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Abstract

Learning from noisy data has attracted much attention,
where most methods focus on label noise. In this work, we
propose a new learning framework which simultaneously
addresses three types of noise commonly seen in real-world
data: label noise, out-of-distribution input, and input cor-
ruption. In contrast to most existing methods, we combat
noise by learning robust representation. Specifically, we
embed images into a low-dimensional subspace, and regu-
larize the geometric structure of the subspace with robust
contrastive learning, which includes an unsupervised consis-
tency loss and a supervised mixup prototypical loss. We also
propose a new noise cleaning method which leverages the
learned representation to enforce a smoothness constraint on
neighboring samples. Experiments on multiple benchmarks
demonstrate state-of-the-art performance of our method and
robustness of the learned representation. Code is available
at https://github.com/salesforce/RRL/.

1. Introduction
Data in real life is noisy. However, deep models with

remarkable performance are mostly trained on clean datasets
with high-quality human annotations. Manual data clean-
ing and labeling is an expensive process that is difficult
to scale. On the other hand, there exists almost infinite
amount of noisy data online. It is crucial that deep neural net-
works (DNNs) could harvest noisy training data. However,
it has been shown that DNNs are susceptible to overfitting
to noise [43].

As shown in Figure 1, a real-world noisy image dataset of-
ten consists of multiple types of noise. Label noise refers to
samples that are wrongly labeled as another class (e.g. flower
labeled as orange). Out-of-distribution input refers to sam-
ples that do not belong to any known classes. Input corrup-
tion refers to image-level distortion (e.g. low brightness) that
causes data shift between training and test.

Most of the methods in literature focus on addressing
the more detrimental label noise. Two dominant approaches
include: (1) find clean samples as those with smaller loss and
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Figure 1. Google search images from WebVision [22] dataset with
keyword “orange”.

assign larger weights to them [6, 42, 32, 1]; (2) relabel noisy
samples using model’s predictions [31, 25, 34, 41, 23, 18].
Previous methods that focus on addressing label noise do
not consider out-of-distribution input or input corruption,
which limits their performance in real-world scenarios. Fur-
thermore, using a model’s own prediction to relabel samples
could cause confirmation bias, where the prediction error
accumulates and harms performance.

We propose a new direction for effective learning from
noisy data. Different from existing methods, our method
learns noise-robust low-dimensional representations, and per-
forms noise cleaning by enforcing a smoothness constraint
on neighboring samples. Specifically, our algorithmic con-
tributions include:

• We propose noise-robust contrastive learning, which intro-
duces two contrastive losses. The first is an unsupervised
consistency contrastive loss. It enforces inputs with per-
turbations to have similar normalized embeddings, which
helps learn robust and discriminative representation.

• Our second contrastive loss is a weakly-supervised proto-
typical contrastive loss. We compute class prototypes as
normalized mean embeddings, and enforces each sample’s
embedding to be closer to its class prototype. Inspired by
Mixup [44], we construct virtual training samples as lin-
ear interpolation of inputs, and encourage the same linear
relationship w.r.t the class prototypes.

• We propose a new noise cleaning method which lever-
ages the learned representations to enforce a smoothness
constraint on neighboring samples. For each sample, we
aggregate information from its top-k neighbors to create
a pseudo-label. A subset of training samples with confi-
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dent pseudo-labels are selected to compute the weakly-
supervised loss. This process can effectively clean both
label noise and out-of-distribution (OOD) noise.

Our experimental contributions include:

• We experimentally show that our method achieves state-
of-the-art performance on multiple datasets with con-
trolled noise and real-world noise.

• We demonstrate that the proposed noise cleaning method
can effectively clean a majority of label noise. It also
learns a curriculum that gradually leverages more sam-
ples to compute the weakly-supervised loss as the pseudo-
labels become more accurate.

• We validate the robustness of the learned low-dimensional
representation by showing (1) k-nearest neighbor clas-
sification outperforms the softmax classifier. (2) OOD
samples can be separated from in-distribution samples.

