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Abstract

Existing vanishing point (VP) estimation methods rely
on pre-extracted image lines and/or prior knowledge of the
number of VPs. However, in practice, this information may
be insufficient or unavailable. To solve this problem, we
propose a network that treats a perspective image as input
and predicts a spherical probability map of VP. Based on
this map, we can detect all the VPs. Our method is reliable
thanks to four technical novelties. First, we leverage the
icosahedral spherical representation to express our proba-
bility map. This representation provides uniform pixel dis-
tribution, and thus facilitates estimating arbitrary positions
of VPs. Second, we design a loss function that enforces
the antipodal symmetry and sparsity of our spherical prob-
ability map to prevent over-fitting. Third, we generate the
ground truth probability map that reasonably expresses the
locations and uncertainties of VPs. This map unnecessar-
ily peaks at noisy annotated VPs, and also exhibits various
anisotropic dispersions. Fourth, given a predicted probabil-
ity map, we detect VPs by fitting a Bingham mixture model.
This strategy can robustly handle close VPs and provide the
confidence level of VP useful for practical applications. Ex-
periments showed that our method achieves the best com-
promise between generality, accuracy, and efficiency, com-
pared with state-of-the-art approaches.

1. Introduction
Vanishing point (VP) is the intersection of two image

lines whose corresponding 3D lines are parallel. VP has
various applications such as scene understanding [12], cam-
era orientation estimation [14] and 3D reconstruction [13].
While VP estimation has been widely studied, existing ap-
proaches have two main limitations. First, numerous meth-
ods [25, 24, 22, 33, 1, 18] rely on pre-extracted image lines,
but they are sensitive to the number and quality of lines. For
example, given a small number of lines, a method may ne-
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Figure 1. (a) Four ground truth VPs are associated with red, green,
blue and yellow line clusters, respectively (we have filtered out
short lines). (b) [22] neglects a VP associated with dotted cyan
lines due to insufficient lines. (c) [33] mistakenly detects a VP as-
sociated with solid cyan outliers. (d) [25] neglects a VP associated
with dotted cyan lines due to the assumption of three orthogonal
VPs. (e, f) We reformulate VP estimation as DD computation.
Given a perspective image, our network predicts a spherical prob-
ability map of DD. Based on this map, we can detect all the DDs.

glect some VPs (see Figs. 1(a) and 1(b)). Moreover, given
several lines corrupted by outliers, e.g., shadow boundaries,
a method may mistakenly detect VPs (see Figs. 1(a) and
1(c)). Second, many methods [4, 39, 25, 24, 41] rely on
prior knowledge of the number of VPs. They typically as-
sume three orthogonal VPs in Manhattan world [9], and
thus neglect partial VPs or result in redundant detection in
non-Manhattan scenes [30, 38] (see Figs. 1(a) and 1(d)).
While recent approaches [15, 22, 23, 18] can automatically
determine the number of VPs, they rely on image lines.

To overcome the above limitations, we propose the first
VP estimation method that is independent of image lines
and also can automatically determine the number of VPs.
Specifically, as shown in Fig. 1(e), the connection between
a VP and camera center is aligned to a dominant direction
(DD). Compared with VP that may be extremely far from
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the image center, unit DD starting at the camera center is
enclosed by a unit sphere. We thus follow [41, 22] to re-
formulate VP estimation as DD computation, i.e., we aim
to determine which positions on the sphere correspond to
DDs. To achieve this goal, we propose a network that treats
a perspective image as input and predicts a spherical proba-
bility map of DD. Based on this map, we can detect all the
DDs, regardless of the number of DDs.

Our method is reliable thanks to four technical novel-
ties. First, as shown in Fig. 1(f), we leverage the icosahe-
dral spherical representation [2] to express our probability
map.1 This representation provides a more uniform pixel
distribution than the widely-used equi-angular discretiza-
tion on the sphere (see Fig. 2(a)). Accordingly, it facilitates
estimating arbitrary orientations of DDs. Second, we de-
sign a loss function that not only is effective in fitting data,
but also enforces the antipodal symmetry and sparsity of
our spherical probability map for regularization. Third, we
generate the ground truth map that reasonably expresses the
locations and uncertainties of DDs. This map unnecessar-
ily peaks at noisy annotated DDs and also exhibits various
anisotropic dispersions (see Fig. 6(d)). We train our net-
work by minimizing the difference between the predicted
and ground truth probability maps. Fourth, given a pre-
dicted probability map, we detect DDs by fitting a Bing-
ham mixture model [6] (see Fig. 1(f)). This strategy is free
of threshold, and thus can handle close DDs more robustly
than non-maximum suppression [27]. Moreover, it can pro-
vide the confidence level of DD useful for practical appli-
cations. Our main contributions are:

• Our method is independent of image lines and also can
automatically determine the number of DDs.

