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Abstract

Domain adaptation (DA) paves the way for label annota-
tion and dataset bias issues by the knowledge transfer from
a label-rich source domain to a related but unlabeled tar-
get domain. A mainstream of DA methods is to align the
feature distributions of the two domains. However, the ma-
jority of them focus on the entire image features where ir-
relevant semantic information, e.g., the messy background,
is inevitably embedded. Enforcing feature alignments in
such case will negatively influence the correct matching
of objects and consequently lead to the semantically neg-
ative transfer due to the confusion of irrelevant seman-
tics. To tackle this issue, we propose Semantic Concentra-
tion for Domain Adaptation (SCDA), which encourages the
model to concentrate on the most principal features via the
pair-wise adversarial alignment of prediction distributions.
Specifically, we train the classifier to class-wisely maximize
the prediction distribution divergence of each sample pair,
which enables the model to find the region with large dif-
ferences among the same class of samples. Meanwhile,
the feature extractor attempts to minimize that discrepancy,
which suppresses the features of dissimilar regions among
the same class of samples and accentuates the features of
principal parts. As a general method, SCDA can be easily
integrated into various DA methods as a regularizer to fur-
ther boost their performance. Extensive experiments on the
cross-domain benchmarks show the efficacy of SCDA.

1. Introduction
Deep neural network (DNN) has achieved great success

in diverse machine learning problems [17, 3, 33]. Unfor-
tunately, the impressive performance gain heavily relies on
the access to massive well-labeled training data. And it is
often time and cost prohibitive to manually annotate suf-
ficient training data in practice. Besides, another drawback
of conventional deep learning is the poor generalization on a
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Figure 1. Illustration of the adversarial process of SCDA at the
macro level. Classifier is trained to maximize the prediction distri-
bution discrepancy of samples in the pairing region, which causes
the decision boundary to pass through the high density area of the
pairing region. While the feature extractor tries to minimize that
discrepancy, which pushes the features away from the decision
boundary. Finally, well-aligned features can be obtained through
the adversarial game between the classifier and feature extractor.

new dataset, due to the domain shift issue [2, 29, 1]. Hence,
there is a strong motivation to utilize the knowledge of a
label-rich domain (i.e., source domain) to assist the learn-
ing in a related but unlabeled domain (i.e., target domain),
which is often referred to as domain adaptation (DA).

To alleviate the domain shift problem, the common prac-
tice of DA is to reduce the cross-domain distribution dis-
crepancy by learning domain-invariant feature representa-
tions. Generally, these DA methods can be roughly cate-
gorized as the discrepancy-based methods [23, 26, 7, 12],
which align the domain distributions by minimizing a well-
designed statistic metric, and the adversarial-based methods
[8, 24, 41, 37, 20, 31], where the domain discriminator is
designed to distinguish between source and target samples
and the feature extractor tries to confuse the discriminator.
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Although these DA methods have admittedly achieved
promising results, most of them use the features encoded
without emphasis to match the feature distributions of two
domains. In such case, irrelevant semantic information,
e.g., the messy background is inevitably embedded, which
may negatively influence the correct matching of objects
and consequently lead to the semantically negative transfer.

To relieve this issue, we propose to achieve the Semantic
Concentration for Domain Adaptation (SCDA) by leverag-
ing the dark knowledge [49] (i.e., knowledge on the wrong
predictions). Actually, SCDA is motivated by the findings
in [53] that the class prediction made by the model depends
on what it has concentrated on and the concentrated region
for each class prediction can be located with the feature
maps and corresponding classification weights. Thus, we
expect to find the concentrated regions for wrong predic-
tions and suppress the features of these regions when en-
coding the image into features.

For this purpose, we propose to class-wisely align the
pair-wise prediction distributions in an adversarial manner,
which is shown in Fig. 1. Samples of the same label from
two domains compose the pairing region for each class. The
paring of samples includes intra-domain paring (i.e., pairing
within source domain) and inter-domain pairing (i.e., pair-
ing between source and target samples). For any sample
pair of the same label, the classifier is trained to maximize
their prediction distribution discrepancy, while the feature
extractor strives to minimize that discrepancy. From the
micro perspective, when the feature extractor is fixed, maxi-
mizing the prediction distribution discrepancy of the sample
pair will cause the classification weights for dark knowl-
edge to be larger. Then to reduce that discrepancy, features
of these dark knowledge have to be suppressed, since the
classification weights for them became larger in the previ-
ous training of the classifier. From the macro perspective,
to maximize the prediction discrepancy in the pairing region
with the feature extractor fixed, the decision boundary will
cross the high density area of the pairing region. Then, to
reduce the discrepancy, features will be pushed away from
the decision boundary. Finally, the model is able to con-
centrate on the most principal features and achieves well-
aligned features class-wisely via the min-max game.

Our contributions are summarized as follows:

• This paper proposes a novel adversarial method for
DA, i.e., the pair-wise adversarial alignment of pre-
diction distribution discrepancy. Our method can sup-
press the irrelevant semantic information and accen-
tuate the class object when encoding features, thus
achieving the semantic concentration.