2. Related work
2.1. Label noise learning

Learning from noisy labels have been extensively stud-
ied in the literature. While some methods require access
to a small set of clean samples [40, 35, 36, 17, 11], most
methods focus on the more challenging scenario where no
clean labels are available. These methods can be categorized
into two major types. The first type performs label correc-
tion using predictions from the network [31, 25, 34, 41, 23].
The second type tries to separate clean samples from
corrupted samples, and trains the model on clean sam-
ples [6, 1, 14, 13, 38, 3, 24, 20]. DivideMix [18] combines
label correction and sample selection with the Mixup [44]
data augmentation under a co-training framework, but cost
2× the computational resource of our method.

Different from existing methods, our method addresses
label noise learning by learning robust representations. We
propose a more effective noise cleaning method by leverag-
ing the structure of the learned representations. Furthermore,
our model is robust not only to label noise, but also to out-
of-distribution and corrupted input. A previous work has
studied open-set noisy labels [38], but their method does not
enjoy the same level of robustness as ours.

2.2. Contrastive learning

Contrastive learning is at the core of recent self-
supervised representation learning methods [4, 8, 29, 39].
In self-supervised contrastive learning, two randomly aug-
mented images are generated for each input image. Then a
contrastive loss is applied to pull embeddings from the same
source image closer, while pushing embeddings from differ-
ent source images apart. Recently, prototypical contrastive
learning (PCL) [21] has been proposed, which uses cluster

centroids as prototypes, and trains the network by pulling an
image embedding closer to its assigned prototypes.

Different from these methods, our method performs con-
trastive learning in the principal subspace by training a lin-
ear autoencoder. Our weakly-supervised contrastive loss
improves PCL [21] by using pseudo-labels to compute class-
prototypes, and augments the input with Mixup [44]. Dif-
ferent from the original Mixup where learning happens at
the classification layer, our learning takes places in the low-
dimensional subspace to learn robust representation.

3. Method
Given a noisy training dataset D = {(xi, yi)}ni=1, where

xi is an image and yi ∈ {1, ..., C} is its class label. We aim
to train a network that is robust to the noise in training data
and achieves high accuracy on a clean test set. The proposed
method performs two steps iteratively: (1) noise-robust con-
trastive learning, which trains the network to learn robust
representations; (2) noise cleaning with smooth neighbors,
which aims to correct label noise and remove OOD samples.
A pseudo-code is given in Algorithm 1. Next, we delineate
each step in details.

3.1. Noise-robust contrastive learning

As shown in Figure 2, the network consists of three com-
ponents: (1) a deep encoder (a convolutional neural network)
that encodes an image xi to a high-dimensional feature vi;
(2) a classifier (a fully-connected layer followed by softmax)
that receives vi as input and outputs class predictions; (3) a
linear autoencoder that projects vi into a low-dimensional
embedding zi ∈ Rd. We aim to learn robust embeddings
with two contrastive losses: unsupervised consistency loss
and weakly-supervised mixup prototypical loss.
Unsupervised consistency contrastive loss. Following the
NT-Xent [4] loss for self-supervised representation learn-
ing, our consistency contrastive loss enforces images with
semantic-preserving perturbations to have similar embed-
dings. Specifically, given a minibatch of b images, we apply
weak-augmentation and strong-augmentation to each im-
age, and obtain 2b inputs {xi}2bi=1. Weak augmentation is a
standard flip-and-shift augmentation strategy, while strong
augmentation consists of color and brightness changes with
details given in Section 4.1.