• We leverage the icosahedral spherical representation to
express our probability map. This representation facil-
itates estimating arbitrary orientations of DDs.

• We design a loss function that enforces the antipo-
dal symmetry and sparsity of our spherical probability
map to prevent over-fitting.

• We introduce a strategy to generate the ground truth
probability map that reasonably expresses the loca-
tions and uncertainties of DDs.

• We detect DDs by fitting a Bingham mixture model on
a predicted map. This strategy is free of threshold and
can provide the confidence level of DD.

2. Related Work
We classify existing VP estimation methods into two cat-

egories, i.e., traditional and deep learning-based ones.
1To the best of our knowledge, we first introduce icosahedral spherical

representation to VP estimation problem. Our work may inspire the com-
munity to apply this representation to the other geometric problems, e.g.,
camera pose estimation.

Traditional Methods. Most traditional methods rely on
pre-extracted image lines, i.e., they cluster these lines by
unknown-but-sought VPs. Representative approaches [28,
3, 39, 33, 4, 5, 25, 24] assume three orthogonal VPs in
Manhattan world. Among them, the sampling-based meth-
ods [3, 39] hypothesize several candidate VP triplets and
select the optimal one that maximizes the number of inlier
lines. They lead to unsatisfactory accuracy since some sam-
pled lines may be affected by noise. The search-based meth-
ods [4, 5] search in a parameter space related to rotation
and find the optimal parameters that maximize the number
of inlier lines. They are accurate but inefficient due to nu-
merous rounds of space sub-division and time-consuming
bound computation. A method hybridizing the sampling
and search [25] achieves a balance between accuracy and
efficiency. Due to the assumption of three VPs, the above
methods are prone to neglecting partial VPs or resulting in
redundant detection in non-Manhattan scenes. In contrast,
recent approaches [15, 22, 23] can automatically determine
the number of VPs. However, they lead to unsatisfactory ef-
ficiency since their parameter spaces are high-dimensional
and their cost functions are highly non-linear.
Deep Learning-based Methods. Earlier method [38] re-
quires pre-extracted image lines. It first uses a network to
predict several candidate horizons, and then finds the opti-
mal VPs that maximize the number of inlier lines. Recently,
some approaches that do not rely on image lines are pro-
posed [8, 41]. They directly treat an image as input. For ex-
ample, Chang et al. [8] formulated VP estimation as a clas-
sification problem. However, this method can only detect
VPs within the image. Zhou et al. [41] adopted a coarse-to-
fine strategy to sample points on the sphere. For each sam-
pled point, they used a network to predict the probability of
VP. Then they selected the points with top K probabilities
(K is the number of VPs). While this method can handle
VPs outside the image, it is sensitive to the sampling reso-
lution and also requires prior knowledge of the number of
VPs. In addition, an approach for multi-model fitting [18]
can automatically determine the number of VPs. However,
it requires image lines as input.

3. Predicting Spherical Probability Map
Given a perspective image, our network predicts a spher-

ical probability map of DD. In Section 3.1, we introduce
the icosahedral spherical representation that makes our net-
work reliably handle arbitrary orientations of DDs. In Sec-
tion 3.2, we introduce our network architecture. In Sec-
tion 3.3, we design a novel loss function that exploits the
characteristic of spherical map for regularization.

