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Abstract

To learn distinguishable patterns, most of recent works
in vehicle re-identification (ReID) struggled to redevelop of-
ficial benchmarks to provide various supervisions, which
requires prohibitive human labors. In this paper, we seek
to achieve the similar goal but do not involve more hu-
man efforts. To this end, we introduce a novel framework,
which successfully encodes both geometric local features
and global representations to distinguish vehicle instances,
optimized only by the supervision from official ID labels.
Specifically, given our insight that objects in ReID share
similar geometric characteristics, we propose to borrow
self-supervised representation learning to facilitate geomet-
ric features discovery. To condense these features, we in-
troduce an interpretable attention module, with the core of
local maxima aggregation instead of fully automatic learn-
ing, whose mechanism is completely understandable and
whose response map is physically reasonable. To the best of
our knowledge, we are the first that perform self-supervised
learning to discover geometric features. We conduct com-
prehensive experiments on three most popular datasets for
vehicle ReID, i.e., VeRi-776, CityFlow-ReID, and Vehi-
cleID. We report our state-of-the-art (SOTA) performances
and promising visualization results. We also show the excel-
lent scalability of our approach on other ReID related tasks,
i.e., person ReID and multi-target multi-camera (MTMC)
vehicle tracking.

1. Introduction
Vehicle ReID is a fundamental but challenging problem

in video surveillance due to subtle discrepancy among ve-
hicles from identical make and large variation across view-
points of the same instance. The success of recent works
suggests that the key to solving this problem is to incor-
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(a) Prelabeled landmarks (b) Our learned landmarks with self-supervision

Figure 1: (Top) In the literature, a labor-intensive fine-
grained labels annotation is often required to capture local
discriminative features, such as (a) labelling landmarks in
[55] to learn orientation invariant features. In contrast, we
manage to discover such geometric features (denoted as red
in (b)) in a self-supervised way. (Bottom) As for its gen-
eralization ability, our approach can also consistently locate
critical parts of a deformable human body, e.g., head, up-
per arms, and knees, with no using corresponding ground
truths. Best viewed in color.

porate explicit mechanisms to discover and concentrate on
informative vehicle parts (e.g., wheels, manufacturer logos)
for discriminative feature extraction in addition to captur-
ing robust features from a holistic image. They all sought,
however, to edit original data to provide supplementary su-
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pervisions, e.g., view segmentation [39], keypoints [24, 55],
vehicle orientation [24, 55, 8, 7] or key parts [17], for train-
ing their deep classifiers. Although these methods perform
satisfactorily, their annotation processes inevitably involve
intensive human efforts, which significantly limits the appli-
cability of such approaches. For example, when deployed
in a new scenario, [17] demands the informative parts have
to be manually localized to optimize their YOLO detector.
Afterwards, they are able to embed local patterns from de-
tected regions-of-interest to assist ReID. So it is desirable
to develop approaches which are capable of concentrating
on informative details of a vehicle body but do not require
corresponding ground truths.

On the other hand, while their power is demonstrated by
various computer vision tasks [12, 2, 24, 4], existing atten-
tion mechanisms, like channel attention [21], spatial atten-
tion [58], and self-attention [53], are all pretty sophisticated
and obscure. That is to say, their architectures are difficult
to explain and attention maps are learned all by themselves.
In self-attention [53], for example, high-dimensional em-
beddings Q, K, V are first projected from an input by con-
volutional or linear operations and then entry-wise corre-
lation (attention) is obtained through matrix multiplication
between Q, K. V is weighted by the resulting correlation
matrix as the attentional output. Although the workflow
seems to make sense, the underlying principle why it works
is still a black-box like other deep networks. Additionally,
their learned attentions usually spread over a holistic object
without specific concerns. Otherwise, an interpretable at-
tention module, whose design should be easy to understand,
can reveal what is critical for recognition and help to guide
further improvement.

In light of the above observations, we propose a novel
framework that can successfully learn discriminative ge-
ometric features, under the assistance of self-supervised
learning and a simple but interpretable attention, in addition
to global representations for vehicle ReID. In specific, self-
supervised learning is performed to optimize an encoder
network, which is shared to condense low-level vehicle rep-
resentations, under the supervision of automatically gener-
ated ground truths. The encoded vehicle representations are
fed into the introduced interpretable attention mechanism
to acquire an attention map. By weighting it on another
low-level vehicle representations, we obtain the regions-of-
interest emphasized features for vehicle ReID.

In summary, our key contributions in this work are:
• We are the first to successfully learn informative geomet-

ric features for vehicle ReID without supervisions from
fine-grained annotations.

• An interpretable attention module, whose design is easy
to explain and whose concentrations are physically im-
portant locations, is introduced to highlight the automatic
regions-of-interest.