We project the inputs into the low-dimensional space
and obtain their normalized embeddings {ẑi}2bi=1. Let i ∈
{1, ..., b} be the index of a weakly-augmented input, and j(i)
be the index of the strong-augmented input from the same
source image, the consistency contrastive loss is defined as:

Lcc =

b∑
i=1

− log
exp(ẑi · ẑj(i)/τ)∑2b

k=1 1i ̸=k exp(ẑi · ẑk/τ)
, (1)

where τ is a scalar temperature parameter. The consistency
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Figure 2. Our proposed framework for noise-robust contrastive learning. We project images into a low-dimensional subspace, and regularize
the geometric structure of the subspace with (1)Lcc: a consistency contrastive loss which enforces images with perturbations to have similar
embeddings; (2)Lpc mix: a prototypical contrastive loss augmented with mixup, which encourages the embedding for a linearly-interpolated
input to have the same linear relationship w.r.t the class prototypes. The low-dimensional embeddings are also trained to reconstruct the
high-dimensional features, which preserves the learned information and regularizes the classifier.

contrastive loss maximizes the inner product between the
pair of positive embeddings ẑi and ẑj(i), while minimizing
the inner product between 2(b− 1) pairs of negative embed-
dings. By mapping different views (augmentations) of the
same image to neighboring embeddings, the consistency con-
trastive loss encourages the network to learn discriminative
representation that is robust to low-level image corruption.

Weakly-supervised mixup prototypical contrastive loss.
Our second contrastive loss injects structural knowledge of
classes into the embedding space. Let Ic denote indices for
the subset of images in D labeled with class c, we calculate
the class prototype as the normalized mean embedding:

zc =
1

|Ic|
∑
i∈Ic

ẑi, ẑc =
zc

∥zc∥2
, (2)

where ẑi is the embedding of a center-cropped image, and
the class prototypes are calculated at the beginning of each
epoch.

The prototypical contrastive loss enforces an image em-
bedding ẑi to be more similar to its corresponding class
prototype ẑyi , in contrast to other class prototypes:

Lpc(ẑi, yi) = − log
exp(ẑi · ẑyi/τ)∑C
c=1 exp(ẑi · ẑc/τ)

. (3)

Since the label yi is noisy, we would like to regularize the
encoder from memorizing training labels. Mixup [44] has
been shown to be an effective method against label noise [1,
18]. Inspired by it, we create virtual training samples by
linearly interpolating a sample (indexed by i) with another

sample (indexed by m(i)) randomly chosen from the same
minibatch:

xm
i = λxi + (1− λ)xm(i), (4)

where λ ∼ Beta(α, α).
Let ẑm

i be the normalized embedding for xm
i , the mixup

version of the prototypical contrastive loss is defined as a
weighted combination of the two Lpc w.r.t class yi and ym(i).
It enforces the embedding for the interpolated input to have
the same linear relationship w.r.t. the class prototypes.

Lpc mix =

2b∑
i=1

λLpc(ẑ
m
i , yi) + (1− λ)Lpc(ẑ

m
i , ym(i)).

(5)
Reconstruction loss. We also train a linear decoder Wd

to reconstruct the high-dimensional feature vi based on zi.
The reconstruction loss is defined as:

Lrecon =

2b∑
i=1

∥vi −Wdzi∥22 . (6)

There are several benefits for training the autoencoder.
First, an optimal linear autoencoder will project vi into its
low-dimensional principal subspace and can be understood
as applying PCA [2]. Thus the low-dimensional representa-
tion zi is intrinsically robust to input noise. Second, mini-
mizing the reconstruction error is maximizing a lower bound
of the mutual information between vi and zi [37]. Therefore,
knowledge learned from the proposed contrastive losses can
be maximally preserved in the high-dimensional representa-
tion, which helps regularize the classifier.
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Figure 3. Curriculum learned by the proposed label correction method for training on CIFAR datasets with 50% sym. noise. (a) Accuracy
of pseudo-labels w.r.t to clean training labels. Our method effectively cleans a majority of the label noise. (b) Number of samples in the
weakly-supervised subset Dt

ws. As the pseudo-labels become more accurate, more samples are used to compute the supervised losses. (c)
Label noise ratio in the weakly-supervised subset, which maintains at a low level even as the size of the subset grows.

Classification loss. Given the softmax output from the clas-
sifier, p(y;xi), we define the classification loss as the cross-
entropy loss. Note that it is only applied to the weakly-
augmented inputs.