3.1. Icosahedral Spherical Representation

As shown in Fig. 2(a), the widely-used equi-angular dis-
cretization on the sphere [15, 22] results in non-uniform
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(a) (b) (c)
Figure 2. (a) Red and blue faces of the equi-angular discretization
on the sphere have different areas. (b) Red triangle is a basic face
of icosahedron. Sub-faces obtained by the first and second rounds
of sub-divisions are shown in green and blue, respectively. (c)
Sub-faces of icosahedral spherical representation are defined by
the extruded vertices (e.g., the cyan one) and have similar areas.

pixel distribution. Accordingly, our experiments show that a
baseline method using this representation cannot handle ar-
bitrary orientations of DDs, especially DDs near two poles
(see Fig. 8(a)). To solve this problem, we propose to use a
novel icosahedral spherical representation [2]. As shown in
Fig. 2(b), an icosahedron consists of 20 basic faces with the
same area. We sub-divide each face into 4 sub-faces. After
N rounds of sub-division, we obtain 20×4N sub-faces. We
empirically set N as 5, which leads to reliable DD estima-
tion in our experiments. As shown in Fig. 2(c), we extrude
all the vertices of icosahedron sub-faces to the unit sphere,
obtaining the icosahedral spherical representation. We use
this representation to express our spherical probability map.
Specifically, a sub-face of this representation defines a pixel
of spherical map. We associate each pixel with the proba-
bility that a DD passes through this pixel (see Fig. 1(f)).

In addition, as shown in Fig. 1(f), a DD d is up to sign,
i.e., d and −d are equivalent in DD estimation [32]. Ac-
cordingly, antipodal pixels of our spherical map should be
associated with the same probability of DD. Despite this an-
tipodal symmetry, we do not use the hemisphere to express
the probability map. The reason is that a dividing line of
sphere, i.e., a great circle (see Fig. 9(a)) may split a proba-
bility distribution on the map and further affects the network
training, as will be shown in the experiments.

3.2. Network Architecture

As shown in Fig. 3(a), our network is based on encoder-
decoder architecture. Our encoder works on the image do-
main. Given a perspective image, we follow the encoder
of well-known DCGAN [29] to obtain a 1024-channel 1D
code whose length is 20 × 42. The reason why we choose
DCGAN (instead of the other networks) is that DCGAN
provides higher reliability in practice. Details are avail-
able in the supplementary material. The length of our code
equals to the resolution of the icosahedral spherical repre-
sentation based on two rounds of sub-division. Our decoder
works on the sphere domain, and treats our code as the input
spherical map. Based on the spherical convolution and up-
sampling [20], we alternately extract features (by convolu-
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Figure 3. (a) Our network is based on encoder-decoder architec-
ture. “S” and “C” denote the image size and the number of chan-
nels, respectively. (b) A pixel and its nine gray neighbors define
the shape of convolution kernel. (c) For up-sampling, we transfer
a pixel p in the lower-resolution map to a pixel p′ in the higher-
resolution map, and then pad three gray neighbors of p′ with 0.

tion) and increase the map resolution (by up-sampling). We
introduce these operations in the next paragraph. In addi-
tion, each spherical convolution is followed by bias adding,
batch normalization, and leaky ReLU function. For the one-
channel output whose resolution is 20×45, we normalize it
as a probability map (see Fig. 1(f)) by Sigmoid function.

We consider a pixel of the icosahedral spherical map to
illustrate the spherical convolution and up-sampling. As
shown in Fig. 3(b), except for the shape of kernel, spher-
ical convolution is similar to image convolution. By set-
ting the stride as 1, convolution does not change the res-
olution of sphere. As shown in Fig. 3(c), except for the
number of neighbors in the higher-resolution map, spheri-
cal up-sampling is similar to image up-sampling.

3.3. Loss Function

Our loss function is the combination of three sub-losses.
First, we follow [37] to use the pixel-wise mean squared
error (MSE) loss. This loss encodes the difference between
the predicted and ground truth probability maps. We will in-
troduce how we generate the ground truth map in Section 4.
MSE loss is effective in fitting training data. To prevent
over-fitting, we exploit the characteristic of probability map
for regularization. Specifically, as introduced in Section 3.1,
our spherical probability map should exhibit antipodal sym-
metry. To enforce this constraint, we propose an antipodal
symmetry (AS) loss. We define it by the average of the
squared differences between all pairs of antipodal pixels on
a predicted map. In addition, as shown in Fig. 1(f), many
pixels of our probability map should be associated with the
probability of 0. To enforce this constraint, we exploit L0

loss [7] to reduce the number of non-zero pixels. Based on
the above sub-losses, we define our total loss by
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Figure 4. Baselines to generate ground truth maps. (a) Map of
Binary. (b) Maps of Unrefined and Refined both follow Watson
mixture model [36] whose components exhibit isotropic disper-
sions. Components of Unrefined peak at noisy annotated DDs,
while components of Refined peak at the refined DDs.

