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Abstract

Deep learning algorithms have made significant
progress in dynamic scene deblurring. However, several
challenges are still unsettled: 1) The degree and scale of
blur in different regions of a blurred image can have a con-
siderable variation in a large range. However, the tradi-
tional input pyramid or downscaling-upscaling, is designed
to have limited and inflexible perceptual variousness to
cope with large blur scale variation. 2) The nonlocal block
is proved to be effective in the image enhancement tasks,
but it requires high computation and memory cost. In this
paper, we are the first to propose a light-weight globally-
analyzing module into the image deblurring field, named
Light Global Context Refinement (LGCR) module. With ex-
ponentially lower cost, it achieves even better performance
than the nonlocal unit. Moreover, we propose the Percep-
tual Variousness Block (PVB) and PVB-piling strategy. By
placing PVB repeatedly, the whole method possesses abun-
dant reception field spectrum to be aware of the blur with
various degrees and scales. Comprehensive experimental
results from the different benchmarks and assessment met-
rics show that our method achieves excellent performance
to set a new state-of-the-art in motion deblurring. 1

1. Introduction

The restoration of the latent sharp image from the blur
input in dynamic scene has long been an important task
in computer vision and image processing. Deep learning
methods for single image deblurring, particularly convolu-
tional neural networks (CNNs), have obtained remarkable
success [9, 24, 1, 5, 31, 6, 21]. Nah et al. propose the
method [20] recovering the blurred image with the input
pyramid on 3 scales, in a coarse-to-fine manner. Tao et
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Figure 1: The comparison of different methods, in terms
of the accuracy and cost. Our approach is better than the
other state-of-the-art methods. “720p” indicates that the test
image is in the size of 1280× 720.

al. deeply investigate the coarse-to-fine strategy and pro-
pose a Scale-Recurrent Network [25]. With the adoption of
the convLSTM [30], multi-scale, and weight-sharing, SRN
achieves high PSNR with fewer parameters. Recently, the
state-of-the-art methods [16, 4, 34, 17, 22, 33, 35] have fur-
ther revealed the potential of CNNs in deblurring task.

One of the biggest challenges of deblurring comes
from the fact that the blur pattern’s degree and scale
vary widely. Traditionally, multi-scale input pyramid and
downsampling-upsampling layers inside the network are
common strategies to release the difficulty brought by the
complicated blur pattern [20, 16]. More recent methods fo-
cus on other handcrafted strategies to deal with the wide
range of blur scale variation. [25] utilizes a recurrent net-
work with weight sharing in a coarse-to-fine manner. [34]
proposes a multi-patch methodology to exploit multi-scale
information. [22] even puts forward a multi-temporal idea
that deblurs the image from hard to easy progressively.

Unfortunately, their adopted multi-scale, multi-patch,
and multi-temporal strategies augment their models’ per-
ceptual scale variousness with only limited times, e.g., there
are only two scales or five temporal intervals considered in
their designed methods. In other words, the final reception
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Figure 2: The architecture of the SimpleNet. Since it grasps the essence of deblurring with the help of the PVB and LGCR, it
is designed in an auto-encoder fashion, which is easy to implement and follow. The vanilla ResBlock [8] has three convolution
layers. The “Down Sample” is a conv layer, stride=2; the “Up Sample” is deconvolution layer, stride=2.

fields obtained in the information flow are only augmented
by limited times. However, the blur’s degree has a consid-
erable variation in a relatively wide range. Thus, these dis-
crete and handcrafted strategies are not satisfactory to equip
CNN with enough ability to percept the complex blur pat-
terns whose scale is widely distributed.

Moreover, non-localized neural operation with lower
cost is in good demand for deblurring task. The CNN de-
sign is based on a localized filtering operation, which pro-
cesses one local neighborhood at a time. It is unfavorable
for the task that requires a broader reference range or even
full-image self-reference, such as image segmentation, pose
estimation, and severe motion blur recovery. The nonlocal
proposed in [28] is an excellent, classic yet expensive solu-
tion for the caption of long-range dependencies. Recently,
inspired by tensor canonical-polyadic decomposition the-
ory, Chen et al. propose a tensor generation module and a
tensor reconstruction module, named ”TGM+TRM” (T+T)
in semantic segmentation [2]. It computes the global in-
formation while tackling the high-rank difficulty. However,
T+T’s structure is good at high-level semantic reasoning,
yet bad at detail recovery, which is essential in deblurring
task. Moreover, its non-linearity of the 1-rank tensors is not
sufficient; its global context is not well learned and utilized.