Lce = −
b∑

i=1

log p(yi;xi). (7)

The overall training objective is to minimize a weighted
sum of all losses:

L = Lce + ωccLcc + ωpcLpc mix + ωreconLrecon (8)

For all experiments, we fix ωcc = 1, ωrecon = 1, and
change ωpc only across datasets. Our method is in general
net sensitive to the values of the weights. In our ablation
study, we show that setting either ωcc = 0 or ωrecon = 0 still
yields performance competitive or better than the current
SoTA.

3.2. Noise cleaning with smooth neighbors

After warming-up the model by training with the noisy
labels {yi}ni=1 for t0 epochs, we aim to clean the noise by
generating a soft pseudo-label qi for each training sample.
Different from previous methods that perform label correc-
tion purely using the model’s softmax prediction, our method
exploits the structure of the low-dimensional subspace by
aggregating information from top-k neighboring samples,
which helps alleviate the confirmation bias problem.

At the t-th epoch, for each sample xi, let pt
i be the classi-

fier’s softmax prediction, let qt−1
i be its soft label from the

previous epoch, we calculate the soft label for the current
epoch as:

qt
i =

1

2
pt
i +

1

2

k∑
j=1

wt
ijq

t−1
j , (9)

where wt
ij represents the normalized affinity between

a sample and its neighbor and is defined as wt
ij =

exp(ẑt
i·ẑ

t
j/τ)∑k

j=1 exp(ẑt
i·ẑt

j/τ)
. We set k = 200 in all experiments.

The soft label defined by eqn.(9) is the minimizer of the
following quadratic loss function:

J(qt
i) =

k∑
j=1

wt
ij

∥∥qt
i − qt−1

j

∥∥2
2
+
∥∥qt

i − pt
i

∥∥2
2
. (10)

The first term is a smoothness constraint which encour-
ages the soft label to take a similar value as its neighbors’
labels, whereas the second term attempts to maintain the
model’s class prediction.

We construct a weakly-supervised subset which contains
(1) clean sample whose soft label score for the original class
yi is higher than a threshold η0, (2) pseudo-labeled sample
whose maximum soft label score exceeds a threshold η1. For
pseudo-labeled samples, we convert their soft labels into
hard labels by taking the class with the maximum score.

Dt
ws = {xi, yi | qti(yi) > η0}∪{xi, ŷ

t
i = argmax

c
qti(c) |

∀max
c

qti(c) > η1, c ∈ {1, .., C}} (11)

Given the weakly-supervised subset, we modify the clas-
sification loss Lce, the mixup prototypical contrastive loss
Lpc mix, and the calculation of prototypes ẑc, such that
they only use samples from Dt

ws. The unsupervised losses
(i.e. Lcc and Lrecon) still operate on all training samples.

Learning curriculum. Our iterative noise cleaning method
learns an effective training curriculum, which gradually in-
creases the size of Dt

ws as the pseudo-labels become more
accurate. To demonstrate such curriculum, we analyse the
noise cleaning statistics for training our model on CIFAR-10
and CIFAR-100 datasets with 50% label noise (experimental
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Algorithm 1: Pseudo-code for our method.

1 Input: noisy training data D = {(xi, yi)}ni=1, model
parameters θ.

2 for t← 0 to t0 − 1 do // learn from noisy

labels for t0 epochs (warm-up)

3 {ẑi}ni=1 = {fθ(xi)}ni=1

// get normalized low-dimentional

embeddings for all images

4 {ẑc}Cc=1 = Calculate-Prototype({ẑi, yi}ni=1)
// calculate class prototypes

5 for {(xi, yi)}2bi=1 in D do // load a

minibatch

6 ẑi = fθ(xi) // obtain normalized

low-dimensional embeddings

7 λ ∼ Beta(α, α) // sample a mixup

weight from a beta distribution

8 xm
i = λxi + (1− λ)xm(i) // generate

virual training samples

9 ẑm
i = fθ(x

m
i ) // obtain embeddings for

virtual samples

10 L =
∑b

i=1 Lce(xi, yi) +
∑2b

i=1

(
ωccLcc(ẑi) +

ωpcLpc mix(ẑ
m
i , yi, λ) + ωreconLrecon(xi, ẑi)