• As a simple and generic method, SCDA can be eas-
ily integrated as a regularizer into various DA methods
and greatly improve their adaptation performances.

• Extensive experimental results and analysis demon-
strate that SCDA greatly suppresses irrelevant seman-
tics during the adaptation process, yielding state-of-
the-art results on multiple cross-domain benchmarks.

2. Related Work
Feature Distribution Alignment. The distribution dis-

crepancy between domains poses a great challenge for do-
main adaptation. To address this issue, the existing DA
methods can be roughly divided into two categories. One
is the statistical discrepancy based methods which aim to
match various statistical moments across domains [25, 26,
51, 40, 18]. For instance, MDD [51] introduces the margin
disparity discrepancy to reduce the distribution discrepancy
with a rigorous generalization bound. And based on the
Earth Mover’s distance, [18] proposes an enhanced trans-
port distance (ETD) to minimize the feature alignment loss.

The other category is inspired by the generative adver-
sarial network (GAN) [10], which aims to learn domain-
invariant features by playing a two-player min-max game
[8, 24, 20, 41, 37, 5, 52]. For example, DANN [8] and
CDAN [24] introduce a domain discriminator to play the
min-max game where the domain discriminator strives to
distinguish source samples from target samples while the
feature extractor tries to confuse the domain discriminator.

However, these methods focus on the alignment of the
entire image features. The irrelevant semantic informa-
tion e.g., messy backgrounds, may predominate the adapta-
tion process, leading to samples of different categories mis-
aligned or samples in the same category unaligned.

Concentration Mechanism. There have been recent ef-
forts toward boosting the adaptation performance via ap-
plying different degrees of concentration on distinct image
regions [28, 42]. Several approaches leverage the attention-
based methods to weight features at the pixel level, which
facilitates the model concentrating on and transferring more
principal semantic information across domains. [54, 16, 44]
utilize attention mechanism to transfer features with high
correlations across two distributions. DUCDA [54] devel-
ops an attention transfer mechanism for DA, which transfers
the knowledge of discriminative patterns of source images
to target. Differently, instead of exploring the space atten-
tion knowledge, DCAN [19] explores the low-level domain-
dependent knowledge in the channel attention.

Although these attention-based DA methods can also
suppress features of irrelevant semantics, most of them need
to elaborately design a complex network architecture to de-
rive the appropriate concentrations, greatly limiting their
versatility. By contrast, our method leverages the pair-wise
adversarial alignment on prediction space to achieve the
concentration, which is easy to implement and can be used
as a plug-and-play regularizer to various DA methods to fur-
ther boost their performance.
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Dark Knowledge. Numerous DA methods have ex-
plored the prediction space to boost the feature generation
[37, 24, 4], while most of them only focus on the correct
class prediction. To fully leverage the prediction infor-
mation, we introduce the concept of dark knowledge [14],
i.e., the knowledge on wrong predictions made by DNNs.
In fact, dark knowledge is firstly proposed in knowledge
distillation [14], where the knowledge is transferred from
a powerful teacher model to a student [49, 50, 46]. For
DA, the dark knowledge is also leveraged by some meth-
ods [15, 21] to excavate information contained in non-target
labels. MCC [15] exploits the dark knowledge to formu-
late the tendency that a classifier confuses the predictions
between the correct and ambiguous classes, and then min-
imizes the confusion. BCDM [21] proposes a novel met-
ric using the dark knowledge of bi-classifiers to measure
their discrepancy, where the classifiers are forced to pro-
duce more consistent predictions in a class-wise manner.

In this paper, we directly leverage the correspondence
between the dark knowledge and its activated feature re-
gions. By suppressing these features of dark knowledge
via our proposed pair-wise adversarial alignment of predic-
tions, we can effectively avoid the negative effect caused by
irrelevant semantics in the adaptation process.

3. Method

3.1. Preliminaries and Motivation

In DA, there are two domains accessible: a la-
beled source domain with Ns samples, denoted as S =
{(xs

i , y
s
i )}

Ns
i=1 where ysi ∈ {1, 2, ..., C} is the correspond-

ing label of source sample xs
i , and an unlabeled target do-

main with Nt samples, denoted as T = {xt
j}

Nt
j=1. Source

and target domains share the same label space, but differ
in the data probability distributions. Such distribution dis-
crepancy often leads to the performance degradation when
the network trained on source domain is directly applied to
target domain. In this paper, we denote the network by F
which is composed of a feature extractor G and a classifier
C. The goal of DA is to adapt the network F from source
to target by fully exploring the knowledge of labeled source
data and unlabeled target data during the training procedure.