In this paper, we work on the deficiencies mentioned
above, and propose our deblurring method, SimpleNet. We
propose a new light-weight non-localized module, named
Light Global Context Refinement (LGCR). It is the first
time that such a light-weight non-localized module is pro-
posed in deblurring task to enrich global detail instead of
pixel-wise reasoning, with better performance and a much
lower cost than the nonlocal module. Moreover, we propose
the Perceptual Variousness Block (PVB) and PVB-piling
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Figure 3: PVB greatly expands the variety of reception
fields that a network can perceive. The architecture of PVB
is illustrated in Figure 5. The “Vanilla ResBlock” is an or-
dinary three-layered. The braced statistics stands for recep-
tion field spectrum. With larger reception field spectrum,
network has the better perceptual variousness and ability.

strategy. PVB provides abundant adaptive multi-scale re-
ception ability with broad reception spectrum. Unlike the
traditional “multi” methodology, PVB-piling strategy can
greatly broaden the variousness of the network’s reception
scales and perceptual ability, as shown in Figure 3, facing
the challenge of wide range blur variation. Finally, we ex-
amine our method with the state-of-the-art methods, in Go-
Pro, RealBlur-J and RWBI benchmarks. Comprehensive
experiments show that our method achieves the best per-
formance to set a new state-of-the-art.

We name our network “SimpleNet” because its architec-
ture is straightforward, easy to implement.
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Figure 4: The detailed architecture of the LGCR module (col. #1), in comparison with TGM+TRM (T+T) module (col. #2).
Although both modules adopt the high-rank-to-low-rank decomposition theory[15], their main aims and detailed design are
totally different. Experiments demonstrate that LGCR is far more effective than T+T in deblurring task.

In conclusion, our contributions are as follows:

• We are the first to propose a novel light-weight non-
localized module into the image deblurring, named
Light Global Context Refinement (LGCR). It outper-
forms both nonlocal and T+T methods, in a detail en-
hancement manner, instead of pixel-wise reasoning.

• We proposed Perceptual Variousness Block (PVB) and
PVB-piling strategy. PVB provides abundant adaptive
multi-scale reception ability. PVB-piling strategy can
greatly enrich the variousness of the network’s recep-
tion spectrum and perceptual ability, challenging the
wide range of blur variations.

• We put forward a robust and effective deblur network,
named SimpleNet. It has a simple encoder-decoder
structure, and it is easy to implement and follow.

• Comprehensive experiments are conducted, not only
on the prevalent GoPro benchmark, but also on the
newly proposed RealBlur-J, RWBI benchmarks, with
comprehensive assessment metrics.

2. Related Work
2.1. Single image deblurring in dynamic scene

As we discussed in Section 1, the motion blur in the dy-
namic scene is introduced by the fast relative motion, be-
tween the scene and camera, during the short period of the
shutter’s exposure. It is not generated by a sharp static im-
age with a specific blur kernel. Thus, the blur pattern in the
dynamic scene is blind and non-uniform.

Recently, CNN-based algorithms have made remarkable
success in the task. Gao et al. [4] put forward a more
complex network with a new parameter selective sharing
strategy and high order nested skip connections. Zhang et
al. [34] propose multi-patch methodology to obtain fine-to-

coarse hierarchical representation for deblurring. Kupyn et
al. [17] propose a model composed of backbone-fpn gener-
ator with global and local discriminators. Methods [33, 22]
start to exploit the latent temporal information to recover
the blurred image, since the GoPro dataset can be regarded
as video clips in some aspect.