• We report the SOTA performances of our proposed ap-
proach on widely used vehicle ReID benchmarks, i.e.,
VeRi-776 [33], CityFlow-ReID [50], and VehicleID [31],
compared with all existing works including those involv-
ing more supervisions from manual annotations. We also
visualize the reliable and consistent geometric features
learned by our framework.

• The excellent scalability of the proposal is demonstrated
by our directly transferring experiments on person ReID
and MTMC vehicle tracking.

2. Related works

Vehicle ReID. Most of existing works in this field strug-
gled to explore extra supervisions in addition to identity la-
bels to guide ReID. These works can be grouped into three
mainstreams as follows: (1) exploiting vehicle attributes
(e.g., color and model) [16, 62, 34, 33, 35, 75] or tempo-
ral information in data [55, 44] to regularize representa-
tion learning; (2) editing official datasets to provide more
fine-grained annotations, like critical part locations [17],
view segmentation [39], keypoints or vehicle body orien-
tation [24, 55, 8, 7], to supervise local feature discovery;
(3) assembling multiple datasets together [69] or synthesiz-
ing more vehicle images [36, 49, 59] to train more powerful
networks. Additionally, there are a couple of works aiming
to enhance representation learning from the perspective of
metric learning [3, 8, 1, 66]. In contrast, our work man-
ages to capture discriminative local patterns without cor-
responding supervision. Furthermore, unlike recent well-
performing works which relied on another auxiliary pre-
trained network to indicate informative parts [39, 17, 7, 8],
our framework is elegant and end-to-end trainable.

Visual attention. Various attention architectures have been
proposed in computer vision community, e.g., self-attention
[53, 12], channel-wise attention [21], and spatial-wise atten-
tion [58], which also spread into ReID field [4, 2, 74, 24].
For instance, [2] and [74] proposed using attention gains
and multi-level foreground consistency to regularize ReID
feature extraction, respectively. All these attention net-
works are pretty complicated and computational costly, es-
pecially hard to explain, which limits their generalization
and future improvement. The attentive branch in [4], for
example, incorporated Channel Attention Module (CAM)
and Position Attention Module (PAM) in parallel. The rea-
son why the latter employed stacked convolutional layers
to perform Q, K, V projection but the former just utilized
identity layer (copy) instead is unknown. In this case, we
have no idea to improve it further, e.g., making the posi-
tional attention focus on more distinguishable parts rather
than a large general area of human body in [4]. Differently,
our attention is composed of only a couple of learnable op-
erations and each step is reasonable and easy to explain.
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Figure 2: Overview of our framework: Self-supervised
Geometric Features Discovery via Interpretable Attention,
which consists of Global Branch (GB), Self-supervised
Learning Branch (SLB), and Geometric Features Branch
(GFB). Some key components are Interpretable Atten-
tion Module (IAM), Batch Normalization Neck (BNNeck)
[37], Cosine Classifier (CC) [13], Global Average Pooling
(GAP), hard mining Triplet loss (Tri) [20], and Smoothed
Cross Entropy loss (SCE) [48].

Self-supervised learning. The success of self-supervised
learning hinges on devising an appropriate pretext task to
supervise model optimization. In this literature, a variety
of visual tasks have been constructed, for instance, image
completion [22], colorization [65], patch position predic-
tion [9, 29], patch order prediction [26, 29] and rotation
recognition [64, 11]. Besides, recently contrastive learning
of multi-view images [5, 18] has demonstrated its efficacy.
Furthermore, these pretext tasks can also be borrowed as an
auxiliary task to strengthen a targeted one [13, 6]. Ours is
significantly different from these works. We conduct self-
supervised learning to facilitate geometric features discov-
ery, which has not been explored by other works yet.

We are aware that recently Khorramshahi et al. [25]
proposed their Self-supervised Attention for Vehicle Re-
identification (SAVER) framework to pay attention to de-
tails of a vehicle body. Although our title shares terms
“self-supervised” and “attention” with theirs, our approach
is completely different from theirs. In principle, SAVER
took the residual of removing the reconstructed image by
Variational Auto-Encoder (VAE) [28] from an input as dis-
criminative details for feature extraction, which they called
“self-supervised attention”. However, we actually propose
a novel approach of borrowing self-supervised learning to
regularize our interpretable attention learning. Besides, our
proposal obviously differs from SAVER on these aspects, at
least:
• Ours can robustly and consistently locate geometric fea-

tures with physical interpretation across vehicle instances
and viewpoints.

• Our deep framework is more concise with no need of

extra offline pretraining (like VAE in SAVER) or cus-
tomized image pre-processing, i.e., removing background
noise from all images using object detector.