Most DA methods are based on the feature distribution
alignment where entire image features are considered. But
irrelevant semantics, e.g., messy backgrounds may also be
embedded into the entire features and thus the predictions
for the wrong classes may be relatively high without sup-
pression for these features, which may result in the seman-
tically negative transfer. Hence, it is necessary to find these
concentrated regions for dark knowledge and suppress the
features of these regions. Motivated by the close relation-
ship among the prediction, classification weights and the
features shown in [53], we propose Semantically Concen-

tration for Domain Adaptation (SCDA), which leverages
the pair-wise adversarial alignment of prediction distribu-
tion to suppress the features of dark knowledge and thus
accentuates the features of principal parts for correct class.
Briefly, we take the classifier and the feature extractor as
the two players in the adversarial game. The classifier tries
to increase the classification weights for wrong classes by
maximizing the pair-wise prediction distribution discrep-
ancy. While the feature extractor strives to suppress the
features for the wrong classes to reduce that discrepancy.
Via the min-max game, we can suppress the influence of ir-
relevant semantics on the feature alignment of two domains.

3.2. Revisit the Class Activation Map

In this section, we revisit the class activation map in [53]
to show the close relationship among the prediction, clas-
sification weights and features. For a particular class, its
corresponding class activation map reflects which image re-
gion the model has concentrated on to make its prediction.

For a given image, let ah(u, v) denote the activation at
spatial location (u, v) of the h-th channel of the feature
maps in the last convolutional layer. Then performing the
global average pooling (GAP) on the h-th channel, we ob-
tain fh, i.e., fh = 1

HW

∑
u,v ah(u, v), where H and W are

the height and width of the feature map. For class c, the
logit score zc given by the model is

∑
h w

c
hfh, where wc

h is
the classification weight (essentially the importance) of h-
th feature map for class c. Here we omit the bias term, since
it has no impact on the classification performance. Finally,
the softmax score for class c is pc =

exp(zc)∑
c exp(zc)

.

Plugging fh = 1
HW

∑
u,v ah(u, v) into the expression

of zc, we can obtain

zc =
∑
h

wc
h

1

HW

∑
u,v

ah(u, v)

=
1

HW

∑
u,v

∑
h

wc
hah(u, v)

=
1

HW

∑
u,v

Ac(u, v), (1)

where Ac(u, v) =
∑

h w
c
hah(u, v). For a given model,

HW is a constant. Thus, Ac(u, v) directly reflects the im-
portance of the activation at the spatial location (u, v) of the
class activation map Ac when classifying an image to class
c. Finally, by upsampling the class activation map to the
size of the original image, we can locate the regions con-
centrated on by the model for a particular class.

From the expressions of zc = 1
HW

∑
u,v Ac(u, v) and

pc =
exp(zc)∑
c exp(zc)

, we can see that the prediction distribution
of an image depends on the class activation maps, while the
class activation maps reflect what the model has concen-
trated on. This motivates us to leverage the class activation
maps of wrong predictions to find the regions that the model
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Figure 2. Overview of SCDA. {qs
i}4i=1 and {qt

j}4j=1 are the soften softmax predictions of a batch of source and target samples, respectively.
GRL is the gradient reverse layer. LCE is the cross-entropy loss on source domain. LMI is the mutual information maximization loss on
target domain. LPDD is the pair-wise adversarial alignment loss of prediction distributions. The pairing of samples is shown in the right of
the figure. The classifier is trained to maximize the prediction distribution discrepancy of each sample pair, while the feature extractor tries
to minimize that discrepancy. Note that we use ground-truth labels for source samples, while pseudo labels for unlabeled target samples.

should not concentrate on and then suppress the features of
these regions. Below we will describe how to achieve this
idea via the pair-wise adversarial alignment of prediction
distributions, which is the main component of our work.

3.3. Amplify Concentrations on Irrelevant Regions

Firstly, we describe the construction of our sample pairs,
which is shown in Fig. 2. Samples of the same label from
two domains compose the paring region for corresponding
class. Since target domain is unlabeled, we employ the
pseudo label predicted by the model for each target sample,
i.e., y′tj = argmaxc p

t
j
(c) where ptj

(c) is the c-th element of
the softmax outputs of target sample xt

j . Two samples are
considered as a pair if their labels are same. For each class,
there exist two kinds of sample pairs, i.e., intra-domain sam-
ple pairs 1 (pairing within source domain) and inter-domain
sample pairs (pairing between source and target domains).

To amplify the concentrations on irrelevant regions, we
train the classifier to maximize the prediction distribution
discrepancy of each sample pair. Since we have two kinds
of sample pairs, the total loss of prediction distribution dis-
crepancy includes the intra-domain and inter-domain parts,
i.e., LPDDs,s

and LPDDs,t
, which are denoted as

max
C

LPDDs,s + LPDDs,t

=
1

Ms,s
T 2

∑
ys
i =ys

k

JS(qs
i , q

s
k)

+
1

Ms,t
T 2

∑
ys
i =y′t

j

JS(qs
i , q

t
j). (2)

Here, we use Jensen–Shannon (JS) divergence to measure
the discrepancy between a pair of predictions, due to its
symmetry and finiteness compared with Kullback-Leibler

1Here, we do not conduct intra-domain pairing within target domain,
since target data have no ground-truth labels.

divergence. qs
i = softmax(F(xs

i )/T ), where T is the tem-
perature scaling parameter. To avoid the gradient vanishing,
we multiply T 2 to maintain the magnitudes of gradients.
Ms,s and Ms,t represent the number of samples satisfying
ysi = ysk and ysi = y′

t
j , respectively.