When dealing with the blur pattern with high variation,
these methods use handcrafted and discrete multi-scale,
multi-patch, and multi-temporal mechanisms. These mech-
anisms are fixed and inflexible, and they only augment the
reception variousness and perceptual ability of the models
with limited times. Since the degree and scale of blur can
have considerable variation, some effective module or strat-
egy is required to equip CNN methods with abundant recep-
tion variousness or perceptual variousness.

2.2. Assessing metrics for dynamic scene deblurring

Dynamic scene deblurring task is a special case of image
enhancement. Thus, theoretically, every assessment metric
in image enhancement can be adopted in the motion deblur-
ring field. Peak Signal Noise Ratio (PSNR) and Structural
Similarity (SSIM) [29] are the most commonly used ones.
The latter has better consistency with HVS than the former.
Recently, the Learned Perceptual Image Patch Similarity
(LPIPS) [37] has been adopted as a full-reference metric in
many works [26, 13, 12, 10, 18]. It calculates the pixel-wise
perceptual similarity between the input images. It is trained
by the proposed BAPPS Dataset. Experiments prove that
it performs much better than the traditional full-reference
similarity metrics.

For a blurred image obtained in the wild, there is
no pixel-aligned sharp ground truth on hand. Only No-
reference metrics can be used. Li et al. [19] propose
a CNN-based non-reference deblurring quality assessment
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method. To our knowledge, it is the first and the only CNN-
based IQA specially designed for deblurring tasks. Without
a latent sharp image, it provides a quality assessment score
accordant with the human vision system (HVS).

In our work, we will comprehensively evaluate the per-
formance of our method using the metrics mentioned above.

3. Our method

The network architecture of the SimpleNet is demon-
strated in Fig. 2. LGCR module enriches the feature’s
detail based on long-range dependencies, which is help-
ful to deblurring, with better performance yet lower cost.
The proposed PVBs and PVB-piling strategy equip the net-
work with perceptual variousness to conquer blur variation.
With the above, the Deformable ResBlock and skip con-
nections, SimpleNet achieves the best performance with a
simple auto-encoder structure.

3.1. Light Global Context Refinement (LGCR)

For dynamic scene deblurring, long-range dependencies
are crucial when the blur pattern is severe, or in a large
scale. The nonlocal module by [28] is a possible solution,
but it requires considerably large computation and mem-
ory expenses. Inspired by the works of [2, 15], we are the
first to propose a light-weight long-range dependencies en-
riching module in the deblurring field, named Light Global
Context Refinement module (LGCR), as shown in Figure 4.
Please note that LGCR is designed for detail enrichment,
while T+T is designed for semantic pixel reasoning.

According to the tensor decomposition theory, a tensor
can be represented as the linear combination of its low-rank
principal components.

Formally, given the input tensor I ∈ RC×H×W and the
CP tensor reconstruction rank r, the axes-based pooled vec-
tors vc ∈ RC×1×1,vh ∈ R1×H×1,vw ∈ R1×1×W are
obtained by global average pooling (GAP) of I , along the
channel-axis, height-axis and width-axis. Then, the context
fragments are generated by a Conv-PReLU sequence:

vci = PReLU(Conv1D(vc,W ci)),vci ∈ RC×1×1,

vhi = PReLU(Conv1D(vh,Whi)),vhi ∈ R1×H×1,

vwi = PReLU(Conv1D(vw,Wwi)),vwi ∈ R1×1×W .
(1)

where i indicates the rank-1 tensor index, 0 ≤ i ≤
r; Conv1D indicates the 1D convolution operator;
Wmi,m ∈ {c, h, w} indicates the learned weights with
respect to each axis, with the kernel size of 1× 3; PReLU
indicates the activation function proposed in [7]. Then
CP rank-r reconstructed “Global Context Refine Weight”

(GCRW ∈ RC×H×W ) is calculated by:

GCRWraw =

r∑
i=1

vci ⊗ vhi ⊗ vwi, (2)

GCRW = softmax(GCRWraw)

=
expGCRWraw∑C

c=1(
∑H

h=1(
∑W

w=1(exp
(GCRWraw(c, h, w)))))

,

(3)

Next, the “Raw Residual”(Rr) tensor is simply computed
with 3D convolution without activation:

Rr = Conv3D(I,WG),Rr ∈ RC×H×W , (4)

where Conv3D indicates 3D convolution operator, the
WG is the kernel with size of 3× 3× 3. Finally, the output
of LGCR is:

Out = Rr ⊙GCRW + I,Out ∈ RC×H×W , (5)

The detailed comparison between our method and
TGM+TRM (T+T) module is shown in Figure 4. Their
main aims and detailed design are totally different. 1)
LGCR aims to enrich feature details, providing refined
global information as a residual to “enrich” (add details to)
the input. Meanwhile, T+T is designed to perform pixel
semantic reasoning. It reasons out a global amplitude ad-
justment weight to multiply the input, tune-up the positive
semantic pixels, and suppress negative ones. 2) For detailed
design, firstly, with “Raw Residual”, LGCR can compen-
sate GAP’s information loss, while T+T ignores it. Sec-
ondly, before activation functions, LGCR calculates context
fragments using Conv1D with kernel size 1× 3, while T+T
uses simple multiplication with 3 × r scalars. The non-
linearity of the LGCR context fragments is thus better than
that of the T+T context fragments, which is essential to the
reconstructed high-rank tensor’s representation ability. Ex-
periments also show that our LGCR outperforms the nonlo-
cal module, while T+T decreases the performance. Related
results and discussions are presented in Section 4.4.

3.2. Perceptual Variousness Block (PVB)

One of the biggest challenges of deblurring is that blur
pattern’s degrees and scales vary widely. However, the tra-
ditional multi-scale mechanisms are designed fixed and in-
flexible. Thus, they augment the models’ reception various-
ness and perceptual ability with only limited times, while
the complex blur patterns’ scales are widely distributed.

We put forward the PVB module and corresponding
PVB-piling strategy, as shown in Fig. 2 and 5. PVB pro-
vides abundant adaptive multi-scale reception ability. PVB-
piling strategy is to simply apply PVB in every scale of the
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Figure 5: A real example that PVB module extracts the
information from reception field of 3 scales with different
dilation. “Info RF: n” indicates the information from the
reception field sized n. The conv layers with different di-
lations ensure PVB’s variousness of reception range. De-
formable conv provides PVB with an adaptive reception
range as a flexible reception supplement.

SimpleNet, which can significantly enrich the variousness
of the network’s reception scales and perceptual ability.

Formally, given the input tensor I ∈ RC×H×W , PVB
extract a comprehensive feature from 3 conv layers with
different reception scales and 1 deformable conv layer. The
dilation rates of conv layers[32] are 1, 2, 3. Formulation is:

Featc = Concat(ReLU(Conv2D(I,W d1))+

ReLU(Conv2D(I,W d2)) +ReLU(Conv2D(I,W d3))

+DeformConv(I,W df1)),

(6)

where Concat is the feature concatenation along channel
axis, W di, i ∈ {1, 2, 3} represent the weight that has 3× 3
non-zero parameters with the dilation rate of i. Then the
comprehensive feature is fused by another deformable con-
volution layer, obtaining the fused residual feature:

Featfused = DeformConv(Featc,W f), (7)

Finally, the output is:

Out = I + Featfused, (8)

3 conv layers with different fixed-sized reception fields en-
sure PVB’s variousness of reception range. The deformable
conv provides PVB with an adaptive (learnable) reception
range as a flexible reception supplement. Thus, the per-
ceptual range of PVB, from small to large, from fixed to
flexible, is reasonably sufficient. Therefore, with its per-
ceptual variousness, PVBs can perceive and adapt for vari-
ous blur patterns with large distribution scales. Piling PVB

several times can significantly broaden the diversity of the
network’s reception scales and perceptual ability, which is
beneficial to deblurring.

3.3. Deformable ResBlock (DR)

As we discussed above, the degree of the blur pattern is
in a considerable variation. In many cases, the useful pix-
els to recover a certain pattern are located irregularly in a
somewhat distorted spatial distribution. Fortunately, the de-
formable convolution [3, 27, 38] has a flexible spatial sam-
pling point of the filter, which the network can learn itself.

