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Abstract

Motion, as the most distinct phenomenon in a video to
involve the changes over time, has been unique and crit-
ical to the development of video representation learning.
In this paper, we ask the question: how important is the
motion particularly for self-supervised video representation
learning. To this end, we compose a duet of exploiting the
motion for data augmentation and feature learning in the
regime of contrastive learning. Specifically, we present a
Motion-focused Contrastive Learning (MCL) method that
regards such duet as the foundation. On one hand, MCL
capitalizes on optical flow of each frame in a video to tem-
porally and spatially sample the tubelets (i.e., sequences of
associated frame patches across time) as data augmenta-
tions. On the other hand, MCL further aligns gradient maps
of the convolutional layers to optical flow maps from spa-
tial, temporal and spatio-temporal perspectives, in order
to ground motion information in feature learning. Exten-
sive experiments conducted on R(2+1)D backbone demon-
strate the effectiveness of our MCL. On UCF101, the lin-
ear classifier trained on the representations learnt by MCL
achieves 81.91% top-1 accuracy, outperforming ImageNet
supervised pre-training by 6.78%. On Kinetics-400, MCL
achieves 66.62% top-1 accuracy under the linear protocol.

1. Introduction
The key difference between video and image is the di-

mension of time, which derives a particular form of mo-
tion information in a video. The state-of-the-art works of-
ten delve into motion in different ways, e.g., long/short
term dependencies [29, 43, 21], temporal structure/orders
[19, 20, 47], and temporal pooling [42, 49], to enhance
video understanding. The underlying foundation behind
these advances generally originates from the improvement
of representation learning via the exploration of motion in-
formation. Most recently, self-supervised representation
learning is gaining significant momentum [2, 4, 14], and
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the number of self-supervised learning papers practically
exploded. In particular, contrastive learning, as a memory-
based self-supervised learning approach, is extended to
video domain [13, 50] and further closes the gap between
self-supervised and supervised video representation learn-
ing. A valid question then emerges as how important is the
motion for self-supervised video representation learning?

In an effort to answer the question, we look into the
problem, in the context of contrastive learning, from two
different perspectives: 1) leveraging motion information in
achieving data augmentations, and 2) taking motion into ac-
count in the optimization of feature learning. In a video, the
motion of different regions is inherently various and the ve-
locity of motion measures the rate of change in position of
the region with respect to a frame of reference. In general,
the regions with larger velocities have much richer informa-
tion and are potentially more advantageous for contrastive
learning. As a result, we capitalize on motion information
from both spatial and temporal dimensions to carefully sam-
ple the sequences of patches across frames, i.e., tubelets,
as augmentations, and examine how the first issue affects
self-supervised video representation learning. To study the
second one, we encourage the grounding of motion infor-
mation explicitly in feature learning by aligning gradient
maps of the convolutional layers to motion (optical flow)
maps. As such, feature learning executes the optimization
with respect to motion information.

To consolidate the idea of exploring the motion informa-
tion in video sequence for self-supervised video represen-
tation learning, we present a novel Motion-focused Con-
trastive Learning (MCL) method. Specifically, we leverage
unsupervised TV-L1 algorithm [53] to extract the dense op-
tical flow of each frame in a video and compute the mo-
tion boundaries as in [6] to obtain the motion map. A
video is divided into a set of fixed-length video clips and
the spatio-temporal motion map (ST-motion) of each video
clip consists of the sequential motion maps of all the frames
in the clip. MCL then performs a motion-focused spatio-
temporal sampling to select tubelets as data augmentations.
Technically, MCL applies a 3D average pooling on the
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spatio-temporal motion map to measure the clip-level mo-
tion, which indicates the degree of motion of each clip. The
clips with relatively large clip-level motion are chosen as
the clip candidates for temporal augmentation. Next, MCL
employs a temporal pooling on the spatio-temporal motion
map of each clip candidate to estimate the motion from spa-
tial viewpoint (S-motion) and localize the spatial patches,
which are temporally consistent across frames, as tubelets.
Furthermore, in feature learning, MCL extracts the spatio-
temporal motion map of each tubelet and executes a spa-
tial/temporal pooling on such spatio-temporal motion map
to output the motion map from temporal/spatial viewpoint
(T/S-motion) of the tubelet. The gradient with regard to the
feature map of a convolutional layer by back-propagation is
produced in spatial, temporal and spatio-temporal manner,
respectively, to align with S-motion, T-motion, ST-motion
through minimizing the mean squared error in between.
MCL integrates the alignments into contrastive learning
framework as constraints in addition to InfoNCE loss.

