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Abstract
Gaze following, i.e., detecting the gaze target of a hu-

man subject, in 2D images has become an active topic in
computer vision. However, it usually suffers from the out of
frame issue due to the limited field-of-view (FoV) of 2D im-
ages. In this paper, we introduce a novel task, gaze follow-
ing in 360-degree images which provide an omnidirectional
FoV and can alleviate the out of frame issue. We collect
the first dataset, “GazeFollow360”1, for this task, contain-
ing around 10,000 360-degree images with complex gaze
behaviors under various scenes. Existing 2D gaze follow-
ing methods suffer from performance degradation in 360-
degree images since they may use the assumption that a
gaze target is in the 2D gaze sight line. However, this as-
sumption is no longer true for long-distance gaze behav-
iors in 360-degree images, due to the distortion brought by
sphere-to-plane projection. To address this challenge, we
propose a 3D sight line guided dual-pathway framework,
to detect the gaze target within a local region (here) and
from a distant region (there), parallelly. Specifically, the lo-
cal region is obtained as a 2D cone-shaped field along the
2D projection of the sight line starting at the human sub-
ject’s head position, and the distant region is obtained by
searching along the sight line in 3D sphere space. Finally,
the location of the gaze target is determined by fusing the
estimations from both the local region and the distant re-
gion. Experimental results show that our method achieves
significant improvements over previous 2D gaze following
methods on our GazeFollow360 dataset.

1. Introduction

Gaze behavior is an essential part of human behavior,
which is significant in studying human social behavior,
human-object interaction [23, 22, 10, 40, 27, 32, 11, 9, 44,
2, 13]. Gaze following [36], has been an active topic in the
computer vision community, whose purpose is to predict the
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location where each human subject in a scene is looking at,
given a 2D image containing one or more human subjects.

Rapid developments have been witnessed for gaze fol-
lowing methods [7, 26, 47, 8, 14], but they are restricted in
2D images or 2D videos, which easily suffer from the situ-
ation that gaze targets are out of frame, due to the limited
field-of-view (FoV), as shown in Fig. 1(left). It is hard to
perceive a whole surrounding scene in a 2D image. Unlike
2D images, 360-degree images capture the entire viewing
sphere surrounding the optical center of a camera, which
alleviates this issue. In addition, 360-degree images have
gradually been utilized in various scenes. For instance, au-
tonomous driving systems take 360-degree images as the
input, and thus gaze following in 360-degree images can be
used for human behavior understanding, such as human mo-
tion prediction, which can help detect the human attention
to avoid traffic crash. Together with the fact that the prices
of 360-degree cameras (e.g., Ricoh Theta S, Samsung Gear
360) have been reduced, it becomes promising to conduct
gaze following research in 360-degree images.

In light of these facts, in this paper, we propose a new
task: gaze following in 360-degree images. Compared with
gaze following in 2D images, two challenges are encoun-
tered in this task: (1) Current gaze following approaches
are deep learning based which are data driven, but there is
no public available large dataset for gaze following in 360-
degree images. (2) Previous 2D gaze following methods
are built upon the assumption that a gaze target should be
in the 2D sight line of the human subject in the 2D image
plane coordinate, as shown in Fig. 1(middle), while this as-
sumption is no longer true for long-distance gaze behaviors
in 360-degree images, due to sphere-to-plane projection, as
shown in Fig. 1(right).

To deal with the first challenge, we establish the first
large scale dataset “GazeFollow360” for gaze following in
360-degree images by collecting 360-degree images from
real world scenes, including various indoor and outdoor
scenes. Our dataset contains around 10,000 high quality
human-gazing target annotation pairs. Each gaze target lo-
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Figure 1. Left: The gaze target of the human subject in the 2D image is out-of-frame, due to the limited field-of-view of the 2D image.
Middle: In a 2D image, the gaze target of a human subject is in his 2D sight line, since perspective projection preserves straight lines.
Right: In a 360-degree image, this property still holds for short-distance gaze behaviors, while it is no longer true for long-distance gaze
behaviors, due to the large distortion brought by sphere-to-plane projection. Thus our method copes with these two conditions parallelly
by proposing a dual-pathway network.

cation is annotated by around 4 human labelers, and the fi-
nal annotated location is the average. The dataset covers a
wide range of potential application scenarios such as class-
rooms and sitting rooms, which can encourage development
on gaze following in 360-degree images.