L = λMSE · LMSE + λAS · LAS + λ1 · L0. (1)

We empirically set the coefficients λMSE, λAS and λ1 as 2,
0.5 and 0.1, respectively. Our experiments demonstrate the
effectiveness of all three sub-losses.

4. Generating Ground Truth Probability Map

Given several annotated DDs2, we aim to generate the
ground truth probability map used in Section 3.2. In the
field of VP estimation, a method for spherical ground truth
map generation does not exist. We first design various base-
lines and then propose a reliable method.

4.1. Baselines and Their Limitations

Binary Map (denoted by Binary). We design this baseline
by analogy with [40]. Given several annotated DDs, we
generate a spherical binary ground truth map. As shown in
Fig. 4(a), we assign 1 to the pixels passed by the annotated
DDs, and 0 to the other pixels. However, as will be shown
in the experiments, due to too high sparsity of this map, the
trained network is inaccurate.
Unrefined Watson Mixture Model-based Map (denoted
by Unrefined). We design this baseline by analogy
with [37]. As shown in Fig. 4(b), we apply Watson dis-
tributions [36] with the same isotropic dispersion on pixels
passed by the annotated DDs. We choose Watson distri-
bution since its antipodal symmetry is suitable to express
DDs (see Section 3.1). This baseline improves the accuracy
of the above baseline by reducing the sparsity, as will be
shown in the experiments. However, it does consider the
noise of annotated DDs, which affects the accuracy. Specif-
ically, on many VP datasets [42, 22, 18], a VP is annotated
by computing the intersection of a small number of image
lines with the same (manually obtained) labels. It is known
that this VP may be unreliable [33, 39], especially when the
intersected lines are nearly parallel.

2Annotated VPs and DDs can be mutually converted (see Fig. 1(e)).

Clusters of 
Intersections (Scatters)

Figure 5. Intersections of all pairs of image lines with the same
label constitute a cluster exhibiting anisotropic dispersion. More-
over, dispersions of clusters are different. The cluster generated
by green lines is far from the image center and not presented.

Refined Watson Mixture Model-based Map (denoted by
Refined). We first follow [33] to alternately refine anno-
tated DDs and update cluster labels of image lines. Then we
apply Watson distributions on pixels passed by the refined
DDs (see Fig. 4(b)). While this baseline reliably expresses
the locations of DDs, it fails to appropriately express the
uncertainties of DDs. Specifically, [19] studied the uncer-
tainties of VPs in the image by computing the intersections
of all pairs of image lines with the same label. As shown
in Fig. 5, the uncertainties of VPs should be expressed by
the distributions with various anisotropic dispersions. Sim-
ilarly, as will be shown in the next section, the uncertainties
of DDs should be expressed by the distributions with vari-
ous anisotropic dispersions. However, Watson distributions
used by this baseline exhibit the same isotropic dispersion.

4.2. Map Based on Various Anisotropic Dispersions

To overcome the limitations of the above baselines, we
propose a ground truth probability map that appropriately
expresses both locations and uncertainties of DDs. First, we
follow [33] to alternately refine annotated DDs and update
cluster labels of image lines. Then as shown in Fig. 6(a),
we map an image line into a great circle on the sphere. As
shown in Fig. 6(b), we associate great circles with the up-
dated cluster labels of image lines. As shown in Fig. 6(c),
we compute the intersections of all pairs of great circles
with the same label. These intersections constitute an an-
tipodally symmetric cluster on the sphere. For all the clus-
ters, their density peaks and various anisotropic dispersions
encode the locations and uncertainties of DDs, respectively.
Intuitively, a cluster with high-level anisotropic dispersion
corresponds to a VP far from the image center.

Based on the intersections computed above, we gener-
ate our ground truth probability map. We first define an
icosahedral sphere with 20×45 sub-faces (see Section 3.1).
Then we compute a frequency histogram of intersections
over sub-faces of the icosahedral sphere. Specifically, if
an intersection lies within a sub-face, we increase the fre-
quency associated with this sub-face by one. Finally, we
normalize the frequencies into [0, 1]. As shown in Fig. 6(d),
we treat the spherical histogram with normalized frequen-
cies as our ground truth probability map. Our map effec-
tively expresses the distribution pattern of intersections.
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Figure 6. (a) An image line and camera center define a projection
plane. This plane intersects with the sphere, generating a great
circle. (b) We generate four sets of great circles by the image lines
in Fig. 5. (c) Intersections of all pairs of circles with the same label
constitute an antipodally symmetric cluster exhibiting anisotropic
dispersion. Moreover, dispersions of four clusters are different.
(d) We generate a ground truth map by intersections.