The main contribution of the work is the proposal
of leveraging motion information to boost self-supervised
video representation learning on the recipe of contrastive
learning. This leads to the elegant views of how to ef-
fectively sample spatio-temporal augmentations in terms
of motion, and how to integrate motion information into
the optimization of feature learning, which are problems
not yet fully understood. We demonstrate that our self-
supervised method MCL surpasses ImageNet supervised
pre-training on two video benchmarks and the experiments
on two downstream video tasks also validate our MCL.

2. Related work
Unsupervised video representation learning aims to

explore the intrinsic properties in unlabeled videos to learn
video representation. The research in this direction has
proceeded along two different dimensions: transformation-
based methods [1, 15, 16], and temporal context-based ap-
proaches [8, 11, 12, 19, 47]. Transformation-based methods
are optimized to predict the transformation parameters from
the transformed videos. Jing et al. [15] introduce a pretext
task to estimate the rotation angle applied to videos. 3D ST-
puzzle [16] proposes a self-supervised task to classify the
arrangement of cropped spatio-temporal pieces. SpeedNet
[1] learns video representation by estimating the speed or
pace of the transformed videos. Temporal context-based ap-
proaches focus on exploring the natural temporal relation as
supervision. In [19, 24, 47], predicting the order of frames
or video clips drives the learning of spatio-temporal repre-
sentation. The video representation in [11, 12] are learnt by
a dense encoding of spatio-temporal blocks to recurrently
generate the future representations. Dynamonet [8] directly
takes the reconstruction of future frames as the pretext task.

Learning with motion. Motion information, as the rep-

resentation of the changes over time, has been studied by
researchers for a long time. For instance, in [22, 38, 54],
the optical flow is utilized to propagate the adjacent frame
representations. In [31], the famous two-stream architec-
ture is devised by applying two 2D CNN architectures sep-
arately to RGB frames and optical flows for action recog-
nition. The idea of two-steam architecture is also explored
from the perspective of knowledge distillation [5, 33, 45].
Moreover, Wang et al. [40] devise a self-supervised pretext
task by estimating the motion in unlabeled videos.

Contrastive learning recently has received intensive
research attention due to its promising result on self-
supervised visual representation learning. The contrastive
loss is devised to return low values for similar pairs and high
values for dissimilar pairs, which encourages invariant fea-
tures on the low dimensional manifold. In an early work
[44], the constrastive learning is formulated as instance-
level classification, and the previously computed features
are stored in a memory bank to acquire more negative sam-
ples. Momentum Contrast (MoCo) [14] builds a dynamic
memory bank to maintain a large number of negative sam-
ples with a moving-averaged encoder. [4, 36] further inves-
tigate the importance of data augmentations and non-linear
in contrastive learning.

In short, our work in this paper mainly focuses on im-
proving constrastive learning for video representation learn-
ing through the involvement of motion information. The
most closely related works are the contrastive learning
frameworks for video representation learning [13, 26, 41,
50]. SeCo [50] and Pace Prediction [41] combines con-
trastive loss with order prediction and pace estimation pre-
text task, respectively. CoCLR [13] exploits the comple-
mentary information from optical flow and introduces a co-
training scheme to improve the spatio-temporal representa-
tion. CVRL [26] studies what makes the good data aug-
mentation for video self-supervised learning. Our method
differs from these works in that we exploit the motion infor-
mation in contrastive learning framework from the perspec-
tives of both data augmentation and representation learning.

3. Motion-Focused Contrastive Learning

The basic idea of Motion-focused Contrastive Learning
(MCL) is to facilitate self-supervised video representation
learning by the awareness of motion information. MCL first
pre-estimates the motion map to measure the pixel-level
movement in video data. The regions with larger veloci-
ties generally contain richer information (e.g., moving ob-
ject, action, interaction), and therefore have higher priority
in MCL. Specifically, our framework integrates the motion
map into contrastive learning from the perspectives of both
data augmentation and feature optimization. Figure 1 illus-
trates the overview of our MCL.
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Figure 1. An overview of our Motion-focused Contrastive Learning (MCL) framework. MCL facilitates the basic contrastive learning
framework by the two novel designs: motion-focused video augmentation and motion-focused feature learning. Specifically, the motion-
focused video augmentation exploits the pre-estimated motion map to produce the 3D tubelets with rich motion information as the inputs
to backbone network. The augmentation process can be divided into two parts, i.e., temporal sampling to filter out the relatively static
clips, and spatial cropping to select the spatial regions with high moving velocity. For motion-focused feature learning, a new motion
alignment loss is devised to enforce the backbone network to focus more on the positions with higher temporal dynamics by aligning the
magnitude of gradient and motion map in each position. The motion alignment loss is integrated into the contrastive learning framework
as constraints in addition to InfoNCE loss. The whole MCL framework is jointly optimized in an end-to-end manner.