We propose Deformable ResBlock (DR). Given the input
I ∈ RC×H×W , the calculation of DR is formulated as

Conv2D(ReLU(DeformConv(I,W df2)),W l) + I,
(9)

It captures the shape of irregularly distributed blur pat-
terns, as well as enriches the perception scales that our net-
work aware of. Therefore, we place one DR after each PVB
in the decoder of SimpleNet.

3.4. SimpleNet

The architecture of our SimpleNet is based on a simple
auto-encoder. As shown in Fig.2, it is composed of six Res-
blocks, six PVBs, three DRs, and one LGCR. These blocks
are all based on residual methodology, and they are care-
fully designed and deployed in the SimpleNet. It is easy to
implement and follow, without bells and whistles.

3.5. Optimization and implementation

The loss function we choose is L1 loss, and ADAM
optimizer [14] is adopted to train SimpleNet, with
β1=0.9,β2=0.999. The batch size is 8. Learning rate is 1e-
4, exponentially decayed every 630k iterations, with the de-
cay rate

√
10
10 , for totally 2,200k iterations. The CP tensor

decomposition rank r in our LGCR is 64, following [2].
Our SimpleNet is implemented in Pytorch [23], on

Ubuntu 16.04 desktop. The training set is the proposed
training set in GoPro benchmark.

4. Experiments
4.1. Platform and benchmark

All our experiments are conducted on the Ubuntu 16.04
desktop PC with Intel i7-7700k, 32GB RAM, GTX-1080Ti.
All the PSNR and SSIM results are obtained by running the
built-in functions in MATLAB R2019b.

The benchmarks we adopt are:
GoPro The most prevalent dataset, consists of 3214

pairs, 2103 for training, 1111 for testing. Ground truth
images are obtained by a GoPro high-speed camera with
a frame rate of 240, while the blur input images are gained
by the average of the neighboring 7 to 13 frames.
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Table 1: Performance comparisons with existing algorithms on GoPro[20]. SimpleNet achieves the best performance.

Methods Tao et al. Kupyn et al. Zhang et al. Gao et al. Yuan et al. Park et al. Zhang et al. Our
[25] [17] [34] [4] [33] [22] [35] SimpleNet

PSNR (dB) 30.26 29.55 31.20 30.92 29.81 31.15 30.43 31.52
SSIM 0.9342 0.9344 0.9453 0.9421 0.9368 0.9454 0.9372 0.9495

Table 2: Comprehensive analysis of all the current competitive deblurring algorithms. Red refers to the best performance of
its item, while blue is the second. The competition is fierce. The introduction of LPIPS and Deblur-IQA is in Section 2.2.

GoPro [20] RealBlur-J [11] RWBI [36] Model Size Time (ms)PSNR↑ SSIM↑ LPIPS [37]↓ PSNR↑ SSIM↑ LPIPS [37]↓ Deblur-IQA[19]↑
Tao et al.[25] 30.26 0.9342 0.12706 26.58 0.8630 0.16042 -8.4581 33.6M 358

Kupyn et al.[17] 29.55 0.9344 0.11728 26.68 0.8622 0.14295 -7.7350 15.0M 129
Zhang et al.[34] 31.20 0.9453 0.12800 25.84 0.8459 0.17838 -9.0433 29.0M 588

Gao et al.[4] 30.92 0.9421 0.12220 26.35 0.8552 0.19132 -8.1785 49.8M 1033
Ours (SimpleNet) 31.52 0.9495 0.10788 26.95 0.8641 0.14126 -7.9188 25.1M 376

RealBlur-J [11] A newly proposed benchmark with
3758 training pairs and 980 testing pairs. The image pairs
are obtained by a beam splitter and two cameras with dif-
ferent exposure and the post-processing procedure.

RWBI [36] A brand new benchmark named ”Real-
World Blur Image dataset“. There are 3112 blur images
that are taken in the real world with several types of devices,
without sharp ground truth.

4.2. Quantitative Evaluation on the benchmarks

Firstly, we evaluate SimpleNet in GoPro benchmark,
with all the current state-of-the-art methods. From Tab. 1,
we find that our method achieves the best performance.