)
11 θ = SGD(L, θ) // compute loss and

update model parameters

12 end
13 end
14 for t← t0 to MaxEpoch do // learn from

psuedo-labels

15 {ẑt
i,p

t
i}ni=1 = {fθ(xi)}ni=1

// get embeddings and softmax

predictions for all images

16 qt
i =

1
2p

t
i +

1
2

∑k
j=1 w

t
ijq

t−1
j , qt0−1

i = pt0
i

// aggregate information from top-k

neighbors to generate soft labels

17 Dt
ws = {xi, yi | qti(yi) > η0} ∪ {xi, ŷ

t
i =

argmaxc q
t
i(c) | ∀maxc q

t
i(c) > η1, c ∈ {1, .., C}}

// construct a subset containing clean

samples and pseudo-labeled samples

18 Repeat line 4-12, but only use samples from Dt
ws

to compute ẑc, Lce, Lpc mix.
19 end

details explained in the next section). In Figure 3 (a), we
show the accuracy of the soft pseudo-labels w.r.t to clean
training labels (only used for analysis purpose). Our method
can significantly reduce the ratio of label noise from 50% to
5% (for CIFAR-10) and 17% (for CIFAR-100). Figure 3 (b)
shows the size of Dt

ws as a percentage of the total number of
training samples, and Figure 3 (c) shows the effective label
noise ratio within the weakly-supervised subset Dt

ws. Our
method maintains a low noise ratio in the weakly-supervised
subset, while gradually increasing its size to utilize more

samples for the weakly-supervised losses.

4. Experiment

In this section, we validate the proposed method on mul-
tiple benchmarks with controlled noise and real-world noise.
Our method achieves state-of-the-art performance across
all benchmarks. For fair comparison, we compare with Di-
videMix [18] without ensemble. In Table 7, we report the
result of our method with co-training and ensemble, which
further improves performance.

4.1. Experiments on controlled noisy labels

Dataset. Following [34, 18], we corrupt the training data
of CIFAR-10 and CIFAR-100 [16] with two types of label
noise: symmetric and asymmetric. Symmetric noise is in-
jected by randomly selecting a percentage of samples and
changing their labels to random labels. Asymmetric noise
is class-dependant, where labels are only changed to similar
classes (e.g. dog↔cat, deer→horse). We experiment with
multiple noise ratios: sym 20%, sym 50%, and asym 40%
(see results for sym 80% and 90% in Table 7). Note that
asymmetric noise ratio cannot exceed 50% because certain
classes would become theoretically indistinguishable.

Implementation details. Same as previous works [1, 18],
we use PreAct ResNet-18 [9] as our encoder model. We
set the dimensionality of the bottleneck layer as d = 50.
Our model is trained using SGD with a momentum of 0.9,
a weight decay of 0.0005, and a batch size of 128. The
network is trained for 200 epochs. We set the initial learning
rate as 0.02 and use a cosine decay schedule. We apply
standard crop and horizontal flip as the weak augmentation.
For strong augmentation, we use AugMix [12], though other
methods (e.g. SimAug [4]) work equally well. For all CIFAR
experiments, we fix the hyper-parameters as ωcc = 1, ωpc =
5, ωrecon = 1, τ = 0.3, α = 8, η1 = 0.9. For CIFAR-10, we
activate noise cleaning at epoch t0 = 5, and set η0 = 0.1
(sym.) or 0.4 (asym.). For CIFAR-100, we activate noise
cleaning at epoch t0 = 15, and set η0 = 0.02. We use faiss-
gpu [15] for efficient knn search in the low-dimensional
subspace, which finishes within 1 second.

Results. Table 1 shows the comparison with existing meth-
ods. Our method outperforms previous methods across all
label noise settings. On the more challenging CIFAR-100,
we achieve 3-4% accuracy improvement.