3.1. Motion Estimation

In order to explore the motion information in video
sequence, MCL starts by estimating the magnitude of
motion in each region. Given a video of N frames
with the resolution of H × W , we first extract the
optical flow from each pair of consecutive frames as
{(u1,v1), (u2,v2), . . . , (uN ,vN )} by TV-L1 [53] algo-
rithm. The flow maps ui,vi ∈ RH×W are the horizon-
tal and vertical displacements of each pixel between i-th
frame and (i + 1)-th frame. For the last frame, we man-
ually set (uN ,vN ) = (uN−1,vN−1). These optical flow
maps have been proven effective in capturing temporal dy-
namics and widely utilized in video classification methods
[3, 9, 28, 52]. Nevertheless, in our case of measuring the
magnitude of movement, the results by optical flow may
suffer from stability problem due to camera motion. For ex-
ample, with large camera motion, the static objects or back-
ground pixels also show high moving velocity in optical
flow. Hence, we calculate the motion boundary proposed
in [6] as (∂ui

∂x ,
∂ui

∂y ,
∂vi

∂x ,
∂vi

∂y ), i.e., the x- and y- derivatives
of optical flow, to eliminate the effect of camera motion. Fi-
nally, we define the motion map by accumulating the am-
plitudes in four motion boundary maps as

mi =

√(
∂ui

∂x

)2

+

(
∂ui

∂y

)2

+

(
∂vi

∂x

)2

+

(
∂vi

∂y

)2

, (1)

where mi ∈ RH×W measures only the moving velocity in
i-th frame and ignores moving orientation. Figure 2 show-
cases the input video and the visualizations of optical flow,
motion boundary, and motion map. As illustrated in the fig-
ure, the motion map is not influenced by camera motion and
shows high responses on the de facto moving objects.

To describe the utilization of motion map more clearly,
we pre-define three different types of motion map, i.e., ST-
motion, S-motion and T-motion, to measure the moving ve-
locity from different aspects. ST-motion stacks the mo-
tion map of all frames to produce a 3D volume mST ∈
RN×H×W . S-motion and T-motion averagely pool the mo-
tion map through temporal dimension and spatial dimen-
sion, respectively:

mS = Pt(m
ST) ∈ RH×W ,

mT = Ps(m
ST) ∈ RN ,

(2)

where Pt(·) and Ps(·) are the pooling operations. Please
note that the motion estimation process does not require
manual labeling. Hence, these motion maps can be treated
as an additional label-free supervision for video data.

3.2. Motion-Focused Video Augmentation

Then, the video augmentation in MCL is guided by the
acquired motion map and focuses more on the regions with
large movements. The rationale behind is to select the bet-
ter views for contrastive learning that could boost the gen-
eralization capability of the learnt representations. Specif-
ically, in contrastive learning, a single instance is split into
two views to learn an embedding where the views are rela-
tively closer than the views from other instances. The self-
supervised learning therefore will benefit from the mutual
information (MI) between views. As studied in [36], to
improve the generalization ability to downstream tasks, the
“good” views should contain as much task-relevant infor-
mation while discarding as much irrelevant information in
the input as possible. Unlike the framework in [36] that re-
quires the prior knowledge of downstream tasks to select
views, MCL exploits the label-free motion map to seek the
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(a) Input Video (b) Optical Flow (c) Motion Boundary

(d) Motion Map (e) Valuable MI (f) Nuisance MI

Figure 2. The example of (a) input video sequence, (b) optical
flow, (c) motion boundary, (d) motion map, (e) valuable mutual
information in the region with large movement and (f) nuisance
mutual information in the relatively static region. The red box
and green box represent two views generated from the identical
instance for contrastive learning.

regions with large movements, which are generally essential
for video-related tasks. For example, the views generated
in the region with large motion and relatively static region
are shown in Figure 2(e) and Figure 2(f), respectively. The
views with large movements are more likely to contain the
valuable mutual information such as moving object or ac-
tion, while the views in relatively static region only contain
the information in background pixels that are usually con-
sidered as nuisance information in contrastive learning.

Here, we introduce a simple way to ensure the frame-
work focusing more on the motion information by only se-
lecting the 3D tubelets with large movement as preprocess-
ing. To achieve this, motion-focused video augmentation
screens the input video volume by two steps of temporal
sampling and spatial cropping, meanwhile maintaining the
randomness in the traditional augmentation methods.

Temporal sampling selects the clips (i.e., short frame
sequences) with large movements in the video. Taking the
T-motion mT in Eq.(2) as the frame-level motion map, the
movement of each clip is measured by averaging the frame-
level movement in mT. We take the median across all the
candidate clips in an identical video as a threshold, and ran-
domly select one clip with magnitude above the threshold.