5. Detecting DDs Based on Predicted Map

Given a probability map predicted by our network in
Section 3.2, we aim to detect DDs. A straightforward way is
to use the non-maximum suppression [27]. Briefly, we first
select the pixels with high probabilities. Each selected pixel
corresponds to a candidate DD. Based on a threshold of an-
gle between two DDs, we sequentially select distinct DDs
from candidates in a greedy manner. However, this strat-
egy is relatively sensitive to the above threshold, and thus
may result in under- or over-detection (see Figs. 12(d, e)).
Moreover, directly selecting a distinct DD without consider-
ing its neighbors may result in unsatisfactory accuracy due
to the effect of noise. To solve these problems, we propose
to detected DDs by fitting a Bingham mixture model [6].
Algorithm Overview. As shown in Fig. 1(f), on our pre-
dicted map, there are several antipodally symmetric clus-
ters of non-zero pixels. These clusters exhibit various
anisotropic dispersions. Bingham mixture model is suitable
to express this pattern. Accordingly, we treat our predicted
map as a discrete probability density function of Bingham
mixture model and use it to interpolate/fit a model (de-
tails are introduced in the next paragraphs). Given a fit-
ted model, we treat the peaks of components as the detected
DDs, and treat the concentrations of components as the con-
fidence levels of DDs. These confidence levels are useful
for practical applications, e.g., visual SLAM [16] (see the
supplementary material). Our method can automatically de-
termine the number of DDs and also robustly handle close
DDs, as will be shown in the experiments.
Details of Model Fitting. We first introduce basic knowl-

edge of Bingham mixture model. For a point g on the
sphere, the probability density function of Bingham distri-
bution is given by

B(g|V,k) = 1

f(k)
exp
( 2∑

i=1

ki
(
g>vi

)2 )
, (2)

where v1 and v2 are basis vectors, and V = [v1,v2]; k1
and k2 are concentration parameters, and k = [k1, k2]

>. A
large magnitude of ki represents that Eq. (2) highly peaks
along vi. To express M Bingham distributions (M repre-
sents the unknown-but-sought number of DDs in our con-
text), we use a Bingham mixture model, i.e.,

M
(
g
)
=

M∑
m=1

cm · B(g |Vm,km), (3)

where cm denotes the mixture coefficient of the m-th com-
ponent, and satisfies cm > 0 and

∑M
m=1 cm = 1.

In the following, we introduce the model fitting. We first
follow [38] to sample scatters on the sphere based on the
predicted probability map. Intuitively, for a pixel associated
with large probability, we sample a large number of scat-
ters within this pixel. Given N sampled scatters {gn}Nn=1,
we aim to cluster them by an unknown-but-sought Bing-
ham mixture model in Eq. (3). To achieve this goal, we
maximize a log-likelihood D, i.e.,

max
M, {Vm,km, cm}Mm=1︸ ︷︷ ︸

Model Parameters.

log
N∏

n=1

M
(
gn

)
︸ ︷︷ ︸

D

. (4)

We solve Eq. (4) based on a self-adaptive expectation-
maximization algorithm [11]. It can automatically deter-
mine the number of DDs M . Specifically, we search M in
a reasonable range of the number of DDs, e.g., [1, 6]. Given
a tentative value i ∈ [1, 6] of M , we alternately update
the cluster labels of scatters and model parameters. Then
we back-substitute the estimated parameters into Eq. (4),
obtaining the log-likelihood Di. In addition, we evaluate
the complexity of a model with i components by the com-
plexity function F (i) [11]. A small value of F (i) corre-
sponds to low model complexity. By considering both log-
likelihoodDi and function F (i), we find the optimal value i
based on the minimum message length criterion [35], i.e.,

min
i

(
−Di + F (i)

)
. (5)

This criterion controls the trade-off between fitting quality
and model complexity. For algorithm initialization, we as-
sign adjacent scatters with the same cluster labels. Experi-
ments show that our algorithm can robustly converge.