In addition, to address the second challenge, we pro-
pose a sight line guided dual-pathway framework for gaze
following in 360-degree images. The second challenge is
caused by the mismatch between the 2D sight line of a
human subject and the gaze target to be looked at in 2D
images, due to sphere-to-plane projection. The mismatch
occurs when the human subject performs a long-distance
gaze behavior, since the distortion brought by sphere-to-
plane projection is large at this situation. While for a short-
distance gaze behavior, the gaze target locates within a local
region around the human subject’s head. This local region
on the sphere can be approximated by a plane, thus the dis-
tortion can be negligible and the assumption that the gaze
target is in the 2D sight line still holds.

Based on these observations, we model the gaze sight
line in 3D sphere space rather than in 2D image plane coor-
dinate which avoids sphere-to-plane projection and reflects
the propagation of sight line in real world more naturally.
Guided by the predicted 3D gaze sight line, we propose a
dual-pathway framework detects the gaze target within a
local region (here) and from a distant region (there), par-
allelly. Concretely, given a human subject’s head image,
the direction of the sight line (gaze direction) is first esti-
mated. Then, the local region is obtained as a 2D cone-
shaped field along the gaze direction starting at the human
subject’s head position, and the distant region is obtained by
searching along the gaze direction in 3D sphere space. Af-
terwards, gaze target estimation becomes attention guided
saliency detection in both the local region and the distant
region. The attention value at a position in the local region
is inversely proportional to its angular difference to the sight
line and that in the distant region is inversely proportional to
its distance to the interaction between the sight line and the

3D sphere. Finally, the location of the gaze target is deter-
mined by fusing the estimations from both the local region
and the distant region.

Our framework is inspired by the human perception pro-
cess. To infer the gaze target of a human subject, humans
used to first estimate a rough gaze direction of the human
subject, then infer the possible regions of the gaze target,
and finally confirm the location of the gaze target within the
possible regions according to image content, such as object
saliency.

The contributions of our paper are three-fold: (1) To our
best knowledge, this is the first work that studies gaze fol-
lowing in 360-degree images. (2) We establish “GazeFol-
low360”, the first large-scale dataset for gaze following in
360-degree images which contains 10,058 4K high resolu-
tion images with annotations of heads and gaze targets. (3)
We propose a sight line guided dual-pathway framework to
address the mismatch between the sight line of a human
subject and the gaze target in 360-degree images.

2. Related Work

Gaze Following Some gaze following researches[20, 39,
30, 38, 1] paid attention to restricted scenes. [39] stud-
ied estimating the gaze target in a specific environment for
human-robots interaction. Our work focuses on the gen-
eral gaze following problem[36, 29, 8, 7, 28]. Recasens et
al. [36] first defined the gaze following problem and built a
2D images dataset. Chong et al.[7] proposed a multi-task
approach to learn gaze directions and saliency simultane-
ously. Further works also utilized the gaze directions to
generate useful representation such as gaze fields [26, 8]
or sight lines [47] to help gaze target prediction. Besides
coping with 2D images, more works [8, 35, 53] extended
the problem to videos or group gaze problem. However,
these works are only concentrated on 2D images. Compar-
ing with 2D images, there is a mismatch between the gaze
target and the sight line of the human subject in 360-degree
images, making typical 2D approaches suffer from perfor-

3743



(a) Histogram of locations of 
gaze targets w.r.t. longitude

(b) Histogram of locations of 
gaze targets w.r.t. latitude

(c) Histogram of locations of 
human subjects w.r.t. longitude

(d) Histogram of locations of 
human subjects w.r.t. latitude (g) Examples of images and annotations

(e) Histogram of gaze 
directions w.r.t. yaw

(f) Histogram of gaze 
directions w.r.t. pitch

Figure 2. Overview of our GazeFollow360 dataset: (a) and (b) show the histograms of the locations of gaze targets w.r.t. longitude
and latitude, respectively; (c) and (d) show the locations of human subjects w.r.t. longitude and latitude, respectively; (e) and (f) show the
directions of gaze targets relative to the camera center w.r.t. pitch and yaw, respectively; (g) shows two examples of images and annotations.