To further comprehensively reveal our algorithm’s
strengths and weaknesses, we selected the most competi-
tive, representative, and available deblurring algorithms at
present to conduct the experiments in Tab. 2 and Figure 6.
All the methods involved are only trained by GoPro’s train-
ing set by the relative authors. It is solid and persuasive to
announce that SimpleNet is the winner in the three metrics.
In Fig.6, SimpleNet has the best performance, in challeng-
ing cases such as big blur scale by a close object (row #1),
severe blur by fast motion (row #2), or structured patterns
(the rest rows). It indicates that LCGR learns the long-range
dependencies well, while PVB-piling brings perceptual var-
iousness to cope with a wide range of blur patterns.

In RealBlur-J, we bring those methods directly to run
only the test set, to evaluate their deblurring accuracy and
transferability. We can observe that these methods’ perfor-
mances are close and low because of the domain gap intro-
duced by the different ways to generate data samples. Even
so, our method still excels in others.

In RWBI, a real-world dataset, SimpleNet also achieves
great results. Since there is no ground truth for RWBI, orig-
inally, it is hard to assess the algorithms except for the vi-

Table 3: The ablation study. All the proposed modules are
contributive to the final SimpleNet. The ablated module
are replaced by traditional 3-layered Resblocks. Results are
PSNR (dB) and SSIM.

PVB LGCR DR Results in GoPro[20]

Baseline1 ! ! 31.24 dB, 0.9455
Baseline2 ! ! 31.19 dB, 0.9459
Baseline3 ! ! 31.04 dB, 0.9443

Ours ! ! ! 31.52 dB, 0.9495

Table 4: Time consumption of each module, with 720p in-
put, on the average of 1000 run.

Convs/Deconvs ResBlocks LGCR PVBs DRs
Time (ms) 36.55 46.58 57.75 137.01 98.10
Proportion 9.72% 12.39% 15.36% 36.44% 26.09%

sual results in Figure 6. Thanks to [19], we use deblur-IQA
model to test the no-reference quality score, as shown in the
eighth column in Tab. 2. The discriminator-trained method
[17] outperforms SimpleNet, because GAN mechanism can
greatly improve the perceptual quality by introducing de-
tails, but sometimes unwanted artifacts.

Our model has a rather small model size, with good exe-
cution efficiency. Comprehensively, SimpleNet is the most
competitive deblurring method in current art.

4.3. Ablation Study

We test the contribution and consumption of each mod-
ules in SimpleNet, and results are in Tab. 3, 4. The ablated
modules are replaced by traditional 3-layered Resblocks.

Our proposed PVB, LGCR, even the DR module all
make non-negligible contributions to the final SimpleNet
performance. PVB is the most helpful to the SimpleNet,
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Tao et al. [25]

31.79 dB/0.9646

Gao et al. [4]

32.12 dB/0.9647

Zhang et al. [34]

31.78 dB/0.9643

Kupyn et al. [17]

30.04 dB/0.9555

Ours

32.83 dB/ 0.9685

GT (Input for RWBI)

PSNR/SSIM ↑

27.40 dB/0.8514 27.05 dB/0.8545 27.69 dB/0.8402 27.30 dB/0.8438 29.50 dB/0.8858 PSNR/SSIM ↑

25.61 dB/0.6942 25.76 dB/0.7066 25.38 dB/0.6580 25.50 dB/0.6830 27.32 dB/0.7443 PSNR/SSIM ↑

22.78 dB/0.8560 22.75 dB/0.8397 22.47 dB/ 0.8319 22.52 dB/0.8454 24.13 dB/0.8827 PSNR/SSIM ↑

-6.859548 -7.963613 -7.701237 -6.477898 -5.829353 Deblur-IQA score ↑

-4.939282 -5.775024 -6.173844 -5.980968 -4.358769 Deblur-IQA score↑

Figure 6: Visual results. The first 3 rows are from GoPro, the next two rows are from RealBlur-J, the last two rows are real
world results (from RWBI). In cases for big blur scale by near object (row #1), fast moving object (row #2), or structured
patterns (row #3,4,5,6), SimpleNet shows its strength. Zoom in for detail. More results are given in supplementary materials.

as shown in row 3, 4 in Tab. 3. Moreover, it also brings
performance gain when transferred in each scale in [25] as
shown in the last row of Tab. 5. Yet, PVB’s concat and
fusing cost time. The LGCR also effectively brings perfor-
mance gain, as can be observed in the statistics of Baseline3
and Ours. DR costs some time for warping the sampled fea-
ture map. Visual results are in Fig. 8. Due to limited space,

more ablation results are in the supplementary file.

