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Abstract

Self-supervised monocular depth estimation has
achieved impressive performance on outdoor datasets. Its
performance however degrades notably in indoor environ-
ments because of the lack of textures. Without rich textures,
the photometric consistency is too weak to train a good
depth network. Inspired by the early works on indoor mod-
eling, we leverage the structural regularities exhibited in
indoor scenes, to train a better depth network. Specifically,
we adopt two extra supervisory signals for self-supervised
training: 1) the Manhattan normal constraint and 2) the
co-planar constraint. The Manhattan normal constraint
enforces the major surfaces (the floor, ceiling, and walls)
to be aligned with dominant directions. The co-planar
constraint states that the 3D points be well fitted by a plane
if they are located within the same planar region. To gen-
erate the supervisory signals, we adopt two components to
classify the major surface normal into dominant directions
and detect the planar regions on the fly during training.
As the predicted depth becomes more accurate after more
training epochs, the supervisory signals also improve and
in turn feedback to obtain a better depth model. Through
extensive experiments on indoor benchmark datasets, the
results show that our network outperforms the state-of-
the-art methods. The source code is available at https:
//github.com/SJTU-ViSYS/StructDepth.

1. Introduction

Inferring the dense 3D map from a single image is a
challenging problem without satisfactory solutions until the
booming of deep neural networks. With the deep convolu-
tional neural networks (CNNs), we can predict the accu-
rate depth from a single image, via training the network
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Figure 1. Our self-supervised monocular depth learning leverages
the structural regularities of indoor environments for training. The
aligned normal (with Manhattan directions) and the planar regions
provide extra losses in training and lead to better 3D structures at
inference.

with a lot of ground-truth depth labels. The recent self-
supervised learning paradigm does not require the ground-
truth depth, while still obtaining high-quality results on
benchmark datasets, using the photometric consistency as
the major supervisory signal. Nevertheless, when existing
self-supervised methods are trained on indoor images, the
quality of depth estimation degrades notably[51][3]. The
main reason is the lack of textures in indoor images. Unlike
outdoor scenes, the indoor scenes are full of texture-less re-
gions, such as white walls, ceilings, and floors. Without rich
textures, the photometric loss becomes too weak to train a
good depth model. Seeking stronger or extra supervisory
signals is therefore necessary for training a better depth net-
work.

There have been a few attempts. An optical-flow
field propagated from the sparse SURF[1] flow by a self-
supervised network, is used to guide training on texture-
less regions [51]. Another attempt [48] is to use an image
patch instead of individual pixels to compute the photomet-
ric loss and apply extra constraints to the depth within the
planar regions extracted from image segmentation. Though
those attempts improve the results, they did not fully ex-
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ploit the structural regularities presented in indoor environ-
ments, a valuable source of information for 3D learning.
The structural regularities, known as the Manhattan-world
model[6], describe that the scene consists of major planes
aligned with dominant directions. This simple yet effec-
tive high-level prior leads to a much better performance in
many vision tasks, such as indoor modeling[16][17][5], vi-
sual SLAM[50][12][43], and visual-inertial odometry[54],
but has not been applied to monocular depth learning.

In this work, we propose to apply the high-level prior of
indoor structural regularities to self-supervised depth esti-
mation as shown in Fig. 1. Specifically, we adopt two ex-
tra supervisory signals for training: 1) the Manhattan nor-
mal constraint and 2) the co-planar constraint. The Man-
hattan normal constraint enforces the major surfaces (the
floor, ceiling, and walls) to be aligned with dominant direc-
tions. The co-planar constraint states that the 3D points be
well fitted by a plane if they are located within the same
planar region. We add two extra components into the train-
ing process. The first one is Manhattan normal detection.
It classifies the major surface normal, computed from the
depth predicted by the network, into the directions associ-
ated with the vanishing points by an adaptive thresholding
scheme. The second one is planar region detection. We
fuse the color and the geometric information derived from
the depth and apply a classic segmentation algorithm to ex-
tract planar regions. During training, the two components
incorporate the estimated depth to produce supervisory sig-
nals on the fly. Though those signals may be noisy in early
epochs because of inaccurate depth, they will gradually im-
prove as the depth quality improves, and in turn benefit the
depth estimation.

We conduct experiments on the indoor benchmark
datasets: NYU-v2 [39], ScanNet[7], and InteriorNet[28].
The results show that our method outperforms the existing
state-of-the-art methods. Our main contributions are as fol-
lows:

1) A novel learning pipeline for self-supervised depth es-
timation leveraging structural regularities of indoor environ-
ments. To our best knowledge, this has not been presented
in previous work.