mance degradation when dealing with 360-degree images.
Visual Saliency Prediction Visual saliency prediction is to
estimate locations in an image which attract the attention
of human subjects when looking at the image. Traditional
saliency models are based on feature integration theory [41]
and explore various hand-crafted features[50, 51, 5, 15, 18].
Recently deep learning based methods show superior per-
formance on this task due to their strong ability of extracting
features from images [24, 42, 48, 33, 4, 34, 43, 3, 25].
3D Gaze Estimation 3D Gaze estimation approaches can
be categorized into model-based and appearance-based.
Model based approaches[45, 17, 52] estimate gaze direction
by constructing geometric eye models. Appearance-based
approaches[46, 37, 21, 31, 6, 12, 49] seek to learn a map-
ping function from eye or head images to gaze directions.
Recently, Zhang [46] and Cheng [6] utilize neural network
to estimate gaze directions. Theoretically, 3D gaze estima-
tion can directly find gaze targets in 3D sphere space, but it
cannot achieve satisfactory gaze following results, as it ig-
nores scene information in 360-degree images. We use it as
the the first step of our framework, and refine its result by
the following dual-path scene understanding modules.

3. The GazeFollow360 Dataset

We first construct the following large-scale GazeFol-
low360 dataset due to the lack of public available im-
age/video dataset for gaze following in 360-degree images.

3.1. Data Collection and Annotation
In order to ensure that our dataset reflects the natural

diversity of gaze behaviors, we collect 360-degree images
from various scenes which are pretty common in the real
world, such as sitting room and classroom. We concretely
classify the scenes into indoor scenes and outdoor scenes.
All these 360-degree images are crawled from YouTube
videos. We select 65 different videos from YouTube cover-

ing various scenes, from which we extract short clips con-
taining dynamic gaze behaviors. In each clip, we sam-
ple frames every 4 seconds, and totally we collect 10,058
frames, where each frame is a 360-degree image in the
equirectangular format.

To annotate these 360-degree images for gaze follow-
ing, we conduct an annotation pipeline as follows: First, the
bounding boxes of the heads of the human subjects in each
360-degree image are labeled. Then, the gaze target of each
human subject is labeled by 4 knowledgeable human anno-
tators. Note that, even for human annotators, it is difficult to
find gaze targets from equirectangular images directly, due
to the distortion caused by sphere-to-plane projection. To
tackle this difficulty, the annotators make use of a software
“insta360 player”, which can re-project an equirectangular
image into 3D sphere space and view it from 360-degree, to
find gaze targets.

We remove the annotated gaze target point which is ob-
viously an outlier or noise. The mean of the rest of gaze
target points is marked as the annotation result. This col-
lection pipeline finally produces 10,058 gaze targets and
10,058 heads annotations. The gaze targets includes vari-
ous of objects, such as faces, human bodies and man-made
objects. We provide the histogram over the categories of the
target objects in the supplementary material.

3.2. Dataset Statistics

Dataset Splitting We split the dataset we collected into
training set, validation set and testing set, which contain
8225 images, 933 images and 900 images, respectively.
Each set has both indoor and outdoor scenes. The whole
dataset consists of training set (36 indoor scenes, 14 outdoor
scenes), validation set (3 indoor scenes, 2 outdoor scenes)
and testing set (7 indoor scenes, 3 outdoor scenes). There is
no source-overlap among images from different sets.
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Figure 3. The overview of our framework. It consists of (a) a gaze direction estimation (GDE) module, (c) a dual-pathway prediction (DP)
module and (d) a dual-pathway fusion (DF) module. “+” represents a concatenate operation. “C” represents a crop operation guided by the
predicted gaze direction, which will be illustrated in section 4.4. “P” represents a paste operation which pastes the local predicted heatmap
back to whole image. The local and distant crop regions are visualized in both the sphere (b) and the 360-degree image, marked by yellow
and green, respectively. The example here is selected from the GazeFollow360 dataset, which shows a long-distance gaze behavior.

Annotation Statistics The annotation statistics of our
dataset are shown in Fig. 2, including the histograms of gaze
directions relative to the camera center w.r.t. pitch and yaw,
and the histograms of the locations of gaze targets and hu-
man subjects w.r.t. longitude and latitude. The histograms
of the locations of gaze targets and human subjects w.r.t. lat-
itude show that gaze targets and human subjects tend to lo-
cate around the equator. The possible reason is that photog-
raphers tend to place 360-degree cameras at similar heights
as gaze targets and human subjects. Our study also shows
that the scatter of the locations of gaze targets along lon-
gitude is less severe than that along latitude, which almost
covers all the longitudes uniformly. This indicates that 360-
degree camera naturally captures the gaze targets and the
human subjects along the whole longitude.