Spatial cropping further localizes the cropped spatial
region in the sampled clip. It first calculates the S-motion
mS within the clip. We then take the 90th-percentile in the
motion map as a threshold. One bounding box that covers
the 80% pixels with higher value than the threshold is ran-
domly selected. Once the region is determined, we crop the
same region of each frame in the clip, which is the same as
the temporally consistent spatial augmentation in [26].

Please note that this two-step augmentation can also be
equivalently implemented by directly seeking the spatio-
temporal region with large movement in the ST-motion.

Here we separate it into two steps due to the higher effi-
ciency since temporal sampling only selects a small num-
ber of candidate tubelets in the first step. Moreover, the two
thresholds in temporal sampling and spatial cropping are
relative values within each video/clip. We do not compare
the movement magnitude across different videos to avoid
over-fitting to the videos with large motion.

Based on the produced clips by temporal sampling and
spatial cropping, we follow [26, 50] and also employ color-
jittering, random scales, grayscale, blur and mirror.

3.3. Motion-Focused Feature Learning

In addition to video augmentation, we also take the mo-
tion map as an additional supervision to enhance the learnt
representation. Particularly, we begin by briefly review-
ing instance discrimination objective in contrastive learn-
ing. Given an encoded query q ∈ Rd and a group of en-
coded key vectors K =

{
k+,k−

1 ,k
−
2 , . . . ,k

−
K

}
consist-

ing of one positive key k+ ∈ Rd and K negative keys
K− =

{
k−
j

}
, where d denotes the embedding dimension.

The query and its positive key are usually two views gen-
erated from the same instance, while the negative keys are
from the other instances. The objective of instance discrimi-
nation is to guide the query q to be similar with the positive
key k+ while it remains distinct to all negative keys K−.
Therefore, a prevailing form of contrastive loss is presented
in InfoNCE [25] based on a softmax formulation:

LNCE = − log
exp

(
qTk+/τ

)
exp

(
qTk+/τ

)
+
∑K

i=1 exp
(
qTk−

i /τ
) , (3)

where the similarity is measured via dot product, and τ is
the temperature hyper-parameter. Here, we follow the re-
cent variant MoCo [14] that proposes the use of a queue to
track negative samples from past mini-batches. In this way,
all the queuing samples from multiple mini-batches serve as
negative keys, and the size of mini-batch can be reduced.

The NCE loss in Eq.(3) performs on the encoded tubelet-
level representation, which treats each position in the
tubelet equally. As discussed in Section 3.2, the background
positions without movements may lead to nuisance infor-
mation between views. Consequently, we propose a novel
motion alignment loss (MAL) to explicitly align the fea-
ture/gradient maps of convolutional layer and the magni-
tude in low-level motion map as an additional supervision.
Such supervision encourages the network to focus on the
positions with large movements in videos. To achieve this,
we devise the following variants of motion alignment loss:

(i) Align feature map: The simplest way is to align the mag-
nitude of convolutional feature with the motion map. The
region with large movement is expected to have high re-
sponse in the feature map. Formally, let hc denote the c-th
channel of output feature map from the last convolutional
layer of the backbone. The loss function is formulated as the
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Figure 3. An illustration of motion alignment loss which aligns
the gradient maps with ST-motion, S-motion and T-motion.

L2 distance between the summation of hc across all chan-
nels and ST-motion:

LMAL-v1 = ‖〈
∑
c

hc〉 − 〈mST〉‖22 , (4)

where 〈·〉 is the L2 normalization of the feature/motion map.

(ii) Align weighted feature map: Inspired by GradCAM
[30], the magnitude of gradient could measure the contribu-
tion of each position better. Hence, we calculate the gradi-
ent of the similarity between query and its positive key with
regard to the convolutional feature as gc = ∂qTk+

∂hc
. Then,

the mean value wc of the gradient map gc can be utilized as
the weight of each channel as

LMAL-v2 = ‖〈ReLU(
∑
c

wchc)〉 − 〈mST〉‖22 , (5)

where the ReLU operation is added to filter out the regions
with negative contribution as in [30].

(iii) Align weighted gradient map: We further consider to
align the gradient map with motion map. As such, mo-
tion information can directly guide the update of represen-
tations. Specifically, we replace the weighted feature map
in Eq.(5) with weighted gradient map:

LMAL-v3 = ‖〈ReLU(
∑
c

wcgc)〉 − 〈m
ST〉‖22 . (6)

The comparisons between different loss functions will be
discussed in the experiments, and the alignment of weighted
gradient map is used as the default motion alignment loss.