• Our results are significantly better. For instance, even on
the most challenging testing scenario of VehicleID, i.e.,
Large gallery size, our approach outperforms SAVER by
5.5% and 5.4% on Top-1 and Top-5 accuracy, respec-
tively.

3. Self-supervised geometric features discovery
via interpretable attention

As illustrated in Figure 2, in order to learn self-
supervised geometric features as well as global representa-
tions simultaneously, our framework is composed of Global
Branch (GB), Self-supervised Learning Branch (SLB) and
Geometric Features Branch (GFB). Each branch has its own
function and also interacts with each other. Generally, GB
is employed to encode robust global codes from an input
image. SLB performs the auxiliary self-supervised repre-
sentation learning. By sharing its encoder with SLB, GFB
is able to discover discriminative features from automati-
cally discovered geometric locations without corresponding
supervision. In remaining subsections, we elaborate each
main component in turn.

3.1. Problem setup

Given a query image, vehicle ReID is to obtain a rank-
ing list of all gallery images according to the similarity
between query and each gallery image. The similarity
score is typically calculated from deep embeddings, i.e.,
cos(f(xq; θ), f(xg; θ)). Here f(·; θ) represents a deep
network with learnable parameters θ; xq , xg are query and
gallery image respectively; cos(·) denotes cosine similar-
ity computation. f(·; θ) is optimized on a training set
D = {xi, yi}Ni=1, where xi, yi are a vehicle image and
its identity label and N is the number of training samples.

3.2. Self-supervised learning for highlighting geo-
metric features

Self-supervised learning is equivalent to optimizing a
deep network under the supervision of machine generated
pseudo labels. Among them, image rotation degree pre-
diction, i.e., rotating image by a random angle and train-
ing a classifier to predict it, has demonstrated its capacity
in many tasks [14, 64, 11, 29]. Vehicle ReID can be re-
garded as an instance-level classification problem, i.e., all
images contain the same species but many instances. Thus
salient object in each image has similar geometry proper-
ties, e.g., shape, outline, and skeleton. We argue that train-
ing a network to predict the rotation degree of a randomly
rotated vehicle image encourages it to focus on these reli-
able and shared geometric properties (it is the same for per-

196



Figure 3: Interpretable Attention Module (IAM).

son ReID), which can help to easily recognize the rotation
of an object. This geometric information has been proven
crucial and discriminative for distinguishing a vehicle in-
stance [55, 24] although it was represented by manually an-
notated keypoints as shown in Figure 1 (a).

Concretely, we first rotate an image xi from D by 0◦,
90◦, 180◦ or 270◦ (assigning class 0, 1, 2 or 3 respectively)
to generate a new dataset DSL = {xi,r, yr}4r=1, i =
1, ..., N . Subsequently, the image xi,r is fed into an shared
encoder fae(·; θae) (namely attention encoder in Figure 2)
to extract low-level semantics, fae(xi,r; θae). To predict ro-
tation class, high-level representations need to be further
condensed from fae(xi,r; θae). We append another deep
module fse(·; θse) to achieve this. Thus a high-dimensional
embedding vector is obtained:

FSL(xi,r) = GAP [fse(fae(xi,r; θae); θse)], (1)

where GAP [·] denotes Global Average Pooling operation.
To generate more compact clusters in embedded space, the
Cosine Classifier (CC) [13] is employed to assign the ro-
tation class. The learnable parameters of CC is WCC =
[w1, . . . , wj , . . . , wb], wj ∈ Rd, where d is the dimension of
vector FSL and b is the number of classes (i.e., b = 4). The
probabilities of assigning the input image into each class
can be represented as P (xi,r) = [p1, . . . , pj , . . . , pb], where
each element is

pj = Softmax [γ cos (FSL(xi,r), wj)] . (2)

Softmax [·] and γ represent respective normalized expo-
nential function and a learnable scalar. Finally, the objective
function of self-supervised learning is:

LSLB = EDSL
[CE(P (xi,r), yr)], (3)

where CE(·) is Cross Entropy loss function. Obviously,
the optimization of LSLB enforces the deep classifier, espe-
cially the subnetwork fae(·; θae), to capture geometric fea-
tures from the input image.