6. Experiments
Datasets. Our experiments are on both real-world [10, 22,
18, 31] and synthetic [41] datasets:
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Extracted Lines Ground Truth TR-L-3 [25] TR-L-auto [22] DL-nL-3 [41] DL-L-auto [18] DL-nL-auto (our)

110 Lines 4 VPs 92.68%, 0.469 pix. 93.72%, 0.336 pix. 90.55%, 0.641 pix. 96.23%, 0.544 pix. 98.62%, 0.530 pix.
(YUD+ [10]) (1 Sloping VP) 0.237 s 3.549 s 0.363 s 0.406 s 0.288 s

82 Lines 5 VPs 82.61%, 1.034 pix. 98.11%, 0.846 pix. 79.10%, 1.588 pix. 85.92%, 2.083 pix. 96.15%, 1.376 pix.
(VSD [22]) (4 Horizontal VPs) 0.268 s 2.861 s 0.372 s 0.479 s 0.271 s

57 Lines 4 VPs 92.45%, 0.780 pix. 92.45%, 0.604 pix. 91.43%, 0.908 pix. 96.36%, 0.935 pix. 97.30%, 0.922 pix.
(NYU-VP [31]) (1 Sloping VP) 0.131 s 2.578 s 0.349 s 0.357 s 0.276 s

G: ↓, A: ↑, E: ↑ G: −, A: ↑, E: ↓ G: ↓, A: −, E: − G: −, A: −, E: − G: ↑, A: −, E: ↑
Figure 7. Generality (“G”), accuracy (“A”) and efficiency (“E”) comparisons on three representative images. “↑”, “−” and “↓” represent
high, middle and low, respectively. We use image lines to compute F1-score and consistency error, regardless of whether a method requires
image lines for VP estimation. In the 3-rd to 7-th columns, a dotted line in the image represents the connection between the midpoint of
a clustered image line and an estimated VP. A triplet of numbers below an image represents F1-score, consistency error, and run time.
Additional comparisons are available in the supplementary material.

Table 1. Generality and accuracy comparisons on various datasets.

Datasets
TR-L-3 [25] TR-L-auto [22] DL-nL-3 [41] DL-L-auto [18] DL-nL-auto (our)

F1-score Cons. Error F1-score Cons. Error F1-score Cons. Error F1-score Cons. Error F1-score Cons. Error

YUD+ [10] 79.55% 0.795 pix. 84.18% 0.682 pix. 78.03% 1.832 pix. 87.34% 1.757 pix. 89.43% 1.589 pix.

VSD [22] 75.36% 0.873 pix. 91.02% 0.769 pix. 70.47% 2.008 pix. 88.34% 1.802 pix. 90.76% 1.660 pix.

NYU-VP [31] 80.20% 0.951 pix. 85.73% 0.782 pix. 76.34% 2.078 pix. 86.59% 1.914 pix. 87.88% 1.851 pix.

SU3 [41] 94.88% 0.782 pix. 96.26% 0.598 pix. 94.37% 1.662 pix. 93.89% 1.429 pix. 94.93% 1.478 pix.

• YUD+ [10, 18] consists of 102 outdoor and indoor im-
ages with 3∼6 vertical, horizontal and/or sloping VPs.

• VSD [22] consists of 97 outdoor images with 4∼6 ver-
tical and horizontal VPs.

• NYU-VP [31, 18] consists of 1449 indoor images with
1∼6 vertical, horizontal and/or sloping VPs.

• SU3 dataset [41] consists of 23,000 outdoor images
with 3∼4 vertical, horizontal and/or sloping VPs.

We extract image lines by LSD [34] to estimate VPs and/or
evaluate accuracy. For deep learning-based methods, we
treat 80% and 20% of images of each dataset as training
and testing images, respectively. We follow [26] to combine
all the training images to train a single network. Then we
test this network on testing images of each dataset indepen-
dently. For traditional methods, we test it using the above
testing images of each dataset independently. Additional
information is available in the supplementary material.

Evaluation Criteria. In our context, high generality rep-
resents that a method can detect various VPs, e.g., non-
orthogonal horizontal VPs and sloping VPs (see Fig. 7).
We follow [22, 21] to evaluate generality by F1-score that
considers both precision and recall of image line cluster-
ing. In addition, for accuracy evaluation, we choose the
widely-used consistency error [33, 39, 25, 22]. Consistency
error in the image is more reasonable than angle evalua-
tion in 3D [41] since uncertainty originates from the im-
age [39]. Specifically, an estimated VP and midpoint of an
image line l associated with this VP define a virtual line v.
Consistency error represents the distance from an endpoint
of the line l to the virtual line v. Additional illustrations
are available in the supplementary material. On multiple
images of a dataset, we report the mean of each metric.
Implementation Details. We use Adam [17] to minimize
our loss. Our learning rate is 10−4, batch size is 16, and
number of epochs is 30. We implement our method with
TensorFlow and conduct tests on a computer equipped with
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Table 2. Efficiency comparisons on various datasets.