When the feature extractor is fixed, the class activation
map only depends on the classification weights of the clas-
sifier. Since the sample pair belongs to the same class and
the predictive scores for this class are both high, to maxi-
mize the prediction distribution discrepancy of the sample
pair, the classification weights for other wrong classes in-
crease. Thus, the irrelevant regions concentrated on by the
model become more activated. Taking the “Bike” class for
example, one image describes that a boy wearing a helmet is
riding a bike and the other image describes a bike with flow-
ers in the basket. For these two images, predictive scores
for “Bike” are both high, such as with the prediction dis-
tributions of [0.01, 0.79, 0.20] and [0.15, 0.84, 0.01] respec-
tively in the class order of “Flowers”, “Bike” and “Helmet”.
The prediction distribution discrepancy mainly exists in the
predictive scores for “Flowers” and “Helmet”. To maxi-
mize the discrepancy, the former image will increase the
predictive score for “Helmet”, while the latter image will
increase the score for “Flowers”, which will cause the re-
gion of “Helmet” and “Flowers” with more concentration
for the two images, respectively. By doing so, we amplify
the concentrations on irrelevant regions.

3.4. Suppress Features of Irrelevant Semantics
In the previous section, we have found the regions that

the model has concentrated on for the predictions of irrel-
evant classes. Now, we expect to suppress the features of
these regions for a purer knowledge transfer in DA. To this
end, we train the feature extractor to minimize the predic-
tion distribution discrepancy of sample pairs, the loss of
which is expressed as
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min
G

LPDDs,s + LPDDs,t

=
1

Ms,s
T 2

∑
ys
i =ys

k

JS(qs
i , q

s
k)

+
1

Ms,t
T 2

∑
ys
i =y′t

j

JS(qs
i , q

t
j). (3)

Since the classification weights for wrong classes increased
in the previous training of the classifier, to reduce the pre-
diction distribution discrepancy, the feature extractor has to
suppress the features of these irrelevant semantics and ac-
centuate the features of similar parts in the sample pair. In
the adversarial manner, for the intra-domain sample pairs,
we can achieve the extraction of the most principal features
for each class, which serves as good teachers for target do-
main. For the inter-domain sample pairs, the negative influ-
ence of domain shift is reduced and more emphasis is laid
on the transfer of common knowledge across two domains.

3.5. Overall Formulation
Different from previous work [37, 36] that use alternate

updating to achieve the adversarial manner, we leverage the
gradient reverse layer (GRL) in Fig. 2 to achieve the opti-
mization of all network parameters with the stochastic gra-
dient descent. The overall loss function is defined as

LSCDA = LCE − αLPDD − βLMI , (4)

where α and β are two positive trade-off parameters.
LCE is the standard cross-entropy loss to supervise the

learning on source domain, which is denoted as

min
F

LCE =
1

Ns

Ns∑
i=1

E(F(xs
i ), y

s
i ), (5)

where E(·, ·) is the cross-entropy loss function.
LPDD is our proposed adversarial loss of the prediction

distribution discrepancy to achieve the semantic concentra-
tion for DA, the expression of which is denoted as

min
G

max
C

LPDD = LPDDs,s + LPDDs,t . (6)

To avoid the tedious updating steps in alternate updating,
we leverage the gradient reverse layer in [8] to achieve the
adversarial training by one back-propagation.

LMI is the mutual information maximization loss on tar-
get domain, which is introduced to improve the quality of
pseudo labels. The expression of LMI is

max
F

LMI = H(Ŷ )−H(Ŷ |X)

= −
C∑

c=1

p̂(c) log p̂(c) +
1

Nt

Nt∑
j=1

⟨pt
j , logp

t
j⟩, (7)

where pt
j is the softmax prediction of target sample xt

j , p̂(c)

is the c-th element of p̂ = 1
Nt

∑Nt

j=1 p
t
j and ⟨·, ·⟩ is the in-

ner product operation. Actually, the second term of LMI

is equivalent to the entropy minimization [11], which is a
generic technique used in DA methods to enhance the dis-
criminability of the model for target data, e.g., [52, 25, 39].
However, the entropy minimization may result into col-
lapsed trivial solutions [45]. To avoid this, we introduce
the first term of LMI to ensure the diversity of predic-
tions. Besides, we also set a threshold of 0.8 to select tar-
get samples with relatively correct classification, i.e., only
{xt

j |maxc p
t
j
(c) ≥ 0.8} participate in inter-domain pairing.

The effects of different loss terms will be analyzed in
details in the ablation study.