3.3. Discriminative features discovery via inter-
pretable attention

Through performing self-supervised learning (Section
3.2), low-level geometric features have been extracted by

the shared encoder fae(·; θae). We argue that the best way
to discovering discriminative local patterns is to aggregate
spatial locations of high response and concentrate on corre-
sponding features of these points. Definitely, the former
step is pretty important and a spatial attention may be a
choice of achieving this. However, existing works in at-
tention learning usually have two well-known drawbacks:
(1) the unexplainable workflows, i.e., the architectures were
usually heuristically devised and their loads of parameters
were completely learned by themselves; (2) the scattered
concerning areas, i.e., the high response regions were too
large to indicate discriminative patterns. Alternatively, we
introduce an interpretable attention module whose deriv-
ing process can be reasonably explained and does not con-
tain any learnable parameters. Furthermore, visualizations
demonstrate that our attention can successfully focus on
more accurate regions-of-interest that have physical mean-
ings.

We illustrate the Interpretable Attention Module (IAM)
in Figure 3, where L ∈ Rc×h×w is a 3D tensor extracted
by fae(·; θae) from an input image xi and c, h, w denote
the channel, height, and width dimension, respectively. To
discover local points of interest on spatial dimensions, a
Softmax [·] over neighborhood of each point is first con-
ducted along each channel in L, i.e.,

M(k, u, v) =
exp (L(k, u, v))∑

(m,n)∈N (u,v) exp(L(k,m, n))
, (4)

where N (u, v) denotes the squared neighborhood set with
side length K around location (u, v) in the k-th channel. In
parallel, a Non-Maximum Suppression (NMS) computing
across all channels is performed from L to highlight impor-
tant feature channels, i.e.,

G(k, u, v) =
L(k, u, v)

maxt=1,...,c L(t, u, v)
. (5)

To take the local spatial maxima and channel-wise max-
ima above into account altogether, Q̃ is obtained by
the element-wise product of M and G followed by the
maximization over channel dimension, i.e., Q̃(u, v) =
maxt=1,...,c {M(t, u, v) ·G(t, u, v)}. Our final attention Q

is obtained by the spatial normalization of Q̃, which consid-
ers all local maxima together and aggregates global points
of interest:

Q(u, v) =
Q̃(u, v)∑

(m,n) Q̃(m,n)
. (6)

Q represents the spatial emphasis of the activation tensor L,
namely, crucial points of the input image xi. So it is reason-
able to weight another global representations extracted from
xi with Q as discriminative geometric features as in Figure
2. Our attention is partially inspired by the soft landmark
detection in [10] but significantly different from theirs.
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3.4. Overall optimization objectives

To optimize the whole framework, we combine CE loss
from SLB, hard mining Triplet loss (Tri) [20] and Smoothed
Cross Entropy loss (SCE) [48] from GFB and GB together
as our final objectives. Tri and SCE loss are optimized refer-
ring to the combination mechanism of Batch Normalization
Neck (BNNeck) [37]. Our overall objectives are

Loverall =λGB
TriLGB

Tri + λGB
SCELGB

SCE + λGFB
Tri LGFB

Tri (7)

+ λGFB
SCELGFB

SCE + λSLBLSLB .

To avoid heavy tuning of hyperparameters, we simply set
the importance coefficients λGB

Tri, λ
GB
SCE , λGFB

Tri , λGFB
SCE to

0.5 in all experiments. Only λSLB is fine-tuned in ablation
study and set to 1.0 in final experiments.

During inference, SLB is abandoned. Two feature vec-
tors from GB and GFB are concatenated as representations
of an input image.

3.5. Network architecture

We give the architecture configurations in Figure 2 and
each color represents a subnetwork. Referring to the litera-
ture, we choose ResNet50 [19], with stride = 2 in conv5 x
replaced with stride = 1, as the backbone of GB. It is di-
vided into two subnetworks, i.e., the first (conv1, conv2 x,
conv3 x) and the second (conv4 x, conv5 x), denoted by
green and red respectively. The shared encoder between
SLB and GFB is implemented by ResNet18 (orange) whose
stride in conv4 x, conv5 x is set as 1. In SLB, another
subnetwork (purple), consisting of two basic ResNet blocks
[19] with stride = 2, is appended to the encoder to further
condense features. In GFB, each image is first downsam-
pled by 8 times by passing through the attention encoder
and then the obtained tensor is processed by IAM to get
the attention map. By element-wise multiplication, it is
broadcast to every channel of the features from the first sub-
network of GB backbone, followed by another subnetwork
(blue) composed of conv4 x′, conv5 x′.