4. Method
4.1. Framework Overview

To deal with the mismatch between the sight line of a
human subject and the gaze target to be looked at caused by
sphere-to-plane projection, we propose a sight line guided
dual-pathway framework. As shown in Fig. 3, the frame-
work consists of three modules: 1) a gaze direction esti-

mation (GDE) module, 2) a dual-pathway prediction (DP)
module and 3) a dual-pathway fusion (DF) module.

First, the GDE module estimates the direction of the
sight line (gaze direction) of a human subject in 3D sphere
space rather than in the 2D image plane space, since 360-
degree images are obtained by sphere-to-plane projection,
e.g., equirectangular projection. Then, by searching along
the estimated gaze direction, the DP module finds two can-
didate regions within the local region of the human sub-
ject (here) and from a distant region to the human subject
(there), respectively, which possibly contain the gaze tar-
get. Finally, the DF module combines the gaze estimations
from the two pathways and provides the final predicted gaze
target heatmap. In the rest of this section, we will introduce
these modules in detail one-by-one.

4.2. Prerequisite

We first describe some prerequisite knowledge about co-
ordinate transformations, including the transformation from
the 2D image plane coordinate to the 3D sphere coordinate
originated at camera (camera coordinate) and the transfor-
mation from the camera coordinate to the subject coordi-
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Figure 4. Image-to-sphere coordinate transformation and camera-
to-subject coordinate transformation. (XI , Y I), (XC , Y C , ZC)
and (XP , Y P , ZP ) represent the image coordinate, the camera
coordinate and the subject coordinate origined at P , respectively.

nate, as shown in Fig. 4. We use subscripts “I”, “C” and
“S”, e.g., xI , xC and xS , to represent the coordinates in
these three coordinate systems.

Image-to-sphere coordinate transformation: Let Q
be a 2D point in a 360-degree image I, i.e., equirectan-
gular image. Point Q is represented by qI = (xI

q , y
I
q ),

where xI
q ∈ [0, 1], yIq ∈ [0, 1] are image plane coordi-

nates. We can re-project Q back to a sphere by the reverse
projection of equirectangular projection, which maps ver-
tical straight lines of 2D image to meridians and horizon-
tal straight lines of 2D image to circles of latitude. This
re-projection process is shown in Fig. 4. In sphere space,
we represent point Q in terms of sphere coordinates as
q̃ = (φq, λq, r) = (π/2−πyIq , 2π−2πxI

q , r), where φq and
λq represent the latitude and the longitude of point Q on the
sphere, respectively, and r indicates the radius of the sphere.
We then convert the sphere coordinates to the geocentric
equatorial coordinates originated at the camera, and the rep-
resentation of point Q becomes qC = (xC

q , y
C
q , z

C
q ) =

(rcosφq cosλq, rcosφq sinλq, rsinφq).
Camera-to-subject coordinate transformation: Let P

be the head center point of a human subject and Q be the
corresponding gaze target point in a 360-degree image. We
can obtain their representations in terms of camera coor-
dinates pC = (xC

p , y
C
p , z

C
p ) and qC = (xC

q , y
C
q , z

C
q ) by

applying the above mentioned image-to-sphere coordinate
transformation. We can easily obtain the gaze direction by
dC
p = (xC

q −xC
p , y

C
q −yCp , z

C
q −zCp ) = (dCp |x, dCp |y, dCp |z).

However, this formulation is not invariant to the rotation
of the camera coordinate system, i.e., the coordinate sys-
tem originated at the camera O. To address this issue, we
build a new coordinate system originated at the head center
point of the human subject instead, i.e., subject coordinate
system, which is shown in Fig. 4 and Fig. 3(b). The Z-
axis(ZP ) of the subject coordinate system is the extended
line of line OP ; The Y-axis (Y P ) is orthogonal to line OP
and also tangential to meridian CPD; The X-axis (XP ) is
orthogonal to the plane formed by Y P and ZP . Intuitively,
the gaze direction dS

p = (dSp |x, dSp |y, dSp |z) in terms of the
subject coordinate system can be obtained by rotating the
camera coordinate system.

dS
p = Rpd

C
p , (1)

where Rp =

 − sinλp cosλp 0
− sinφp cosλp − sinφp sinλp cosφp

cosφp cosλp cosφp sinλp sinφp


is the 3D rotation matrix. λp and φp are the longitude and
latitude of the head center point P of the human subject
on the sphere. One benefit to represent the gaze direction
w.r.t subject coordinate system is it is independent to the
subject’s location, e.g., dS

p = (0, 0,−1) when the subject
looks directly at the camera.