To emphasize the alignment from temporal/spatial as-
pects, we additionally minimize the distance between spa-
tially/temporally pooled weighted gradient map and T/S-
motion, as shown in Figure 3. Specifically, we de-
fine the spatio-temporal weighted gradient map as gST =
〈ReLU(

∑
c wcgc)〉, and further pool such map through

temporal/spatial dimension to produce spatial/temporal
weighted gradient map gS/gT, respectively. The three gradi-
ent maps are then aligned to the corresponding motion map:

LMAL = ‖gS − 〈mS〉‖22 + ‖gT − 〈mT〉‖22 + ‖gST − 〈mST〉‖22 .
(7)

The overall training objective in our MCL is formulated
as a multitask loss by integrating the instance discrimina-
tion loss and motion alignment loss, which is written as
L = LNCE + LMAL, where we empirically treat each loss
equally and simply summate the two losses.

4. Experiments

We verify the merit of our MCL via various empirical
evidences. The evaluation protocols include: 1) linear clas-
sification on action recognition, directly trained on frozen
pre-learnt features, and 2) fine-tuning the networks initial-
ized from pre-learnt network for downstream tasks of action
recognition and video retrieval.

4.1. Datasets

UCF101 [32] contains about 13K videos from 101 action
categories, which are grouped into 9.5K and 3.7K videos for
training and testing. HMDB51 [18] consists of 7K videos
from 51 action classes, and each split includes 3.5K and
1.5K videos for training and testing. Kinetics-400 dataset
[3] is a large-scale action recognition benchmark and con-
tains around 300K videos from 400 action categories. The
300K videos are divided into 240K, 20K and 40K in train-
ing, validation and test sets, respectively. Note that the la-
bels of test set are not publicly available and here we report
the performances on validation set.

4.2. Experimental Settings

Implementation Details. We exploit the backbones of
R(2+1)D based on ResNet-50 [27, 37] or S3D [46] plus an
MLP head as video encoder for contrastive training. Note
that MLP head only works for training and is disabled on
downstream tasks. The inputs of tubelets to the backbone
are with the size of 16×224×224, and each tubelet consists
of 16 frames with a temporal stride 2. The MLP head takes
3D global pooling features as the inputs and embeds the fea-
ture into 128d via two fully-connected layers (2048× 2048
and 2048× 128). We apply L2 normalization to the output
vector from the MLP head, which is then used as the en-
coded feature of query or keys. In the implementations, we
set the size of mini-batch and memory to 64 and 131,072,
respectively. The momentum coefficient α is fixed to 0.999
for momentum update of video encoder and the temperature
τ in infoNCE loss is 0.1. As implemented in [14], shuffling
BN is employed to avoid data leaks. For the optimization of
video encoder, we use the momentum SGD with an initial
learning rate 0.01 which is annealed down to zero via a co-
sine decay. Following [50], the network is trained for 400
epochs on Kinetics-400 and 200 epochs on UCF101 with
the network initialization by MoCo on ImageNet.

Linear Protocol. We directly utilize the backbone pre-
learnt by MCL as a feature extractor and examine the qual-
ity of frozen features on UCF101 and Kinetics-400 datasets.
Specifically, we densely sample 20 clips from each video
and resize each clip with the short edge of 256. The re-
sized clip is then cropped to 224 × 224 via the standard
center crop, which is fed into the feature extractor to out-
put the clip-level feature, and the video-level feature is the
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Table 1. Performance contribution of each design in MCL with
different backbone networks (All models are learnt on UCF101
and evaluated under linear protocol).

TA SA Lt Ls Lst
ResNet-50 Inception V1

R2D R(2+1)D I2D S3D
76.51 77.98 74.39 76.47√
76.47 78.26 74.22 76.79√
77.32 79.54 75.02 77.95√ √
77.16 79.64 74.89 78.01√ √ √

- 80.26 - 78.62√ √ √
77.84 80.83 75.64 79.28√ √ √

- 81.47 - 79.40√ √ √ √ √
- 81.91 - 79.88

average of all clip-level features. Finally, we train a lin-
ear SVM (UCF101) or a fully-connected layer followed by
softmax (Kinetics-400) on the training set, and evaluate the
performance on the corresponding validation set. The top-1
classification accuracy is adopted as the metric.

Downstream Task Evaluations. We use the MCL pre-
trained backbone as network initialization for two down-
stream tasks of action recognition and video retrieval in or-
der to examine the transfer capability of the pre-learnt struc-
ture. For action recognition, we initialize S3D or R(2+1)D
network with the backbone self-supervised trained by MCL,
and then fine-tune the backbone plus fully-connected layers
in standard supervised setting on UCF101 and HMDB51.
For video retrieval, we follow the common practice [47],
and use the representations of videos from test set to query
the k-nearest neighbours in training set. We directly cap-
italize on the MCL pre-trained backbone without further
fine-tuning to extract video representations. We adopt the
Recall at k (R@k) as the performance metric, and a correct
retrieval is counted when the top-k nearest neighbours con-
tain at least one video from the category of the query video.

