000 synthetic im-
ages where each pixel value is uniformly and randomly se-
lected from {0, · · · , 255}. All selected images are resized
to 3 × 224 × 224. As shown in Table 5, our attack with
poisoned samples generated based on out-of-dataset images
can also achieve nearly 100% ASR. It indicates that attack-
ers can activate the hidden backdoor in attacked DNNs with
out-of-dataset images (not necessary with testing images).

6. Conclusion
In this paper, we showed that existing backdoor attacks

were easily alleviated by current backdoor defenses mostly
because their backdoor trigger is sample-agnostic, i.e., dif-
ferent poisoned samples contain the same trigger. Based on
this understanding, we explored a new attack paradigm, the
sample-specific backdoor attack (SSBA), where the back-
door trigger is sample-specific. Our attack broke the funda-
mental assumption of defenses, therefore can bypass them.
Specifically, we generated sample-specific invisible addi-
tive noises as backdoor triggers by encoding an attacker-
specified string into benign images, motivated by the DNN-
based image steganography. The mapping from the string
to the target label will be learned when DNNs are trained
on the poisoned dataset. Extensive experiments were con-
ducted, which verify the effectiveness of our method in at-
tacking models with or without defenses.
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