4.3. Gaze Direction Estimation Module

Our purpose is to estimate the 3D gaze direction dS
p of a

human subject, given this subject’s head crop image Hp and
head center location pI = (xI

p, y
I
p) in a 360-degree image

I. Towards this end, we train a deep network G to regress
the 3D gaze direction:

d̂S
p = G(Hp, z

C
p ), (2)

where zCp is obtained by applying the image-to-sphere coor-
dinate transformation introduced in Sec. 4.2 to pI . Here, we
also use zCp as the input for gaze direction estimation, be-
cause zCp implicitly indicates the degree of distortion, i.e.,
the bigger is the absolute value of zCp , the larger is the distor-
tion at pI . Involving this distortion information into train-
ing can help our estimation module to be robust to distor-
tion. The loss function for our network training is the cosine
distance between the ground-truth gaze direction dS

p , which
is computed by using the ground-truth gaze target location,
and the estimated gaze direction d̂S

p .
In our implementation, we feed the head crop image Hp

into a ResNet-50 network [16] to extract facial features, as
shown in Fig. 3(a). We then feed the head location zCp to
a multi-layer perceptron (MLP) to obtain location features.
Finally, we concatenate and feed them to another MLP for
gaze direction estimation.

4.4. Dual-pathway Prediction Module

After estimating the 3D gaze direction d̂S
p , we can use

it to infer the candidate regions that contain the gaze tar-
get. One intuitive way is searching along the gaze direction
in 3D sphere space, and finding the intersection between
the sight line and the sphere. This strategy can address the
mismatch between the sight lines and gaze targets in 360-
degree images, especially for the long-distance gaze behav-
iors, which suffer from large distortion caused by sphere-
to-plane projection. However, for the short-distance gaze
behavior, this strategy becomes improper. The reason is a
gaze behavior of a short distance implies the human subject
is shown in profile in the 360-degree image, raising the dif-
ficulty to precisely estimate the 3D gaze direction in sphere
space. Fortunately, the mismatch problem is not serious for
short-distance gaze behaviors, since the distortion is small
within a local range, and it can also be treated as common
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2D gaze following problem. In light of this consideration,
we design a dual path-way module to search the gaze tar-
get within a local region (here) and from a distant region
(there), parallelly, according to the estimated gaze direction.
4.4.1 Distant Pathway

Given the estimated gaze direction d̂S
p = (dSp |x, dSp |y, dSp |z)

of a human subject as well as the location of head center
p̃ = (xC

p , y
C
p , z

C
p ), we can calculate the intersection point

S between the estimated gaze sight line and the sphere by
jointly solving the sphere equation and the gaze sight line
equation in the camera coordinate system:

(xC
s )

2 + (yCs )
2 + (zCs )2 = r2

xC
s − xC

p

d̂Cp |x
=

yCs − yCp

d̂Cp |y
=

zCs − zCp

d̂Cp |z

, (3)

where SC = (xC
s , y

C
s , z

C
s ) is the location of the intersec-

tion point S and d̂C
p = (d̂Cp |x, d̂Cp |y, d̂Cp |z) is the estimated

gaze direction in terms of the camera coordinate system,
i.e., d̂C

p = R−1
p d̂S

p . Intuitively, if the estimated gaze di-
rection is perfect, then the intersection point S should be
the gaze target point. But, in practice, it is inevitable to
have some errors in estimation. Thus, we crop a region Rs

around the intersection point S from the 360-degree image
I as the candidate region that contains the gaze target. Here,
we define a cropping operation: Crop[·, ·, ·, ·], with four
input parameters which are the whole image, the center of
the crop, the width of the crop and the height of the crop,
respectively. Then, we can express the crop region Rs by
Rs = Crop[I, sI , ws, hs], where sI is the location of the
intersection point S in image plane coordinate.