In order to demonstrate the advantage of the proposed
noise-robust representation learning method, we perform
k-nearest neighbor (knn) classification (k = 200), which
projects training and test images into normalized low-
dimensional embeddings. Compared to the trained classifier,
knn achieves higher accuracy, which verifies the robustness
of the learned representation.
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Dataset CIFAR-10 CIFAR-100
Noise type Sym 20% Sym 50% Asym 40% Sym 20% Sym 50%

Cross-Entropy [18] 82.7 57.9 72.3 61.8 37.3
Forward [30] 83.1 59.4 83.1 61.4 37.3
Co-teaching+ [42] 88.2 84.1 - 64.1 45.3
Mixup [44] 92.3 77.6 - 66.0 46.6
P-correction [41] 92.0 88.7 88.1 68.1 56.4
MLNT [19] 92.0 88.8 88.6 67.7 58.0
M-correction [1] 93.8 91.9 86.3 73.4 65.4
DivideMix [18] 95.0 93.7 91.4 74.8 72.1
ELR [23] (reproduced) 94.7±0.1 93.5±0.2 91.7±0.9 75.3±0.2 71.3±0.3
DivideMix (reproduced) 95.1±0.1 93.6±0.2 91.3±0.8 75.1±0.2 72.1±0.3

Ours (classifier) 95.8±0.1 94.3±0.2 91.9±0.8 79.1±0.1 74.8±0.4
Ours (knn) 95.9±0.1 94.5±0.1 92.4±0.9 79.4±0.1 75.0±0.4

Table 1. Comparison with state-of-the-art methods on CIFAR datasets with label noise. Numbers indicate average test accuracy (%) over
last 10 epochs. We report results over 3 independent runs with randomly-generated label noise. Results for previous methods are copied
from [1, 18]. We re-run DivideMix and ELR (without model ensemble) using the publicly available code on the same noisy data as ours.

Input noise CE Iterative [38] GCE [45] DivideMix [18] Ours (cls.) Ours (knn)

+ CIFAR-100 20k 53.6 87.2 87.3 89.0 91.5 93.1±0.3
+ SVHN 20k 58.1 88.6 88.8 91.9 93.3 93.9±0.2
Image corruption 53.8 87.7 87.9 89.8 91.4 91.6±0.2

Table 2. Comparison with state-of-the-art methods on CIFAR-10 dataset with label noise (50% symmetric) and input noise (OOD images
or corrupted images). Numbers indicate average test accuracy (%) over last 10 epochs. We report results over 3 independent runs with
randomly-generated noise. We re-run previous methods using publicly available code with the same data and model as ours.

4.2. Experiments on controlled noisy labels with
noisy images

Dataset. We further corrupt a noisy-labeled (50% symmet-
ric) CIFAR-10 dataset by injecting two types of input noise:
out-of-distribution (OOD) images and input corruption. For
OOD noise, we follow [38] and add 20k additional images
from either one of the two other datasets: CIFAR-100 and
SVHN [28], which enlarges the training set to 70k. A ran-
dom CIFAR-10 label is assigned to each OOD image. For
input corruption, we follow [10] and corrupt each image in
CIFAR-10 with a noise randomly chosen from the following
four types: Fog, Snow, Motion blur and Gaussian noise.
Examples of both types of input noise are shown in Figure 4.
For training, we follow the same implementation details as
the CIFAR-10 experiments described in Section 4.1.

Results. Table 2 shows the results. Our method consistently
outperforms existing methods by a substantial margin. We
observe that OOD images from a similar domain (CIFAR-
100) are more harmful than OOD images from a more differ-
ent domain (SVHN). This is because noisy images that are
closer to the test data distribution are more likely to distort
the decision boundary in a way that negatively affects test
performance. Nevertheless, performing knn classification

CIFAR-100

GaussianFog Snow Motion Blur

SVHN

OOD 
Images

Image 
Corruption

Figure 4. Examples of input noise injected to CIFAR-10.
using the learned embeddings demonstrates high robustness
to input noise.