4.4. LGCR Effectiveness

To further prove the effectiveness and efficiency of
LGCR module, experiments are shown in Tab. 5, 6.

In Tab. 5, it is evident that LGCR brings more perfor-
mance improvement than the others. We also find: 1) T+T
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Blur Image DR offset amplitude Attention #1 in LGCR Attention #2 in LGCR Sharp

Figure 7: Visualization for the offset amplitude of a DR, and the spatial attention from 2 channels of the GCRW in LGCR.

Blur
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29.42 dB

Bs2 + Non-Local

28.74 dB

Bs2+TGM+TRM

27.73 dB

Baseline 3

30.05 dB

Ours

30.53 dB

GT

PSNR

Figure 8: Visualization of ablation study. “Bs2” is short for “Baseline 2”. More results are shown in supplementary materials.

Table 5: The effectiveness of LGCR and PVB. LGCR is
effective, and it brings more performance improvement than
Non-Local and T+T, where T+T degrades the performance.
Other algorithms can also benefit from LGCR and PVB.

Method Non-localized Module Results in GoPro[20]
Baseline2 w/o 31.19 dB, 0.9459

Baseline2+
Non-Local Non-Local 31.39 dB, 0.9478

Baseline2+
T+T T+T 30.83 dB, 0.9158

Our LGCR 31.52 dB, 0.9495
Tao et al. [25] w/o 30.26 dB, 0.9342
[25] + LGCR LGCR 30.38 dB, 0.9362
[25] + PVB w/o 30.41 dB, 0.9368

Table 6: A simple memory cost and running time analy-
sis for non-localized modules. With the input patch sized
180×180 with 3 channels, the memory and time cost are
evaluated. The result is an average of 1000 run.

Non-localized Module Memory Cost Running Time (ms)
Non-Local 8018M 68.16

TGM+TRM 30M 0.302
LGCR 34M 0.466

severely degrades the performance, mainly because it is for
pixel reasoning that tunes up/suppresses the input, not en-
riches it. Its lost details by GAP are not compensated ei-
ther. It is also because T+T has less representation ability
brought by less non-linearity in the context fragments. In
summary, such design brings adverse effects to the sharp re-

covery. 2) The sixth record in Tab. 5 are obtained by inser-
tion of LGCR into the encoder’s end in Tao et al.’s method
(fifth record). It proves the effectiveness and transferability
of LGCR. Yet, LGCR does not provide a big performance
boost than in our backbone, because Tao et al.’s method has
already partly conquered long-range dependencies by con-
vLSTM and multi-scale recurrent learning.

Tab. 6 shows the time and memory cost of these non-
localized modules. LGCR achieves better performance than
nonlocal with much less memory and time consumption.

4.5. Visualization of SimpleNet

To illustrate the correctness and learning ability of the
SimpleNet, we show the offset amplitude of a DR, and the
spatial attention from 2 channels of the GCRW in LGCR,
in Figure 7. DR tends to learn the moving contours while
the LCGR tends to potentially pay attention to the global
distribution of the blur pattern.

5. Conclusion

Facing the challenge of various blur scales in deblurring
tasks, we are the first to propose a light-weight globally-
analyzing module, LGCR, in deblurring field. With low
cost, it achieves better performance than the nonlocal and
T+T units. Moreover, we propose PVB and PVB-piling
strategy that enriches the variousness of the network’s re-
ception scales and perceptual ability, which helps restore
images with a wide range of blur scales. Comprehensive
experiments on both prevalent and new benchmarks prove
the excellence of our SimpleNet.
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