We then concatenate the crop region Rs with a Gaussian
heatmap N of the same size whose peak is at the center of
the region, and feed them into a deep network Gs to predict
the heatmap M̂s of the gaze target within the crop region,
as shown in Fig. 3(c):

M̂s = Gs(Rs,N). (4)

The Gaussian heatmap N serves as an attention map to
guide the predicted gaze target point to be close to the center
of the crop region Rs.

To train the network Gs, we crop the ground-truth gaze
target heatmap M corresponding to the crop region Rs:
Ms = Crop[M, sI , ws, hs], and compute the BCE loss be-
tween Ms and M̂s.
4.4.2 Local Pathway

For the short-distance gaze behaviors, since the distortion
caused by sphere-to-plane projection is not large within a
short range, we can search gaze targets along gaze direc-
tions directly in 2D image plane. Our basic idea is crop-
ping a local region around the human subject’s head and
then producing an attention map with the same size of the

cropped region guided by the subject’s gaze direction. Our
local Pathway is shown in Fig. 3(c).

Let d̂S
p = (d̂Sp |x, d̂Sp |y, d̂Sp |z) be the estimated gaze di-

rection of a human subject and pC = (xC
p , y

C
p , z

C
p ) be

the head center of this subject. One can compute the pro-
jected 2D gaze direction d̂I

p in the 2D image plane by the
reverse process of the two coordinate transformations in-
troduced in Sec. 4.2. Here, we apply a simple approxima-
tion strategy: In a short range, the projected 2D gaze di-
rection d̂I

p in the 2D image plane can be approximated by
d̂I
p ≈ (−d̂Sp |x,−d̂Sp |y). We will give the detailed derivation

in the supplementary material.
To obtain the local candidate region Rl around the head

of the human subject, we adopt the following strategy:
Rl = Crop[I,pI − sgn(d̂Sp |x) · ((wl − wh)/2, 0), wl, hl],
where sgn(·) is the sign function, pI is the projection of pC

in the image plane, wh is the width of the head of the hu-
man subject, and wl and hl are the width and height of the
crop region, respectively. Here, we crop the region accord-
ing to the horizontal component of the gaze direction, i.e.,
d̂Sp |x, since usually gaze targets are more distributed along
the horizontal axis (longitude) than the vertical axis (lati-
tude). We adjust wl and hl so that they are adaptive to the
size of the head of the human subject because the size of
the head implies the distance of the human subject to the
camera and the scale of surrounding space. Hence, we set
wl = αwwh and hl = αhhh, wh and hh are the width and
height of the head of the human subject, respectively, and
αw and αh are hyper-parameters.

We then produce an attention map Al with the same size
of Rl guided by the projected 2D gaze direction d̂I

p, which
is a modified version of the gaze direction field (GDF) [26].
Let pI = (xI

p, y
I
p) be the projection of the head center point

P in the image plane and M be an arbitrary point, with
coordinates mI = (xI

m, yIm). GDF defines the probability
that point M is the gaze point should be proportional to the
angle between the direction dI

pm = (xI
m − xI

p, y
I
m − yIp) of

line PM and the projected 2D gaze direction d̂I
p. Hence,

the attention value at point M is computed by

Al(m) = max(
〈
dI
pm, d̂I

p

〉
/
(∣∣dI

pm

∣∣ · ∣∣∣d̂I
p

∣∣∣), 0). (5)

Note that, the above computation does not take dSp |z into ac-
count, while the absolute value of dSp |z can imply whether
the human subject is performing a short-distance gaze be-
havior or not. Recall that, a short-distance gaze behavior
implies the human subject is shown in profile in the 360-
degree image, which leads to a small absolute value of dSp |z .
Thus, we modulate Eq. (5) by introducing dSp |z into it:

Al(m) = max(

〈
dI
pm, d̂I

p

〉
∣∣dI

pm

∣∣ · ∣∣∣d̂I
p

∣∣∣ ·
√
1− (d̂Sp |z)2, 0). (6)
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We then concatenate the crop region Rl with the atten-
tion map Al and feed them into a deep network Gl to predict
the heatmap M̂l of the gaze target within the crop region.