2) Two novel components providing extra supervisory
signals on the fly during the training process. Our compo-
nents can be used to train a multi-task network including
depth estimation, normal estimation, and planar region de-
tection in a self-supervised manner, although the latter two
tasks serve to train a better depth model in our current im-
plementation.

3) We set a new state-of-the-art in self-supervised indoor
depth estimation.

2. Related Work

Monocular depth estimation. Depth estimation from a
single image is an ill-posed problem that is known as ex-
tremely hard to be solved. Since the pioneer works[10,
9] employed the convolution neural networks (CNNs) to
regress the depth directly, a lot of CNN-based monocular
depth estimation methods have been proposed [31, 25, 24,
42, 15], producing impressively accurate results in bench-
mark datasets. Most of them are supervised methods that
require the ground-truth depth data for training.

Self-supervised depth learning without the ground-truth
depth has emerged as a promising alternative as acquiring
the ground-truth depth at a large scale is challenging. The
image appearance was firstly introduced in [19] to replace
the ground-truth depth as the supervisory signal to train a
depth network. One image in a stereo pair was warped
to the other view by the predicted depth. The difference
between the synthesized image and the real image, or the
photometric error, is then used for supervision. The idea
was further extended to monocular settings [52][19]. By the
careful design of network architectures[20], loss functions
[38], and online refinement [4], self-supervised approaches
obtain impressive results on benchmark datasets.

Despite achieving impressive performance on outdoor
datasets, such as KITTI[18] and Make3D[36], existing self-
supervised methods perform poorly in indoor datasets. The
reason is that the indoor scenes are full of texture-less re-
gions, such as white walls and ceilings, making the photo-
metric loss become too weak to supervise the depth learn-
ing. Zhou et al.[51] adopted an optical-flow-based training
paradigm supervised by the flow field from an optical flow
network, initialized from sparse SURF [1] correspondences.
The recent work [48] employed the more discriminative
patches instead of individual pixels to compute the photo-
metric loss, and also applied the piece-wise planar prior to
depth learning by assuming that the homogeneous-color re-
gions are planar regions. Though their approaches improve
the performance. They did not fully exploit the structural
prior of the environments. In addition, the planar-region
assumption in [48] does not hold for planes with the same
color, e.g. mutually perpendicular white walls. It therefore
leads to false planar regions deteriorating the depth model.

Planar region detection. Though powerful planar-region
detectors [29][44][49] have been proposed recently and
have shown high-quality results in complex indoor images.
Those CNN-based detectors require a huge number of plane
labels for training and are not suited for the self-supervised
learning scheme. Though detecting planes in the image
is challenging, if the depth is available, this task becomes
much easier[35][23]. Here, we detect the planar regions us-
ing a classic graph-based segmentation approach [11] simi-
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Figure 2. Our self-supervised monocular depth learning pipeline, which consists of three major components: a) DepthNet: The neural
network to be trained to predict the depth from a single image. b) Manhattan normal detection: It classifies the surface normal estimated
from depth prediction into dominant directions. c) Planar region detection: Both the color and geometric information are used to extract
planar regions by a graph-based segmentation. The planar region detection is kept updated with the improved depth during training
iterations. Two extra losses, Manhattan normal loss and co-planar loss, are used to train the network, as indicated by the red dot arrows.

lar to [48], while employing the additional geometric infor-
mation extracted from the depth estimated on the fly when
training. Though the depth may not be precise initially, it
will gradually improve as the training progresses such that
the segmentation will improve as well. With the additional
geometric information, our approach avoids false planar re-
gions that are indistinguishable by colors and produces less
over-segmentation on texture-rich planar regions.

Structural regularities in indoor environments. Indoor
scenes exhibit strong structural regularities, which can be
described as the “Manhattan world”. Namely, the scene can
be decomposed into major planes, where their normal vec-
tors are mutually orthogonal. These structural regularities
are valuable priors that have been applied to a wide range
of indoor 3D vision tasks, such as vSLAM[50][12][43],
VIO[54], and mapping[16][17][5]. In fact, exploiting the
structural prior of indoor scenes was probably the only geo-
metric way to infer the 3D information from a single image
in early days [8][26]. It is natural to think that structural reg-
ularities should also benefit the learning-based vision tasks
in indoor environments.