4. Experiments

Datasets. We conduct experiments on three vehicle ReID
benchmarks. VeRi-776 [33] contains 49,357 images of 776
vehicles and 37,778 images of 576 identities compose its
training set. CityFlow-ReID [50] is a challenging dataset
where images are captured by 40 cameras under diverse en-
vironments. 36,935 images from 333 identities form the
training set. VehicleID [31] is a large-scale benchmark con-
taining 221,763 images of 26,267 vehicles. Its gallery set
only contains one randomly selected image for each iden-
tity and thus we report our results as the mean over 10 trials.
There are three numbers of gallery images widely used for

Method Venue ES tmAP imAP Top-1 Top-5
OIFE [55] ICCV17 Y 48.0 - 65.9 87.7

OIFE+ST [55] ICCV17 Y 51.42 - 68.3 89.7
NuFACT [34] TMM17 Y 53.42 - 81.56 95.11

VAMI [75] CVPR18 Y 50.13 - 77.03 90.82
AAVER [24] ICCV19 Y 58.52 - 88.68 94.10

RS [49] ICCV19 Y - 63.76 90.70 94.40
R+MT+K [49] ICCV19 Y - 65.44 90.94 96.72

VANet [8] ICCV19 Y 66.34 - 89.78 95.99
PART [17] CVPR19 Y 74.3 - 94.3 98.7
SAN [40] MST20 Y 72.5 - 93.3 97.1

CFVMNet [47] MM20 Y - 77.06 95.3 98.4
PVEN [39] CVPR20 Y - 79.5 95.6 98.4
SPAN [7] ECCV20 Y 68.9 - 94.0 97.6

DMML [3] ICCV19 N - 70.1 91.2 96.3
UMTS [23] AAAI20 N - 75.9 95.8 -
SAVER [25] ECCV20 N 79.6 - 96.4 98.6

Ours - N 86.2 81.0 96.7 98.6

Table 1: Results comparison on VeRi-776.

testing, i.e., 800 (Small), 1600 (Medium), and 2400 (Large).
Implementation. We choose PyTorch to implement our
framework and Adam optimizer [27] with default betas
(β1 = 0.9, β2 = 0.999), weight decay 5e-4 to optimize
it. During training, random cropping, horizontally flipping,
and erasing are performed to augment data samples. None
of them is adopted to process testing images. All images are
resized to 256× 256 and experiments are conducted on one
NVIDIA GEFORCE RTX 2080Ti GPU. The batch size on
VeRi-776 and CityFlow-ReID is 28 and that on VehicleID
is 40, with 4 images from each instance. On VeRi-776 and
CityFlow-ReID, the initial learning rate is 1e-4 and the mar-
gin of triplet loss is set as 0.5 empirically. The number of
training epochs is 80 and the learning rate is decreased by a
factor of 0.1 at 20th, 40th, and 60th epoch. On VehicleID,
the margin is 0.7 and the number of learning epochs is 120.
The learning rate is increased linearly from 0 to 1e-4 during
the first 10 epochs, decreased with cosine scheduler to 1e-7
at 100th epoch, and to 0 at the last epoch.
Evaluation protocols. Unlike some previous methods, we
do not use any post-processing techniques like k-reciprocal
re-ranking [71] to refine our results. We evaluate our ap-
proach by four widely used metrics in ReID literature, i.e.,
image-to-track retrieval mean Average Precision (tmAP) (if
tracks are available in one dataset), image-to-image retrieval
mAP (imAP), Top-1, and Top-5 accuracy. Particularly, we
report both tmAP and imAP on VeRi-776 for comprehen-
sive evaluation. These scores are shown as percentages and
the best are marked in bold. In Table 1, 2, and 3, ES (Y/N)
indicates whether Extra Supervision besides ID labels is
employed to train a corresponding method.

4.1. Performance comparison with SOTA works

VeRi-776. We compare our approach with SOTA ones in
Table 1. We can see most works utilized extra supervisions
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Method Venue ES imAP Top-1 Top-5
FVS [52] CVPRW18 Y 5.08 20.82 24.52
RS [49] ICCV19 Y 25.66 50.37 61.48

R+MT+K [49] ICCV19 Y 30.57 54.56 66.54
SPAN [7] ECCV20 Y 42.0 59.5 61.9
Xent [72] arXiv19 N 18.62 39.92 52.66
Htri [72] arXiv19 N 24.04 45.75 61.24
Cent [72] arXiv19 N 9.49 27.92 39.77

Xent+Htri [72] arXiv19 N 25.06 51.69 62.84
BA [30] IJCNN19 N 25.61 49.62 65.02
BS [30] IJCNN19 N 25.57 49.05 63.12
Ours - N 37.14 60.08 67.21

Table 2: Results comparison on CityFlow-ReID.