4.3. An Ablation Study of MCL

We first examine how each design in MCL impacts the
overall performance. The baseline of data augmentation
randomly samples spatial or spatio-temporal patches from
the whole video. Temporal Augmentation (TA) solely ex-
ploits the clip-level motion to choose the video clips with
relatively large motion and randomly localizes the spatial
patches in those clips. In contrast, Spatial Augmentation
(SA) randomly selects video clips but employs S-motion to
locate spatial patches. Ls, Lt, and Lst denotes the three
items in Eq.(7) and leverages the motion alignment loss
from spatial, temporal and spatio-temporal standpoint, re-
spectively. Please note that R2D and I2D are both 2D
backbone networks, and the inputs to the two networks
are downgraded from 3D tubelets to 2D patches on single
frames. As a result, only the grounding on S-motion, i.e.,
Ls, is applicable in this case.

Table 1 summarizes the top-1 accuracy on UCF101
dataset under linear protocol by considering different fac-

Table 2. Comparisons of different ways on motion alignment (All
models are learnt on UCF101 and evaluated under linear protocol).

Method Top-1 Acc. (%)
MCL w/o LMAL 79.64
MCL w/ LMAL-v1 80.57
MCL w/ LMAL-v2 80.99
MCL w/ LMAL-v3 81.91

tors in MCL with various backbone networks. The results
consistently indicate that capitalizing on motion to achieve
augmentations in SA exhibits performance boost against
augmentation by random sampling across 2D and 3D net-
work backbones. Interestingly, TA leads to improvements
on 3D network backbones but results in slight drop on 2D
network backbones. We speculate that this may be the result
of drastic appearance changes in the frames selected by TA
and taking the patches from such single frames as inputs to
2D networks may adversely affect feature learning. Involv-
ing both TA and SA in MCL contributes a further increase
of accuracy with 3D networks of R(2+1)D and S3D. The
comparisons also demonstrate the advantages of ground-
ing motion information in feature learning. As aforemen-
tioned, only the alignment in spatial manner, i.e., Ls, fits
2D backbone networks and boosts up the accuracy from
77.16%/74.89% to 77.84%/75.64% on R2D/I2D. Moreover,
allowing motion grounding in terms of Lt, Ls, and Lst

leads to performance gains in the range of 0.62%, 1.19%
and 1.83% on R(2+1)D, and 0.61%, 1.27% and 1.39% on
S3D. As expected, executing Lst outperforms the use of Ls

or Lt. By fusing the three losses, the accuracy of MCL
finally reaches 81.91% and 79.88% with the backbone of
R(2+1)D and S3D.

4.4. Evaluations on Motion Alignment

We then study the effect of three different ways as de-
fined in Eq.(4), Eq.(5) and Eq.(6) for motion alignment in
MCL. Table 2 shows the performance comparisons across
the three kinds of alignments. As indicated by the results,
the use of motion alignment favors the representation learn-
ing. That empirically validates the grounding of motion in-
formation in MCL. Among the three ways of alignments,
MCL w/ LMAL-v3 benefits from the explicit impact on gra-
dient map and leads to a larger performance gain.

4.5. Evaluations on Linear Protocol

Next, we evaluate MCL under linear protocol to ver-
ify the representations learnt by MCL. Table 3 details per-
formance comparisons of different representation learning
methods on UCF101 and Kinetics-400 datasets. Over-
all, our MCL leads to a performance boost against all the
other baselines on UCF101. In particular, performing clas-
sification on the representations pre-learnt by MCL with
the backbone of S3D and R(2+1)D achieves 79.88% and
81.91%, respectively. Compared to self-supervised method
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Table 3. Performance comparisons of video representations pre-learnt by different approaches on UCF101 and Kinetics-400 under linear
protocol. * represents the results based on the pre-trained models released by original publications on Github. The training time is estimated
on one Nvidia P40 GPU. The # of parameters and Flops are counted on an input image/clip with the resolution used in original publications.

Method Network Pretrain Dataset #Param. FLOPs Training Time Eval Dataset Top1 Acc.(%)
PRP [51] R(2+1)D UCF101 14.4M 21.5G - UCF101 32.10∗