Wang et al. [40] propose to use the vanishing points
and lines to train a surface normal estimator which achieves
the state-of-the-art performance. Our work adopts a similar
spirit but differs from theirs in that our major task is depth
estimation, where the surface normal is just an intermedi-
ate result that serves for better training. In addition, our
depth network is trained in a fully self-supervised manner
and does not require the line map as the extra input. To
our best knowledge, our work is the first one incorporating
the structural regularities of indoor environments into self-
supervised monocular depth estimation.

3. Method

Our self-supervised depth learning pipeline is illustrated
in Fig. 2. It consists of three major components. The first
one is the depth network, which takes a single image as
the input and predicts a depth map. We use the same ar-
chitecture as in [48] for the depth network. Based on the
predicted depth, the other two components, Manhattan nor-
mal detection and planar region detection, are used to pro-
duce the supervisory signals leveraging the structural prior
of indoor environments. Manhattan normal detection aligns
the normal computed from the depth map with the dom-
inant orientations, estimated from the vanishing points in
the image. Planar region detection applies a graph-based
segmentation to detect the planar regions with the combina-
tion of color, normal, and plane-to-origin distance informa-
tion. Both Manhattan normal detection and planar region
detection may be inaccurate in the initial training epochs,
but they will improve in later epochs as the depth prediction
becomes better. The improved supervisory signals lead to a
better depth prediction as well.

In the following sections, we’ll describe how we ap-
ply the Manhattan normal constraint and the co-planar con-
straint in our training process.

3.1. Manhattan normal constraint

Dominant direction extraction. The structural regular-
ities of indoor environments imply that most indoor scenes
contain planar surfaces aligned with dominant directions.
The dominant directions can be estimated from the struc-
tural lines in the image. The intersection of a set of parallel
structural lines in the image is the vanishing point. Let v
be a vanishing point extracted from the 2D image. One of
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the dominant directions in the camera coordinate system is
computed as

η ∝ K−1v, (1)

where η ∈ R3 is a unit vector representing this dominant
direction and K is the camera intrinsic matrix. Note that
we need only two vanishing points to get all the dominant
directions, since the third dominant direction can be ob-
tained by the cross product. We apply the 2-Line searching
method [32] to extract the dominant directions from the im-
age. The dominant direction extraction is done only once
before training.

Both the extracted directions and their reverse directions
are considered to be the possible normal directions of the
major planes in the scene, such as the ceiling, the floor, and
the walls.

Surface normal estimation. To estimate the surface
normal, we first get the 3D coordinates Xp ∈ R3 of each
pixel p from the predicted depth by

Xp = D(p)K−1p. (2)

Here, D(p) denotes the depth predicted by the depth net-
work. Next, we adopt a differentiable point-to-normal
layer[45, 46, 22] to estimate the surface normal from the
3D points. Specifically, the normal np of a given pixel p
is calculated from a set of 3D points within a small neigh-
borhood centering on pointXp. The neighborhood is set as
7× 7 in our implementation as the previous work[45].

Manhattan normal detection. Given the surface nor-
mal prediction n, we propose the Manhattan normal detec-
tion to classify the surface normal that belongs to the dom-
inant planes. Our strategy is to compare the difference be-
tween the estimated normal vector np and each dominant
direction ηk by using a cosine similarity s(·, ·) and choose
the one with the best similarity, namely

nalignp ← argmax
ηk

s(np,η
k) (3)

wherenalignp is the aligned normal and the cosine similarity
is defined as s(np,ηk) = (np · ηk)/(‖np‖ · ‖ηk‖). Let the
maximum similarity of each pixel be smaxp . We define the
Manhattan mask as:

MM
p =

{
1 smaxp ≥ γ
0 smaxp < γ

(4)

where 1 and 0 represent Manhattan and non-Manhattan re-
gions respectively

During the training, we use an adaptive thresholding
scheme for detecting the Manhattan regions. We initially
set a relatively small threshold to allow more pixels being
classified into the Manhattan region because of inaccurate
normal estimates, and gradually increase the threshold since
the normal estimates become accurate in later epochs. In

Figure 3. The pipeline of planar region detection. Both the color
and geometric information are used to compute the dissimilarity
for planar region segmentation. The color dissimilarity is calcu-
lated by comparing the RGB colors. The geometry dissimilarity is
the sum of the normal and the plane-to-origin distance dissimilar-
ities. Based on the proposed dissimilarity, a graph-based segmen-
tation [11] is applied to extract the planar regions.

our implmentation, the threshold γ grows with the iteration
number N train linearly: γ = α ·N train + β, where α and
β are set to 1.633e−3 and 0.9 respectively.