3.6. Regularizer to Existing DA Methods
As a simple but powerful method, SCDA is orthogonal to

most existing DA methods and can be easily integrated into
them as a regularizer to bring remarkable improvements by
simply adding a gradient reverse layer. Taking CDAN [24]
as an example, the integrated loss is formulated as:

LSCDA + γLadv, (8)

where γ is the trade-off parameter and Ladv is the domain-
adversarial loss for the domain discriminator in CDAN. We
suggest that readers refer to [24] for the detailed formula-
tion of Ladv . The adversarial process in [24] is that domain
discriminator strives to correctly classify the domain labels
of samples while the feature extractor aims to generate fea-
tures that can deceive the domain discriminator. In addition,
our method can also be plugged into other DA methods,
such as statistical discrepancy based methods [51]. We will
show the effects of SCDA as a regularizer in experiments.

4. Experiment
4.1. Experimental Setting

DomainNet [32] is the largest and the most challeng-
ing dataset for DA so far. It contains about 0.6 million
images of 345 categories drawn from six diverse domains:
Clipart (clp), Infograph (inf), Painting (pnt), Quickdraw
(qdr), Real (rel) and Sketch (skt). Permuting the six do-
mains, we build 30 adaptation tasks: clp→inf, ..., skt→rel.

Office-Home [43] is a more challenging benchmark
dataset for visual domain adaptation, which includes 15,500
images of 65 categories spreading in four distinct domains:
Artistic images (Ar), Clip Art (Cl), Product images (Pr)
and Real-World images (Rw). 12 adaptation tasks are con-
structed to evaluate our method, i.e., Ar→Cl, ..., Rw→Pr.

Office-31 [35] is a classical real-world benchmark
dataset for DA. It contains 4,110 images of 31 classes
shared by three distinct domains: Amazon (A), Webcam
(W) and DSLR (D). We construct 6 adaptation tasks to eval-
uate our method, i.e., A→W, ..., D→W.

Implementation details. Following the standard pro-
tocol for DA [8, 24, 22], we use all the labeled source
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Table 1. Accuracy(%) on DomainNet for UDA (ResNet-101). In each sub-table, the column-wise domains are selected as the source
domain and the row-wise domains are selected as the target domain. [† Implement according to source code.]

ADDA [41] clp inf pnt qdr rel skt Avg. DANN [8] clp inf pnt qdr rel skt Avg. MIMTFL [9] clp inf pnt qdr rel skt Avg.
clp - 11.2 24.1 3.2 41.9 30.7 22.2 clp - 15.5 34.8 9.5 50.8 41.4 30.4 clp - 15.1 35.6 10.7 51.5 43.1 31.2
inf 19.1 - 16.4 3.2 26.9 14.6 16.0 inf 31.8 - 30.2 3.8 44.8 25.7 27.3 inf 32.1 - 31.0 2.9 48.5 31.0 29.1
pnt 31.2 9.5 - 8.4 39.1 25.4 22.7 pnt 39.6 15.1 - 5.5 54.6 35.1 30.0 pnt 40.1 14.7 - 4.2 55.4 36.8 30.2
qdr 15.7 2.6 5.4 - 9.9 11.9 9.1 qdr 11.8 2.0 4.4 - 9.8 8.4 7.3 qdr 18.8 3.1 5.0 - 16.0 13.8 11.3
rel 39.5 14.5 29.1 12.1 - 25.7 24.2 rel 47.5 17.9 47.0 6.3 - 37.3 31.2 rel 48.5 19.0 47.6 5.8 - 39.4 32.1
skt 35.3 8.9 25.2 14.9 37.6 - 25.4 skt 47.9 13.9 34.5 10.4 46.8 - 30.7 skt 51.7 16.5 40.3 12.3 53.5 - 34.9

Avg. 28.2 9.3 20.1 8.4 31.1 21.7 19.8 Avg. 35.7 12.9 30.2 7.1 41.4 29.6 26.1 Avg. 38.2 13.7 31.9 7.2 45.0 32.8 28.1
ResNet-101 [13] clp inf pnt qdr rel skt Avg. CDAN† [24] clp inf pnt qdr rel skt Avg. MDD† [51] clp inf pnt qdr rel skt Avg.

clp - 19.3 37.5 11.1 52.2 41.0 32.2 clp - 20.4 36.6 9.0 50.7 42.3 31.8 clp - 20.5 40.7 6.2 52.5 42.1 32.4
inf 30.2 - 31.2 3.6 44.0 27.9 27.4 inf 27.5 - 25.7 1.8 34.7 20.1 22.0 inf 33.0 - 33.8 2.6 46.2 24.5 28.0
pnt 39.6 18.7 - 4.9 54.5 36.3 30.8 pnt 42.6 20.0 - 2.5 55.6 38.5 31.8 pnt 43.7 20.4 - 2.8 51.2 41.7 32.0
qdr 7.0 0.9 1.4 - 4.1 8.3 4.3 qdr 21.0 4.5 8.1 - 14.3 15.7 12.7 qdr 18.4 3.0 8.1 - 12.9 11.8 10.8
rel 48.4 22.2 49.4 6.4 - 38.8 33.0 rel 51.9 23.3 50.4 5.4 - 41.4 34.5 rel 52.8 21.6 47.8 4.2 - 41.2 33.5
skt 46.9 15.4 37.0 10.9 47.0 - 31.4 skt 50.8 20.3 43.0 2.9 50.8 - 33.6 skt 54.3 17.5 43.1 5.7 54.2 - 35.0