IIC [35] R3D-10 UCF101 14.4M 19.9G - UCF101 35.13∗

CCL [17] R3D-18+1 Kinetics-400 12.1M 16.4G - UCF101 52.10
MemDPC [12] R-2D3D-34 Kinetics-400 32.4M 25.5G - UCF101 54.10
TCLR [7] R3D-18 UCF101 33.0M 32.9G - UCF101 67.70
CoCLR [13] S3D UCF101 7.9M 12.0G 2.3 days UCF101 70.20
ImageNet infla. R(2+1)D ImageNet 27.3M 20.4G - UCF101 75.13
Supervised ImageNet R-50 ImageNet 23.5M 4.12G - UCF101 73.24
SeCo [50] R-50 UCF101 23.5M 4.12G 0.3 days UCF101 76.51
SeCo [50] R(2+1)D UCF101 27.3M 20.4G 1.4 days UCF101 77.98
MCL (Ours) S3D UCF101 7.9M 18.4G 2.1 days UCF101 79.88
MCL (Ours) R(2+1)D UCF101 27.3M 20.4G 1.5 days UCF101 81.91
VTHCL [48] R3D-50 Kinetics-400 31.7M - - Kinetics-400 37.83
SimCLR infla. [26] R3D-50 Kinetics-400 31.7M 45.8G - Kinetics-400 46.80
VINCE [10] R-50 Kinetics-400 23.5M 4.12G 17.6 days Kinetics-400 49.10
ImageNet infla. [26] R3D-50 Kinetics-400 31.7M 45.8G - Kinetics-400 53.50
SeCo [50] R-50 Kinetics-400 23.5M 4.12G 13.0 days Kinetics-400 61.91
SeCo [50] R(2+1)D Kinetics-400 27.3M 20.4G 76.0 days Kinetics-400 62.50
CVRL [26] R3D-50 Kinetics-400 31.7M 45.8G 322.6 days Kinetics-400 66.10
MCL (Ours) R(2+1)D Kinetics-400 27.3M 20.4G 76.5 days Kinetics-400 66.62

CoCLR with S3D backbone, MCL makes the absolute per-
formance improvement by 9.68% based on the same back-
bone. Moreover, MCL leads the top-1 accuracy by 3.93%
over the best competitor SeCo based on the same R(2+1)D
backbone. The results empirically verify the idea of lever-
aging motion in MCL for self-supervised video represen-
tation learning. Similar to the observations on UCF101,
pre-training MCL on Kinetics-400 dataset outperforms the
baselines. MCL with R(2+1)D backbone obtains 66.62%
top-1 accuracy and leads to 4.12% performance gain over
SeCo with the same backbone. Compared to CVRL which
requires 4× the training time and 2× FLOPs of MCL, MCL
also leads to an accuracy boost of 0.52%.

4.6. Evaluations on Downstream Tasks

Another common protocol in self-supervised learning
is to take the network pre-training as network initializa-
tion and fine-tune all layers on downstream tasks. Ta-
ble 4 shows the comparisons of pre-training the networks
by different models and then supervised fine-tuning on
UCF101 and HMDB51 for action recognition, which are
the most widely-adopted evaluations in the literature. The
results across pre-training on UCF101 and Kinetics-400
datasets constantly indicate that our MCL exhibits better
performances than all the baselines. Fine-tuning the net-
works pre-trained on UCF101 by MCL achieves 90.58%
and 63.52% on UCF101 and HMDB51, respectively, lead-
ing to apparent improvements over VCOP, CoCLR and
SeCo. Compared to SeCo which reports the best known
results, MCL with R(2+1)D backbone boosts up the accu-

Table 4. Performance comparisons on UCF101 and HMDB51 for
downstream task of action recognition.
Method Network Pretrain Dataset UCF101 HMDB51
OPN [19] VGG UCF101 59.60 23.80
VCOP [47] R(2+1)D UCF101 72.40 30.90
CoCLR [13] S3D UCF101 81.40 52.10
BE [39] R3D-34 UCF101 83.40 53.70
SeCo [50] R-50 UCF101 83.39 50.19
SeCo [50] R(2+1)D UCF101 89.82 56.40
MCL (Ours) S3D UCF101 90.58 63.52
MCL (Ours) R(2+1)D UCF101 90.40 61.30
3D-RotNet [15] R3D-18 Kinetics-400 62.90 23.80
ST-Puzzle [16] R3D-18 Kinetics-400 63.90 33.70
DPC [11] R-2D3D-34 Kinetics-400 75.70 35.70
MemDPC [12] R-2D3D-34 Kinetics-400 78.10 41.20
SpeedNet [1] S3D Kinetics-400 81.10 48.80
CoCLR [13] S3D Kinetics-400 87.90 54.60
BE [39] R3D-34 Kinetics-400 87.10 56.20
SeCo [50] R-50 Kinetics-400 88.26 55.55
CVRL [26] R3D-50 Kinetics-400 92.20 66.70
CBT [34] S3D K600+ 79.50 44.60
DynamoNet [8] STCNet YouTube8M-1 88.10 59.90
MCL (Ours) R(2+1)D Kinetics-400 93.41 69.08

racy from 89.82%/56.40% to 90.40%/61.30% on UCF101
and HMDB51 datasets. Pre-training the networks on the
larger Kinetics-400 dataset by MCL further improves the
accuracy on UCF101 and HMDB51 to 93.41% and 69.08%,
and leads the accuracy by 1.21% and 2.38% against CVRL.
Notably, MCL is also superior to DynamoNet pre-trained
on a subset of YouTube-8M with 2× size of Kinetics-400,
which is impressive.
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Table 5. Performance comparisons on UCF101 and HMDB51 for downstream task of video retrieval.