YUD+ [10] VSD [22] NYU-VP [31] SU3 [41]

TR-L-3 [25] 0.202 s 0.235 s 0.216 s 0.143 s

TR-L-auto [22] 2.547 s 3.106 s 2.985 s 2.367 s

DL-nL-3 [41] 0.359 s 0.371 s 0.364 s 0.343 s

DL-L-auto [18] 0.383 s 0.477 s 0.401 s 0.268 s

DL-nL-auto (our) 0.268 s 0.279 s 0.284 s 0.271 s

TITAN Xp GPU and Xeon E5-2680 v4 CPU.

6.1. Comparison with State-of-the-art Approaches

We denote our deep learning-based method that does not
rely on image lines and also can automatically determine
the number of DDs by DL-nL-auto. We compare it with
the state-of-the-art approaches introduced in Section 2:

• The traditional method [25] relies on image lines and
also assumes 3 mutually orthogonal VPs. We denote it
by TR-L-3.

• The traditional method [22] relies on image lines and
also can automatically determine the number of DDs.
We denote it by TR-L-auto.

• The deep learning-based method [41] does not rely on
image lines and also requires prior knowledge of the
number of VPs. It assumes 3 VPs when prior knowl-
edge is unavailable. We denote it by DL-nL-3.

• The deep learning-based method [18] relies on image
lines and also can automatically determine the number
of DDs. We denote it by DL-L-auto.

Generality and Accuracy. As shown in Fig. 7 and Table 1,
TR-L-3 only works well in Manhattan world. On the im-
ages with non-orthogonal and sloping VPs, it leads to un-
satisfactory recall, which affects the F1-score. TR-L-auto
fails to handle sloping VPs and also is prone to neglecting
some VPs associated with a small number of image lines.
DL-nL-3 can find three non-orthogonal VPs, and thus is
more general than TR-L-3. However, it still fails to avoid
under- or over-detection of VPs due to the assumption of
three VPs. DL-L-auto can hardly detect VPs associated
with a small number of image lines due to high difficulty
of valid sampling. In contrast, our DL-nL-auto can predict
a reliable spherical probability map and detect all the DDs
based on this map. In addition, traditional methods lead
to smaller consistency error than deep learning-based ap-
proaches thanks to geometric constraints. Our DL-nL-auto
is the most accurate deep learning-based method.
Efficiency. As shown in Fig. 7 and Table 2, TR-L-3 is not
very efficient in non-Manhattan worlds. It treats image lines
associated with non-orthogonal VPs as outliers and thus
leads to numerous iterations. TR-L-auto is time-consuming
due to high-dimensional parameter space and highly non-
linear cost function. The efficiency of DL-nL-3 is moder-
ate due to the simplification of its coarse-to-fine inference

Table 3. Comparison between
icosahedral spherical represen-
tation and equi-angular dis-
cretization on all the datasets.

F1-score Cons. Error

Equi-angular 79.41% 2.984 pix.

Icosahedral 90.75% 1.644 pix.

Table 4. Comparison between
hemisphere and sphere on all
the datasets.

F1-score Cons. Error

Hemisphere 88.04% 1.813 pix.

Sphere 90.75% 1.644 pix.
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(a) 72.55%, 4.361 pix. (b) 91.03%, 1.573 pix. 3 DDs
Figure 8. Comparison between (a) equi-angular discretization and
(b) icosahedral spherical representation on a representative image.
A pair of numbers below a sphere represents F1-score and consis-
tency error. Icosahedral spherical representation is more accurate
than equi-angular discretization, especially around two poles.
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(a) 88.49%, 1.928 pix. (b) 92.56%, 1.360 pix. 3 DDs
Figure 9. Comparison between (a) hemisphere and (b) sphere on
a representative image. A pair of numbers below a sphere repre-
sents F1-score and consistency error. Sphere is more accurate than
hemisphere, especially around the dividing line.

strategy. DL-L-auto provides unsatisfactory efficiency for
a relatively large number of VPs. Its time cost is mainly
caused by sequential computation of sampling weights. Our
DL-nL-auto is relatively efficient thanks to concise network
and moderate resolution of map. In addition, compared with
image line-based methods, deep learning-based approaches
lead to smaller variances of runtime.