Avg. 34.4 15.3 31.3 7.4 40.4 30.5 26.6 Avg. 38.8 17.7 32.8 4.3 41.2 31.6 27.7 Avg. 40.4 16.6 34.7 4.3 43.4 32.3 28.6

SCDA clp inf pnt qdr rel skt Avg.
CDAN
+SCDA clp inf pnt qdr rel skt Avg.

MDD
+SCDA clp inf pnt qdr rel skt Avg.

clp - 18.6 39.3 5.1 55.0 44.1 32.4 clp - 19.5 40.4 10.3 56.7 46.0 34.6 clp - 20.4 43.3 15.2 59.3 46.5 36.9
inf 29.6 - 34.0 1.4 46.3 25.4 27.3 inf 35.6 - 36.7 4.5 50.3 29.9 31.4 inf 32.7 - 34.5 6.3 47.6 29.2 30.1
pnt 44.1 19.0 - 2.6 56.2 42.0 32.8 pnt 45.6 20.0 - 4.2 56.8 41.9 33.7 pnt 46.4 19.9 - 8.1 58.8 42.9 35.2
qdr 30.0 4.9 15.0 - 25.4 19.8 19.0 qdr 28.3 4.8 11.5 - 20.9 19.2 17.0 qdr 31.1 6.6 18.0 - 28.8 22.0 21.3
rel 54.0 22.5 51.9 2.3 - 42.5 34.6 rel 55.5 22.8 53.7 3.2 - 42.1 35.5 rel 55.5 23.7 52.9 9.5 - 45.2 37.4
skt 55.6 18.5 44.7 6.4 53.2 - 35.7 skt 58.4 21.1 47.8 10.6 56.5 - 38.9 skt 55.8 20.1 46.5 15.0 56.7 - 38.8

Avg. 42.6 16.7 37.0 3.6 47.2 34.8 30.3 Avg. 44.7 17.6 38.0 6.6 48.2 35.8 31.8 Avg. 44.3 18.1 39.0 10.8 50.2 37.2 33.3

Table 2. Accuracy (%) on Office-Home for UDA (ResNet-50).
Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
ResNet-50 [13] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [8] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN [26] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
MCD [37] 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
ETD [18] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3
SymNets [52] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
TADA [44] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
GVB-GD [5] 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
SCDA 57.5 76.9 80.3 65.7 74.9 74.5 65.5 53.6 79.8 74.5 59.6 83.7 70.5
CDAN [24] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
CDAN+SCDA 57.1 75.9 79.9 66.2 76.7 75.2 65.3 55.6 81.9 74.7 62.6 84.5 71.3
MDD [51] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
MDD+SCDA 58.9 77.2 81.0 66.6 75.5 75.9 64.1 56.3 82.2 73.3 61.5 84.3 71.4
MCC [15] 55.1 75.2 79.5 63.3 73.2 75.8 66.1 52.1 76.9 73.8 58.4 83.6 69.4
MCC+SCDA 57.1 79.1 82.7 67.7 75.3 77.6 66.3 52.5 81.9 74.9 60.1 85.0 71.7
DCAN [19] 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5
DCAN+SCDA 60.7 76.4 82.8 69.8 77.5 78.4 68.9 59.0 82.7 74.9 61.8 84.5 73.1

data and unlabeled target data as training data and evalu-
ate on unlabeled target data. We implement our approach
in PyTorch framework[30]. To fairly compare with existing
methods, we use the same backbone networks, i.e., ResNet-
50 [13] pre-trained on ImageNet [34] for datasets: Office-31
and Office-Home, and ResNet-101 [13] pre-trained on Im-
ageNet [34] for DomainNet [32]. In experiments, the input
image size is cropped to 224 × 224. We employ the mini-
batch stochastic gradient descent (SGD) optimizer with mo-
mentum of 0.9 and the learning rate strategy as described in
[8] for network optimization. To reduce the effect of un-
reliable predictions in the early training stage, we simply
let the hyper-parameter α = α0ρ, where ρ is the training
progress changing from 0 to 1. And following MCC [15],

we use Deep Embedded Validation (DEV) [48] to select the
hyper-parameters and find that T = 10, α0 = 1.0, β = 0.1
works well on all datasets. Besides, the parameter sensitiv-
ity analysis is provided in section 4.3 to test the robustness
of SCDA. Each adaptation task is evaluated by averaging
the results of three random trials. Code of SCDA is avail-
able at https://github.com/BIT-DA/SCDA.