to achieve their performances. For instance, VANet anno-
tated 5,000 images from each dataset to train a viewpoint
predictor and learned distinct metrics for similar and dis-
similar viewpoint pairs. PART defined three types of vehi-
cle parts, i.e., lights, windows, and brands, to train a YOLO
[42]. When training the ReID model, they extracted lo-
cal features from detected regions by YOLO as supplemen-
tary information for global representations. PVEN provided
view segmentations of 3,165 images to train a U-Net seg-
mentor, whose output mask was used for view-aware fea-
ture alignment when optimizing their model. Although no
enhancement from extra labels was utilized in SAVER, De-
tectron [15] was needed to pre-process all images to remove
background noise. In contrast, our approach does not in-
volve any extra annotations to assist local feature learning.
Although our training batch size 28 is much smaller than
other methods (e.g., 256 in SAN), our method can still out-
perform other competitors significantly on tmAP and imAP.
Regarding Top-5 accuracy, ours is only 0.1% lower than the
best that used a larger image size 512 × 512. That was
demonstrated to promote their performances considerably
[17]. When comparing under the same condition, ours are
much better than theirs on all indicators.

CityFlow-ReID. The results are reported in Table 2. This
dataset is quite challenging because images are taken from
five scenarios, covering a diverse set of location types
and traffic conditions. Results of metric learning meth-
ods (Xent, Htri, Cent, Xent+Htri) and batch-based sampling
ones (BA, BS) are acquired without using extra annotations.
To assist ReID, real and synthetic images were exploited by
RS, while R+MT+K employed keypoints, vehicle type, and
color class to perform multi-task learning. SPAN adopted
vehicle orientation information to guide visible feature ex-
traction and computed a co-occurrence part-attentive dis-
tance for each image pair. As we see, except for SPAN,
our approach surpasses others by large margins on all three
metrics, e.g., ∼7.0% imAP, ∼6.0% Top-1, and ∼1.0% Top-
5 accuracy compared with R+MT+K.

VehicleID. We list the results for comparison in Table 3.

Method Venue ES Small Medium Large
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

GoogLeNet [63] CVPR15 Y 47.90 67.43 43.45 63.53 38.24 59.51
MD+CCL [31] CVPR16 Y 49.0 73.5 42.8 66.8 38.2 61.6

OIFE [55] ICCV17 Y - - - - 67.0 82.9
NuFACT [34] TMM17 Y 48.90 69.51 43.64 65.34 38.63 60.72

VAMI [75] CVPR18 Y 63.1 83.3 52.9 75.1 47.3 70.3
AAVER [24] ICCV19 Y 72.47 93.22 66.85 89.39 60.23 84.85

VANet [8] ICCV19 Y 88.12 97.29 83.17 95.14 80.35 92.97
PART [17] CVPR19 Y 78.4 92.3 75.0 88.3 74.2 86.4
SAN [40] MST20 Y 79.7 94.3 78.4 91.3 75.6 88.3

CFVMNet [47] MM20 Y 81.4 94.1 77.3 90.4 74.7 88.7
PVEN [39] CVPR20 Y 84.7 97.0 80.6 94.5 77.8 92.0
UMTS [23] AAAI20 N 80.9 - 78.8 - 76.1 -
SAVER [25] ECCV20 N 79.9 95.2 77.6 91.1 75.3 88.3

Ours - N 86.8 97.4 83.5 95.6 80.8 93.7

Table 3: Results comparison on VehicleID.

Figure 4: Discovered consistent geometric features from
various viewpoints of the same vehicle (each row).

Note that VANet and PVEN required much larger batch
size 128 and 256, respectively. Even so, our approach beats
all competitors in almost every test setting. In particular,
compared with SAVER, ours achieves much better perfor-
mances on all gallery sizes, i.e., 6.9% Top-1, 2.2% Top-5
on Small, 5.9% Top-1, 4.5% Top-5 on Medium, 5.5% Top-
1, 5.4% Top-5 on Large higher, although it involved some
specific pre-processing steps.

4.2. Visualizations of discovered geometric features
through self-supervision

We cover an input image with its attention map from
GFB to visualize critical vehicle parts learned by our frame-
work. Even though our geometric features are discovered
without using accurate supervision like others, qualitative
visualizations demonstrate the superiority of our method.
Comparison with defined landmarks by other works.
Previous works manually annotated a specific number of
landmarks on a vehicle body [24, 55] to assist their dis-
criminative feature learning. These landmarks visible from
each viewpoint (front, back, left or right) are illustrated in
Figure 1 (a) which is borrowed from [55] and re-organized
vertically. To compare with these human annotations thor-
oughly, we visualize our learned geometric features from
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each viewpoint accordingly in Figure 1 (b). We can easily
observe that our approach focuses on many similar loca-
tions to predefined ground truths on each viewpoint, e.g.,
left (right)-front corner of vehicle top, left (right) fog lamp
on front view, right-front corner of vehicle top, right-front
(back) wheel, and right headlight on right view, which
demonstrates that our framework can successfully discover
critical and informative vehicle parts for ReID without the
supervision of ground truths.