6.2. Ablation Studies

Spherical Expression. We express our probability map
based on icosahedral spherical representation (see Sec-
tion 3.1). We compare our network based on this represen-
tation with a baseline based on the equi-angular discretiza-
tion. We introduce the architecture of baseline in the sup-
plementary material. For a fair comparison, we set the res-
olution of equi-angular discretization as 200×100=20, 000
pixels (recall that the icosahedral spherical representation
consists of 20×45 = 20, 480 pixels). As shown in Table 3
and Fig. 8, icosahedral spherical representation is more ac-
curate than equi-angular discretization. The reason is that
this representation provides uniform pixel distribution, and
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Figure 10. Comparison between various baselines and our method
for ground truth map generation on all the datasets.

Table 5. Comparison between vari-
ous combinations of MSE, AS, and
L0 loess on all the datasets.

Cons. Error F1-score

MSE 1.828 pix. 88.64%

MSE & AS 1.698 pix. 90.02%

MSE & L0 1.782 pix. 89.37%

MSE & AS & L0 1.644 pix. 90.75%
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Figure 11. A predicted map
obtained by only MSE loss.

thus facilitates estimating arbitrary orientations of DDs.
In addition, we express the probability map on the sphere

instead of hemisphere (see Section 3.1). We use the ground
truth maps expressed by sphere and hemisphere to train our
network, respectively. Table 4 and Fig. 9 show that sphere
leads to higher accuracy. The reason is that sphere can keep
the integrity of probability distribution. In contrast, when
generating hemisphere, a dividing line of sphere may split a
probability distribution. Accordingly, hemisphere results in
unreliable probability prediction around the dividing line.
Ground Truth Probability Map. We design baselines Bi-
nary, Unrefined and Refined and our method (see Sec-
tion 4). We use different ground truth maps generated by
these methods to train our network. As shown in Fig. 10, Bi-
nary leads to low accuracy since too high sparsity of ground
truth map affects network training. The accuracy of Unre-
fined is unsatisfactory since it neglects the noise of anno-
tated DDs. Refined improves the accuracy to some extent.
However, due to inappropriate expression of uncertainties
of DDs, it can hardly handle VPs far from the image center.
Our method provides the highest accuracy since it reason-
ably expresses both locations and uncertainties of DDs.
Loss Function. Our loss function is the combination of
MSE, AS, and L0 sub-losses (see Section 3.3). We test
our network trained by various combinations of sub-losses.
Additional tests on coefficient variation are available in the
supplementary material. As shown in Table 5 and Fig. 11,
MSE loss is effective in fitting the probability maps, but the
accuracy is limited by slight asymmetry and too wide dis-
persions of distributions. AS and L0 losses both improve
the accuracy. The reason is that they can align the peaks
of distributions and compress small non-zero probabilities
respectively, and thus effectively prevents over-fitting.
DD Detection. We detect DDs by fitting a Bingham mix-
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Figure 12. Comparison between non-maximum suppression and
our model fitting for DD detection. (a) Results on 156 images with
close DDs whose angles are small than 30 degrees. (b) A represen-
tative image with two close DDs. (c) DDs detected by our model
fitting. (d, e) DDs detected by non-maximum suppression. A pair
of numbers below a sphere represents precision and recall of DD
detection (except for this figure, precisions, recalls and F1-scores
in the other figures and tables are about image line clustering).

ture model instead of non-maximum suppression (see Sec-
tion 5). Given the same predicted probability map, we com-
pare these strategies. As shown in Fig. 12, non-maximum
suppression is prone to resulting in under- or over-detection
especially when two DDs are relatively close. In contrast,
our method is robust since it is free of threshold.

7. Conclusions
The proposed VP estimation method is independent of

image lines and also can automatically determine the num-
ber of VPs, providing high generality. Moreover, it achieves
satisfactory accuracy and high efficiency thanks to novel
spherical representation, loss function, ground truth map
generation, and DD detection. Therefore, it is more prac-
tical than existing methods failing to simultaneously guar-
antee generality, accuracy, and efficiency.
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