Method Network Pretrain Dataset
UCF101 HMDB51

R @ 1 R @ 5 R @ 10 R @ 20 R @ 1 R @ 5 R @ 10 R @ 20
OPN [19] VGG UCF101 19.9 28.7 34.0 40.6 - - - -
VCOP [47] R3D-18 UCF101 14.1 30.3 40.4 51.1 7.6 22.9 34.4 48.8
VCP [23] R3D-18 UCF101 18.6 33.6 42.5 53.5 7.6 24.4 36.3 53.6
MemDPC [12] R-2D3D-18 UCF101 20.2 40.4 52.4 64.7 7.7 25.7 40.6 57.7
SpeedNet [1] S3D-G Kinetics-400 13.0 28.1 37.5 49.5 - - - -
PRP [51] R(2+1)D UCF101 20.3 34.0 41.9 51.7 8.2 25.3 36.2 51.0
BE [39] R3D-34 UCF101 - - - - 11.9 31.3 44.5 60.5
CoCLR-RGB [13] S3D UCF101 53.3 69.4 76.6 82.0 23.2 43.2 53.5 65.5
CoCLR-2Stream [13] S3D UCF101 55.9 70.8 76.9 82.5 26.1 45.8 57.9 69.7
MCL (Ours) S3D UCF101 67.0 80.8 86.3 90.8 26.7 52.5 67.0 79.3
MCL (Ours) R(2+1)D UCF101 68.6 82.2 87.2 92.0 29.0 55.5 68.9 80.4

1st frame of clip S-motion GradCAM for SeCo GradCAM for MCL

Figure 4. From left to right: the first frame from video clip, S-
motion, Grad-CAM for SeCo, Grad-CAM for MCL.

Table 5 summarizes the comparisons on UCF101 and
HMDB51 for video retrieval task, which is to examine the
semantics of k training videos nearest to the query video
from test set in the representation space. As indicated by
the results across different depths of Recall, MCL yields
higher scores than other methods on the two datasets. Tak-
ing S3D as the backbone, MCL with only RGB inputs still
leads the Recall@1 score by 11.1% and 0.6% over CoCLR
with the two-stream inputs of RGB and optical flow modal-
ities on UCF101 and HMDB51. The use of more powerful
R(2+1)D backbone in MCL further contributes a Recall@1
increase of 1.6% and 2.3%. The results successfully demon-
strate the transferability of the pre-trained structure by MCL
to different downstream tasks.

4.7. Visualizing Self-supervised Representation

In order to explain the representations learnt by MCL,
we generate the saliency map through GradCAM [30] to
indicate the importance of each pixel in presenting the dis-
crimination of the video clip. Figure 4 visualizes the start
frame of a video clip, S-motion of the clip, the saliency
map produced on the representations learnt by SeCo and
our MCL with R(2+1)D backbone. Note that we compute

a 3D saliency map on the video clip and perform tempo-
ral pooling to depict the map here. MCL benefits from the
leverage of motion and the saliency map on the representa-
tions learnt by MCL aligns S-motion more nicely than that
by SeCo. More importantly, the regions of high importance
effectively provide the visual evidence for describing the
video clip and thus the representations learnt by MCL are
potentially more robust. That again proves the utilization of
motion in MCL for self-supervised representation learning.

5. Conclusion
We have presented a Motion-focused Contrastive Learn-

ing (MCL) method, which explores the motion information
for improving self-supervised video representation learn-
ing. Particularly, we study the problem via leveraging mo-
tion to achieve data augmentations and enhance feature
learning in contrastive learning framework. To materialize
our idea, we extract the motion map of each frame and form
a sequence of motion maps in a video clip as the spatio-
temporal motion map of the clip. The output value of 3D
average pooling on the spatio-temporal motion map is taken
as the measure of clip-level motion, which acts as an indica-
tor to select the clip candidates for temporal augmentation.
Then, we perform temporal pooling on spatio-temporal mo-
tion map of each clip candidate to estimate the motion of
every spatial position along the time and localize the spa-
tial patches temporally consistent across frames, as tubelets.
MCL employs such tubelets as data augmentations for con-
trastive learning and further aligns gradients of the convolu-
tional layers to motion maps of the tubelets from spatial,
temporal and spatio-temporal aspects. Extensive experi-
ments on UCF101 and Kinetics-400 datasets validate our
MCL. More remarkably, self-supervised pre-training MCL
is superior to fully-supervised ImageNet pre-training.
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