Consistency across viewpoints and scenarios. To vali-
date the consistency of learned geometric features across
viewpoints and scenarios, we select a couple of images, be-
longing to an identical vehicle instance but taken from var-
ious viewpoints and by different cameras, for visualization
in Figure 4. Each row represents an vehicle instance. Al-
though viewpoint, object scale, and background of each im-
age vary largely, identical vehicle parts, e.g., fog lamps, ve-
hicle tops, and wheels, are discovered for the same instance.
This validates the stability and reliability of our approach in
handling viewpoint and scenario changes, which are the key
points of solving ReID problems.

Generalization to human part discovery. To demon-
strate the generalization ability of our framework to person
ReID, we conduct experiments on two popular benchmarks.
Please refer to Section 4.4 for more experiment details and
here we just analyze the visualization results shown in Fig-
ure 1 Bottom. As a deformable object, discovering geo-
metric features from a human body is much more challeng-
ing. For saving space, we just select three images for each
person. Obviously, identical human parts, e.g., head, up-
per arms, and knees, are discovered by our approach even
though human pose, viewpoint, and background change so
much among images. These parts are critical to estimate hu-
man pose which has been demonstrated to play an important
role in person ReID [61, 32, 45].

Discussion. As mentioned in Section 3.2, person or vehi-
cle ReID is an instance classification problem, i.e., all im-
ages in a task are taken from the same category but differ-
ent individuals. So salient objects in these images have a
lot in common, e.g., geometric shapes (for vehicles), com-
positions, and skeletons. It is reasonable that conducting
self-supervised learning encourages a deep network to dis-
cover these geometric features because they are reliable and
repeatable clues to completing the self-supervised pretext
task successfully. Visualizations in this section demonstrate
this claim sufficiently. In view of their high similarity to
ReID, we will expand our approach to other fine-grained
classification tasks [54, 38] in future work.

4.3. Ablation study

To evaluate the effect of each proposal of our frame-
work, we conduct extensive experiments on VeRi-776 and

Method VeRi-776 CityFlow-ReID
tmAP imAP imAP Top-1

GB w/o attention 84.0 78.3 32.04 56.27
GB+ResNet18 w/o attention 85.2 79.5 34.63 57.98

GB+GFB (K = 7) 85.9 80.7 36.63 59.98
GB+GFB (K = 11) 85.8 80.6 35.94 59.70
GB+GFB (K = 15) 85.5 80.2 36.32 58.56

GB+GFB+SLB (λSLB = 0.1) 85.8 80.5 36.61 59.13
GB+GFB+SLB (λSLB = 1.0) 86.2 81.0 37.14 60.08
GB+GFB+SLB (λSLB = 2.0) 86.1 80.9 36.54 59.60

Table 4: Results of ablation study. We underline the corre-
sponding results of selected values for K and λSLB . The
performance improvement upon each component is consis-
tent across datasets.

Figure 5: Learned attention maps (top) without and (bot-
tom) with self-supervised learning from the same image.

CityFlow-ReID. Here we report tmAP and imAP, imAP and
Top-1 on them respectively because these metrics are more
important on each dataset. Results are in Table 4.

Effect of simply incorporating another branch upon
baseline. Our framework employs a ResNet50 as the back-
bone of GB and a ResNet18 as the shared encoder between
SLB and GFB. Although more branches and larger net-
works were usually utilized to perform ReID in previous
works, we still conduct experiments to show that our per-
formance gains upon the baseline (GB w/o attention) come
from our proposals rather than an extra branch. To this end,
we implement a new framework termed as “GB+ResNet18
w/o attention”, consisting of two independent branches with
respective ResNet50 and ResNet18 as backbone. Com-
pared with our final results, we can see performances
are marginally beneficial from adding a ResNet18 based
branch. However, this also suggests that our framework can
be stronger if involving more branches like others.

Pure IAM still bringing much improvement. IAM based
GFB is the bridge of incorporating self-supervised learn-
ing (SLB) into our whole framework. To demonstrate the
effectiveness of IAM even without the regularization from
SLB, we conduct experiments “GB+GFB” with different K
while fixing other hyperparameters. Results in the second
part of Table 4 show that IAM are pretty robust w.r.t. values
of K. We set K = 7 by default in subsequent experiments.
Besides, comparing “GB+GFB” with “GB+ResNet18 w/o
attention”, it is seen that our IAM based GFB is much
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Method Venue Market-1501 DukeMTMC-reID
imAP Top1 Top5 imAP Top1 Top5