4.2. Results

Results on DomainNet are presented in Table 1. Ob-
viously, SCDA outperforms all the compared methods sig-
nificantly in terms of the average accuracy. Particularly, ap-
plying SCDA to CDAN and MDD improves their prediction
accuracy by 4.1% and 4.7% respectively. One interpretation
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Table 3. Accuracy (%) on Office-31 for UDA (ResNet-50). [Avg‡:
mean values except D↔W]
Method A→W D→W W→D A→D D→A W→A Avg Avg‡

ResNet-50 [13] 68.4 96.7 99.3 68.9 62.5 60.7 76.1 65.1
DANN [8] 82.0 96.9 99.1 79.7 68.2 67.4 82.2 74.3
JAN [26] 85.4 97.4 99.8 84.7 68.6 70.0 84.3 77.2
CAT [6] 91.1 98.6 99.6 90.6 70.4 66.5 86.1 79.7
ETD [18] 92.1 100.0 100.0 88.0 71.0 67.8 86.2 79.7
MCD [37] 88.6 98.5 100.0 92.2 69.5 69.7 86.5 80.0
SymNets [52] 90.8 98.8 100.0 93.9 74.6 72.5 88.4 83.0
TADA [44] 94.3 98.7 99.8 91.6 72.9 73.0 88.4 83.0
GVB-GD [5] 94.8 98.7 100.0 95.0 73.4 73.7 89.3 84.2
SCDA 94.2 98.7 99.8 95.2 75.7 76.2 90.0 85.3
CDAN [24] 94.1 98.6 100.0 92.9 71.0 69.3 87.7 81.8
CDAN+SCDA 94.7 98.7 100.0 95.4 77.1 76.0 90.3 85.8
MDD [51] 94.5 98.4 100.0 93.5 74.6 72.2 88.9 83.7
MDD+SCDA 95.3 99.0 100.0 95.4 77.2 75.9 90.5 85.9
MCC [15] 95.5 98.6 100.0 94.4 72.9 74.9 89.4 84.4
MCC+SCDA 93.7 98.6 100.0 96.4 76.5 76.0 90.2 85.7
DCAN [19] 95.0 97.5 100.0 92.6 77.2 74.9 89.5 84.9
DCAN+SCDA 94.8 98.2 100.0 94.6 77.5 76.4 90.3 85.8

Table 4. Ablation Study of SCDA on Office-31 (ResNet-50).
Method A→W D→W W→D A→D D→A W→A Avg
ResNet-50 68.4 96.7 99.3 68.9 62.5 60.7 76.1
+ SCDA (w/o LPDD) 91.3 98.6 99.8 92.2 69.2 68.6 86.6
+ SCDA (w/o LPDDs,t ) 91.8 98.4 100.0 92.5 71.4 70.8 87.5
+ SCDA (w/o LPDDs,s ) 92.2 98.6 100.0 94.1 72.8 72.6 88.3
+ SCDA (w/o LMI ) 92.6 98.7 100.0 94.4 74.1 73.4 88.9
+ SCDA 94.2 98.7 99.8 95.2 75.7 76.2 90.0

is that our method suppresses the features of irrelevant se-
mantics that may confuse the alignment process of CDAN
and MDD. The encouraging results demonstrate the superi-
ority of SCDA in processing complex datasets and its uni-
versality to existing DA methods.

Results on Office-Home are shown in Table 2, where we
achieve comparable and even better performance, compared
with these state-of-art DA methods. Moreover, our method
achieves extra gain of 5.5% and large improvements on Cl
→ Ar, Cl→ Pr, Cl→ Rw when applied to CDAN. The rea-
son is that the images in Cl are rather complicated, while
SCDA can purify the transferred knowledge by suppressing
the features of irrelevant semantics. And DCAN+SCDA
achieves the best performance of 73.1%. These improve-
ments validate the effectiveness of SCDA.

Results on Office-31 are summarized in Table 3. Obvi-
ously, we substantially obtain superior prediction accuracy
over other popular adaptation methods. Particularly, when
applying SCDA to MDD, we achieve the highest accuracy
of 90.5%. The outcomes show that SCDA is beneficial to
promote the adaptation capability, especially on complex
scenarios, e.g., A → D, D → A and W → A.

4.3. Analysis

Ablation Study. To investigate the efficacy of differ-
ent components of SCDA, we conduct thorough ablation
analysis on Office-31 based on ResNet-50: (1) SCDA (w/o
LMI ) denotes the variant of removing the mutual informa-

Source-only max
𝒞
ℒ"## SCDA CDANTarget Images m𝑖𝑛

𝒢
ℒ"##

Fan

Mug

Radio

Shelf

Fan

Mug

Radio

Shelf

Backpack

Toys

Flipflops

Toys

Figure 3. Concentration visualizations of the last convolutional
layer of different methods on the task Rw → Ar of Office-Home.
Here, the red font denotes the ground-truth labels, while the white
font represents the pseudo labels predicted by different methods.