M̂l = Gl(Rl,Al). (7)
To train the network Gl, we crop the ground-truth gaze

target heatmap M corresponding to the crop region Rl =
Crop[I,pI−sgn(d̂Sp |x)·((wl−wh)/2, 0), wl, hl] and com-
pute the BCE loss between Ml and M̂l.
4.5. Dual-pathway Fusion Module

Since it is unknown that whether a human subject per-
forms the a long-distance or short-distance gaze behavior,
we combine the results provided by the local and the dis-
tant pathways to make the final prediction. We first cre-
ate an all-zero map with the same size of the input 360-
degree image, then we paste M̂l and M̂s back to this map
and feed it into a 2 layer conv network Gf to generate the
final heatmap Mf for the predicted gaze target, as shown in
Fig. 3(d). The BCE loss is used to optimize Mf to approach
the ground-truth gaze target heatmap M. The predicted gaze
target point is the peak location of the final heatmap.

5. Experimental Result
5.1. Experimental Setup

Dataset We evaluate our method and others on the new
GazeFollow360 dataset. All the methods are trained on
the training set, the optimal hyper-parameters for them are
searched on the validation set, and the results on the testing
set are reported for comparison.
Evaluation Protocol For evaluation metrics, we use the
spherical distance and AUC in our experiments.
•Spherical distance: ℓ2 distance is adopted as the evaluation
metric for the previous 2D gaze following datasets. How-
ever, it is improper for our dataset, since a 360-degree image
is the projection of a sphere. Thus, we use the spherical dis-
tance, a.k.a., great-circle distance, as our evaluation metric
instead. It is the shortest distance between two points on the
surface of a sphere. Let qI = (xI

q , y
I
q ) and q̂I = (x̂I

q , ŷ
I
q ) be

the ground-truth gaze target point and the predicted gaze tar-
get point, assuming that they are projected on a unit sphere,
then the spherical distance between them is

ds = arccos(
< q̂C ,qC >

|q̂C | · |qC |
), (8)

where qC = (sinπyIq cos 2πx
I
q ,− sinπyIq sin 2πx

I
q , cosπy

I
q )

and q̂C = (sinπŷIq cos 2πx̂
I
q ,− sinπŷIq sin 2πx̂

I
q , cosπŷ

I
q ).

•AUC: Following [8], we use the Area Under Curve (AUC)
criterion to assess a predicted gaze target heatmap.

5.2. Comparison to Other Methods

To validate the effectiveness of our framework, We com-
pare our approach against following methods: (1) random:

Method Spherical Distance (↓) AUC (↑)
Random 1.5357 0.5056

Lian et al. [26] 1.2540 0.6057
Salicon [19] 1.0940 0.8002

Chong et al. [8] 0.9183 0.7765
Ruiz et al. [37] 0.7612 0.7188

Zhang et al. [46] 0.7366 0.7213
GDE module 0.6880 0.7311

Ours 0.6067 0.8104
Human level 0.2531 0.9350

Table 1. Comparison results on GazeFollow360. “↓” and “↑” indi-
cate the larger and the smaller the better, respectively.

GDE DP LP Spherical Distance (↓) AUC (↑)
✓ 0.6880 0.7311
✓ ✓ 0.6410 0.7930
✓ ✓ ✓ 0.6067 0.8104

Table 2. Ablation study of our framework on GazeFollow360.
GDE, DP and LP represent the gaze direction estimation module,
the distant pathway and the local pathway, respectively.

The predicted gaze target point is a randomly selected point
in the 360-degree image. (2) Free-viewing saliency pre-
diction: Free-viewing saliency prediction aims at identify-
ing salient objects in images, which probably are gaze tar-
gets. We thus select a state-of-the-art saliency prediction
method [19] as a baseline method for gaze following. (3)
3D gaze estimation: 3D gaze estimation methods estimate
the 3D gaze direction from head images. The gaze target
point is the interaction point between the estimated 3D gaze
slight line and the sphere, which can be located by searching
along the estimated 3D gaze direction in sphere space. we
compare our method against two typical 3D gaze estimation
methods [46, 37]. (4) 2D images gaze following: We select
two recent 2D gaze following methods, [8] and [26], for
comparison. [26] explicitly models the 2D gaze direction in
the image plane coordinate and utilize it to help gaze target
prediction. [8] is the current state-of-the-art 2D gaze fol-
lowing method which implicitly extracts gaze features. We
compare with these approaches on GazeFollow360 dataset.

Comparison results are illustrated in Table 1. Our
method outperforms others regarding the two evaluation
metrics. Qualitative results are presented in Fig. 6, which
shows the excellent ability of our framework.