DG-Net [70] CVPR19 86.0 94.8 - 74.8 86.6 -
Bag [37] TMM19 85.9 94.5 - 76.4 86.4 -
PCB [46] ECCV18 81.6 93.8 97.5 69.2 83.3 90.5
RGA [67] CVPR20 88.4 96.1 - - - -

OSNet [73] ICCV19 84.9 94.8 - 73.5 88.6 -
Ours - 86.1 94.3 98.3 75.7 85.7 93.6

Table 5: Results comparison on person ReID benchmarks.

more powerful than a ResNet18 branch. For example, on
the challenging CityFlow-ReID, the former and the latter
bring improvement about 4.6% vs. 2.6% on imAP and 3.7%
vs. 1.7% on Top-1 accuracy upon the baseline. This is at-
tributed to the interpretable attention IAM. Although it is
not able to discover specific parts without the help of self-
supervised learning (referring to Figure 5), it can focus on a
holistic vehicle body from cluttered background for extract-
ing more effective representations.

Physically meaningful attention discovery through self-
supervised learning. To enforce attention to empha-
size crucial vehicle parts (i.e., physically meaningful lo-
cations), we conduct experiments with the full framework
“GB+GFB+SLB” with different λSLB while keeping other
hyperparameters identical. The third part results in Table
4 tell that our framework are robust w.r.t. values of λSLB

and we select λSLB = 1.0 as our decision. It is observed
that self-supervised learning improves performances con-
sistently on all metrics compared with “GB+GFB”. Espe-
cially, from the attention maps comparison in Figure 5,
we can see self-supervised learning helps to shift atten-
tions distracted by background vehicles to the main con-
cern. And our framework overcomes the interference from
diverse background distractors, e.g., traffic lights and road
signs, and discovers meaningful vehicle parts successfully.

4.4. Generalizing to other ReID related tasks

In this section, we demonstrate the potential applica-
tion of our approach in person ReID and multi-target multi-
camera (MTMC) vehicle tracking.

Person ReID. Instead of identifying individual vehicles,
this task aims to associate the same person in images
taken from different cameras. We conduct experiments on
Market-1501 [68] and DukeMTMC-reID [43], two most
widely used benchmarks for person ReID. The training de-
tails keep identical to those on VehicleID. We compare our
performances with recent works in Table 5. As we see,
though our approach is not intentionally proposed and tuned
for person ReID, its performances are still very promising.
We believe it will perform much better if the hyperparame-
ters are fine-tuned accordingly.

MTMC vehicle tracking. As a complicated video surveil-

Rank 1 2 3 4 5 6
Team ID Ours 92 141 11 163 63

IDF1 Score 0.4930 0.4616 0.4552 0.4400 0.4369 0.3677

Table 6: MTMC vehicle tracking results comparison on AI
City Challenge 2020.

lance task, MTMC vehicle tracking is commonly com-
posed of four steps, i.e., vehicle detection, multi-target
single-camera (MTSC) tracking, vehicle re-identification,
and tracklet synchronization. Among them, vehicle ReID
is the crucial stage for a satisfactory tracking result. It is
much more challenging than operating on well-calibrated
ReID benchmarks because of large object-scale variation
and heavy blur caused by distance changes between a cam-
era and vehicles. To verify the generalization ability of
our approach under cross-dataset testing, we perform ex-
periments on the data provided by City-Scale Multi-Camera
Vehicle Tracking of AI City 2020 Challenge [51] using our
trained model on VeRi-776 without any fine-tuning. Con-
sidering that ReID is only our concern, we simply adopt
an efficient MTMC tracking pipeline, similar to [41], to
achieve this. Specifically, we first employ Mask R-CNN
from Detectron2 [60] to detect vehicles from each video
frame. Then we utilize Deep SORT [57] with the associ-
ation strategy from [56] to perform MTSC vehicle track-
ing. Finally, our trained model is directly applied to cap-
ture ReID representations from cropped vehicle images, fol-
lowed by tracklet synchronization with identical rules to
[41]. Refer to [41] for more details due to page limitation.
Our approach achieves 0.4930 regarding the official eval-
uation metric IDF1 score [50], which is much higher than
0.4585 from [41], although they trained their ReID model
on the officially provided dataset. Besides, we compare our
result with other submissions in Table 6 and ours outper-
forms others significantly.

5. Conclusion
In this paper, based on our observation that salient ob-

jects in ReID images share similar properties, we pro-
pose a novel framework to learn geometric features, with-
out supervision from fine-grained annotations, for vehicle
ReID through performing a self-supervised task. To this
end, an interpretable attention module is also introduced
to discover physically reasonable features. Comprehensive
experiments demonstrate the effectiveness and generaliza-
tion ability of our approach qualitatively and quantitatively.
In the future, we plan to generalize it to addressing fine-
grained classification problems.
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