tion maximization loss on target domain; (2) SCDA (w/o
LPDDs,s

) and SCDA (w/o LPDDs,t
) respectively denote

the variant of removing the pair-wise adversarial alignment
of prediction distributions within source domain and cross
domains; (3) SCDA (w/o LPDD) denotes the removal of
both LPDDs,s

and LPDDs,t
. The results are shown in Ta-

ble 4, where we can obviously see that full method SCDA
outperforms other variants. While SCDA (w/o LPDDs,t

)
suffers a obvious degradation of 2.5%, which indicates the
importance of transferring the common knowledge and sup-
pressing domain-specific knowledge for DA problems by
our loss LPDDs,t

. And SCDA is superior to SCDA (w/o
LPPAs,s

), because LPPAs,s
conduces to the constructing

of good teachers for target samples by learning the most
principal features for classification. Besides, through im-
proving the quality of pseudo labels for the paring process,
SCDA achieves better performance than SCDA (w/o LMI ).

Visual Explanations for Semantic Concentration. In
this section, we utilize the visualization technique in [38] to
visualize which region SCDA has concentrated on in the
adversarial process, which is shown in Fig. 3. We can
observe that the concentration on irrelevant regions signif-
icantly increases after maximizing the prediction distribu-
tion discrepancy loss LPDD, and then, the features of irrel-
evant/principal regions are suppressed/accentuated by min-
imizing the discrepancy, which verifies the aforementioned
micro explanations. Besides, the final results demonstrate
that our method indeed achieves the semantic concentration
for the critical parts in image classification.

Anti-jamming Ability Test. Since our method aims
to suppress the features of irrelevant semantics and accen-
tuate the features of principal parts, we conduct this ex-
periment to test its anti-jamming ability by adding Gaus-
sian noises with zero-mean to a batch of randomly selected
input images and then testing the sensitivity of different
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Figure 4. (a) is anti-jamming ability test of different methods on task W → A of Office-31 as the variance σ of added Gaussian noise
increasing from 0 to 10. (b) is the sensitivity of SCDA to parameters T and ϵ on tasks A → D and A → W. (c) and (d) are the sensitivity
of SCDA to parameters α0 and β on tasks A → D and A → W, respectively.

(a) ResNet-50 (b) SCDA (c) CDAN (d) CDAN+SCDA

Figure 5. The confusion matrices on target domain of different methods on the task A → D of Office-31. (Zoom in for clear visualization.)

methods as [47]. The results are illustrated in Fig. 4(a).
It can be clearly observed that the sensitivities of SCDA,
CDAN+SCDA and MDD+SCDA (dashed lines) are much
smaller and also grow more slowly compared to the corre-
sponding baseline methods (solid lines). Such phenomenon
reveals that SCDA can significantly suppress the features of
irrelevant noises, further proving the superiority of SCDA.

Confusion Matrix. The confusion matrices of different
methods are given in Fig. 5. For ResNet-50 and CDAN,
there exist numerous wrong predictions appearing in the
off-diagonal, e.g., most samples of “mug” are misclassified
into “bottle”. By contrast, we can clearly see quantitative
improvements of SCDA and CDAN+SCDA, the reason of
which can be explained as the pair-wise adversarial align-
ment in each class leads to more compact features and thus
reduces the class confusion. The encouraging results fur-
ther show the advantages of SCDA either as an independent
method or as a regularizer integrated into existing methods.

t-SNE Visualization. Fig. 6 visualizes the feature rep-
resentations learned by ResNet-50, CDAN, MDD, SCDA,
CDAN+SCDA and MDD+SCDA with t-SNE [27]. We can
clearly see that target data are not aligned well with source
data using original methods, while SCDA can learn highly
discriminative features and keep clear boundaries.

Parameter Sensitivity. Fig. 4(b), 4(c) and 4(d) show
the sensitivity of SCDA to temperature T , threshold ϵ and
two loss trade-offs α0 and β on tasks A → D and A → W.
The results in Fig. 4(c) and 4(d) show that SCDA is not that
sensitive when α0 ∈ {0.5, 0.75, 1.0} and β ∈ {0.1, 0.15}.

(a) ResNet-50 (b) CDAN (c) MDD

(d) SCDA (e) CDAN+SCDA (f) MDD+SCDA

Figure 6. The visualization of features learned by different meth-
ods on the task W → A of Office-31. Blue and red dots represent
source and target features, respectively.

In Fig. 4(b), SCDA is not sensitive to T , but sensitive to
ϵ (with ϵ = 0.8 working best). Because unreliable pseudo
labels will confuse the pairing if ϵ too small, and too large ϵ
will lead to the insufficient knowledge transfer.

5. Conclusion
In this paper, we propose Semantic Concentration for

Domain Adaptation (SCDA) to accentuate the features of
principal parts and suppress the features of irrelevant se-
mantics via the pair-wise adversarial alignment on the pre-
diction space within source domain and across domains.
Orthogonal to most DA methods, SCDA can be easily in-
tegrated as a regularizer to bring further improvements. Ex-
tensive experimental results verify the efficacy of SCDA.
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