In Figure 5, we show the t-SNE [26] visualization of the
low-dimensional embeddings for all training samples, includ-
ing in-distribution CIFAR-10 images and out-distribution
CIFAR-100 or SVHN images. As training progresses from
epoch 10 to epoch 200, our model learns to separate OOD
samples (represented as gray points) from in-distribution
samples (represented as color points). It also learns to clus-
ter CIFAR-10 images according to their true class, despite
their noisy labels. Therefore, this visualization demonstrates
that the proposed method learns representation that is robust
to both label noise and OOD noise.
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Figure 5. t-SNE visualization of low-dimensional embeddings for CIFAR-10 images (color represents the true class) + OOD images (gray
points) from CIFAR-100 or SVHN. The model is trained on noisy CIFAR-10 (50k images with 50% label noise) and 20k OOD images with
random labels. Our method can effectively learn to (1) cluster CIFAR-10 images according to their true class, despite their noisy labels; (2)
separate OOD samples from in-distribution samples, such that their harm is reduced.

CIFAR-10 Sym 50% + CIFAR-100 20k + Image Corruption CIFAR-100 Sym 50%

w/o Lpc mix 85.9 (86.1) 79.7 (81.5) 81.6 (81.7) 65.6 (65.9)
w/o Lcc 93.7 (93.8) 91.3 (91.5) 89.4 (89.5) 71.9 (71.8)
w/o Lrecon 93.3 (94.0) 90.7 (92.9) 90.2 (91.0) 73.2 (73.9)
w/o mixup 89.5 (89.9) 85.4 (87.0) 84.7 (84.9) 69.3 (69.7)
w/ standard aug. 94.1 (94.3) 90.8 (92.9) 90.5 (90.7) 74.5 (75.0)

DivideMix 93.6 89.0 89.8 72.1
Ours 94.3 (94.5) 91.5 (93.1) 91.4 (91.6) 74.8 (75.0)

Table 3. Effect of the proposed components. We show the accuracy of the classifier (knn) on four benchmarks with different noise. Note
that DivideMix [18] also performs mixup.

bottleneck dimension d = 25 d = 50 d = 100 d = 200

CIFAR-10 Sym 50% 93.4 94.3 94.2 93.7
CIFAR-100 Sym 50% 73.8 74.8 74.4 73.8

Table 4. Classifier’s test accuracy (%) with different low-dimensions.

4.3. Ablation study

Effect of the proposed components. In Table 3, we study
the effect of 5 components from the proposed method includ-
ing (1) the weakly-supervised mixup prototypical contrastive
loss Lpc mix, (2) the unsupervised consistency contrastive
loss Lcc, (3) the reconstruction loss Lrecon, (4) mixup aug-
mentation, and (5) strong data augmentation with AugMix.
We remove each of these components and report the accu-
racy of the classifier and knn across four benchmarks. The
result shows that Lpc mix is most crucial to the model’s per-
formance. Lcc has a stronger positive effect with image
corruption or larger number of classes (CIFAR-100). Our
method still achieves competitive performance when either
the Lcc or Lrecon is removed. When using standard data
augmentation (random crop and horizontal flip) instead of
AugMix, our method still achieves state-of-the-art result.
Effect of bottleneck dimension. We vary the dimensional-
ity of the bottleneck layer, d, and examine the performance
change in Table 4. Our model is in general not sensitive to

the change of d.

4.4. Experiments on real-world noisy data

Dataset. Next, we verify our method on two real-word noisy
datasets: WebVision [22] and Clothing1M [40]. Webvision
contains images crawled from the web using the same con-
cepts from ImageNet ILSVRC12 [5]. Following previous
works [3, 18], we perform experiments on the first 50 classes
of the Google image subset. Clothing1M consists of images
collected from online shopping websites where labels were
generated from surrounding texts. Note that we do not use
the additional clean set for training.