It is worth noting that the 2D gaze following methods
suffer from severe performance degradation. No matter
whether explicitly predicting 2D gaze directions [26] or im-
plicitly extracting gaze direction features [8] in the 2D im-
age plane, they always encounter the severe mismatch prob-
lem that the gaze target is probably not along the 2D gaze
direction in 360-degree images. The 3D gaze estimation
methods [46, 37] achieve better performance than the 2D
gaze following methods, since they model the sight line in
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Figure 5. Sensitivity study for hyper-parameters on validation set: The width ws and height hs of the distant crop region, the width wl,
height hl of the local crop region and the variance σ of the gaussian function used as the attention map in the distant pathway.方艺result图的画法：

Lian et al.[26]Ours

Chong et al.[8] Zhang et al.[46]

Figure 6. Qualitative results on GazeFollow360 dataset. The yel-
low and red points are ground truth and predicted targets, respec-
tively. More results are provided in supplementary materials.

3D sphere space. But, they are worse than our GDE mod-
ule, since our GDE module estimates 3D gaze directions by
additionally encoding head positions. Our GDE module can
be replaced by more advanced gaze estimation algorithms to
achieve better results, but this is out of scope for our paper.

5.3. Detailed analysis

Ablation Study Now we conduct ablation experiments to
verify the individual contribution of each module in our
framework. The results are shown in Table. 2. We start by
studying the gaze direction estimation (GDE) module. We
use the same strategy for the 3D gaze estimation methods,
as described in Sec. 5.2 , to locate the gaze target point for
our GDE module. Comparing the result shown in Table. 2
and those in Table. 1, The GDE module already achieves
a much better result than those of the 2D gaze estimation
methods. This verifies our assumption that modeling gaze
directions in sphere space is more efficient to deal with gaze
following problem in 360-degree images.

Then, we observe that combining the GDE module and
the distant pathway (DP) leads to a large improvement,
since the DP performs a fine target search around the inter-
action point provided by the estimated 3D gaze direction.

Finally, we observe that further including the local path-
way (LP), i.e., our whole framework, the gaze direction
guided dual-pathway framework, boosts the performance
a lot and achieves the best result. This shows that the
LP can re-detect the gaze targets missed by the DP. How-
ever, combining the GDE module solely with the LP can-
not achieve satisfactory results, i.e., 0.8747 spherical dis-
tance and 0.7142 AUC, which are even worse than the GDE
module itself. The reason is the LP does not have the abil-

ity to detect long-distance gaze targets, as it only searches
gaze targets within a local region at one side of the human
subject, while the GDE module is able to locate both long-
distance and short-distance gaze targets, as long as the es-
timated 3D gaze directions are correct. Note that, the GDE
module only indicates at which side the local region is for
the local pathway, rather than the candidate search region it
delivers to the LP. Thus, the LP cannot benefit much from
the combination with the GDE module. The ablation ex-
periments show that 1) searching gaze targets in 3D sphere
space is the key to gaze following in 360-degree images, 2)
the local pathway is an important supplement to the distant
pathway, and 3) combining these modules together can ef-
fectively detect both long- and short-distance gaze targets.

Sensitivity to Hyper-parameters We explore the sensitiv-
ity of the prediction results to the hyper-parameters involved
in our framework, including the width ws and height hs of
the distant crop region, the width wl, height hl of the local
crop region and the variance σ of the gaussian function used
as the attention map in the distant pathway. We evaluate the
performance of each hyper-parameter on the validation set,
which is shown in Fig. 5. It shows that our framework is
robust to hyper-parameter changing in a certain range.

6. Conclusion

In this paper, we investigated a new task, gaze follow-
ing in 360-degree images and collected a new large-scale
dataset, “GazeFollow360”, for this new task. We pointed
out the main challenge of this new task is the mismatch be-
tween a human subject’s gaze target and his/her sight line
due to the distortion caused by sphere-to-plane projection
in 360-degree images. To address this issue, we proposed a
dual-pathway framework guided by sight lines modeled in
3D sphere space rather than simply in 2D image plane coor-
dinate, to detect the gaze target within a local region (here)
and from a distant region (there), parallelly. The strong per-
formance of our framework on GazeFollow360 validates its
potential for understanding gaze behavior in real 3D world.
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