Implementation details. For WebVision, we follow previ-
ous works [3, 18] and use inception-resnet v2 [33] as the
encoder. We train the model using SGD with a weight decay
of 0.0001 and a batch size of 64. We train for 40 epochs with
an initial learning rate of 0.04. The hyper-parameters are
set as d = 50, ωcc = 1, ωpc = 2, ωrecon = 1, τ = 0.3, α =
0.5, η0 = 0.05, η1 = 0.8, t0 = 15. For Clothing1M, we
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Test dataset WebVision ILSVRC12

Accuracy (%) top1 top5 top1 top5

Forward [30] 61.1 82.7 57.4 82.4
Decoupling [27] 62.5 84.7 58.3 82.3
D2L [25] 62.7 84.0 57.8 81.4
MentorNet [14] 63.0 81.4 57.8 79.9
Co-teaching [6] 63.6 85.2 61.5 84.7
INCV [3] 65.2 85.3 61.0 85.0
ELR [23] 76.3 91.3 68.7 87.8
DivideMix [18] 75.9 90.1 73.3 89.2

Ours (w/o noise cleaning) 75.5 90.2 72.0 90.0
Ours (classifier) 76.3 91.5 73.3 91.2
Ours (knn) 77.8 91.3 74.4 90.9

Table 5. Comparison with state-of-the-art methods trained on WebVision (mini). Numbers denote accuracy (%) on the WebVision validation
set and the ImageNet ILSVRC12 validation set. We report results for ELR and DivideMix without model ensemble.

Method CE Forward Joint-Opt ELR MLNT MentorMix SL DivideMix Ours (cls.) Ours (knn)

Accuracy 69.21 69.84 72.16 72.87 73.47 74.30 74.45 74.48 74.84 74.97

Table 6. Comparison with state-of-the-art methods on Clothing1M dataset. Results for previous methods are directly copied from
corresponding papers. We report results for ELR and DivideMix without model ensemble.

Dataset CIFAR-10 CIFAR-100

Noise type Sym. Asym. Sym.

Noise ratio 20% 50% 80% 90% 40% 20% 50% 80% 90%

DivideMix [18] w/o ensemble 95.0 93.7 92.4 74.2 91.4 74.8 72.1 57.6 29.2
DivideMix [18] w/ ensemble 95.7 94.4 92.9 75.4 92.1 76.9 74.2 59.6 31.0
ELR+ [23] w/ ensemble 95.6 94.6 93.1 76.1 92.0 77.1 74.0 59.9 31.3

Ours 95.8 94.3 92.4 75.0 91.9 79.1 74.8 57.7 29.3
Ours w/ co-training 96.1 94.8 92.8 76.3 92.4 79.8 75.3 58.9 31.5
Ours w/ co-training & ensemble 96.4 95.3 93.3 77.4 92.6 80.3 76.0 61.1 33.1

Table 7. Results of our proposed method with co-training and model ensemble. We report the average test accuracy over last 10 epochs.

follow previous works [7, 18] and use ResNet-50 with Im-
ageNet pretrained weights. We sample 1000 mini-batches
as one epoch, and train the model for 50 epochs with an
initial learning rate of 0.01. The hyper-parameters are set
as d = 32, ωcc = 1, ωpc = 1, ωrecon = 1, τ = 0.3, α =
0.5, η0 = 0.4, η1 = 0.9, t0 = 1. Most of hyper-parameters
are kept to be the same across datasets.
Results. We report the results for WebVision in Table 5
and Clothing1M in Table 6. Our method achieves state-
of-the-art performance on both datasets. The performance
on WebVision is competitive even without noise cleaning,
which shows the robustness of the learned representation.

4.5. Co-training and model ensemble
Co-training and model ensemble have been shown to be

useful in combating label noise [6, 18, 23]. Therefore, we

incorporate these two techniques by (1) simultaneously train
two models that are randomly initialized and average their
soft label qt

i to produce a new soft label, (2) use their ensem-
ble prediction during test. The results on CIFAR datasets are
shown in Table 7.

5. Conclusion

In this paper, we propose a new method for learning from
noisy data by learning robust representation. We propose a
noise-robust contrasitve learning framework for representa-
tion learning, and a noise cleaning method based on nearest-
neighbor constraints. Our method can address label noise,
OOD noise, and image corruption. We demonstrate our
model’s state-of-the-art performance with extensive experi-
ments on multiple noisy datasets. For future work, we plan
to extend our framework to other domains.
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