Manhattan normal loss. We apply the Manhattan nor-
mal constraint within the Manhattan region by using the
aligned normal obtained in (3) as the supervisory signal.
The constraint enforces the estimated normal to be as close
to the aligned normal as possible, which is described by a
loss function Lnorm :

Lnorm =
1

Nnorm

∑
p

MM
p MP

p (1− s(np,nalignp )) (5)

where Nnorm is the number of pixels located in Manhattan
regions, andMP

p indicates whether the pixel p locates in the
planar regions, which we’ll introduce how to detect them in
the following section.

3.2. Co-planar constraint

Planar region detection. To enforce the co-planar con-
straint, we need to detect the piece-wise planar region cor-
rectly. Previous work [48] detects the planar regions by
assuming the regions with homogeneous colors are planar.
This simple strategy, however, usually leads to false detec-
tion or over-segmentation producing false supervisory sig-
nals. We propose a novel planar region detection method,
as shown in Fig. 3, which integrates both the color and the
online updated geometry information to extract the planar
areas more reliably.

The key idea is that we adopt a novel dissimilarity map
in the following graph-based segmentation. This dissimilar-
ity takes the color, normal, and the plane-to-origin distance
into consideration. We use the aligned normal to derive the
dissimilarity instead of the estimated normal since we found
the latter is too noisy. Let the 3D coordinates of a pixel p
to beXp. Suppose this 3D point lies in the plane where the
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Figure 4. The proposed planar region detection during training. From the left to the right columns: the input images, the groud-truth depth,
the estimated depth, the dissimilarity map, and the planar regions detected by only colors [48] and our method based on the color and
geometric information. First row: Two walls cannot be distinguished by colors, but can be separated by our method. Second row: The
floor is over-segmented by using only colors but can be correctly detected by our method.

normal is the aligned normal nalignp . The plane-to-origin
distance is computed as

dp = −XT
p n

align
p . (6)

Let q be the adjacent pixel of p. The normal dissimilarity
between them is defined as the Euclidean distance between
the two vectors:

Dn(p, q) = ‖nalignp − nalignq ‖. (7)

Denoting the minimum and maximum dissimilarities
among all the adjacent pixels by Dmax

n , Dmin
n respectively,

we define a [·] operator to normalize the dissimilarity via

[Dn(p, q)] = (Dn(p, q)−Dmin
n )/(Dmaxn −Dminn ). (8)

The plane-to-origin distance dissimilarity is defined as

Dd(p, q) = |dp − dq|. (9)

The geometric dissimilarity combines the normalized ver-
sion of the two dissimilarities as

Dg(p, q) = [Dn(p, q)] + [Dd(p, q)]. (10)

The color dissimilarity is computed as

Dc(p, q) = ‖Ip − Iq‖, (11)

where Ip, Iq are the RGB colors. Finally, we get the dissim-
ilarity combining both the color and geometric information
by

D(p, q) = max([Dc(p, q)], [Dg(p, q)]). (12)

Based on the dissimilarity, we apply the graph-based seg-
mentation [11] and filter out small areas to obtain the planar
regions following [48]. The advantage of using such a dis-
similarity definition can be seen in Fig. 4. Comparing with
using only the color information, our method avoids false
planar regions that cannot be distinguished by colors and
also over-segmentation caused by different colors.

Note that our planar region segmentation is be updated
during training. As the training progresses, the gradually
improved depth leads to better segmentation and vise versa.

Generate the co-planar depth. After detection of pla-
nar regions, we invoke the co-planar constraint to flatten the
3D points located within those plane regions. The first step
is plane fitting for 3D points within the planar region. We
obtain the plane parameters θ = −n/d ∈ R3 as previous
work[27, 48] by solving the least squares problem

XTθ = 1, (13)

where each column of X ∈ R3×N represents a 3D point
within the planar region. After that, the inverse depth ρp of
the pixel p by plane fitting is computed as

ρplanep = θTK−1p = 1/Dplane
p , (14)

where K represents the camera intrinsic matrix. We then
transform the inverse depth to the depth Dplane

p with the
maximum and minimum protection following [19, 20, 48].

Co-planar loss. The depth Dplane
p obtained from plane

fitting is then used as an extra signal to constrain the esti-
mated depth. The loss function is defined as

Lplane =
1

Nplane

∑
p

MP
p

∣∣Dp −Dplane
p

∣∣ , (15)

where Nplane is the number of pixels within the planar re-
gionsMP .

3.3. Total loss

We use the image patches instead of individual pixels to
compute the photometric loss as suggested in [48], which is
defined as the combination of L1 loss and a structure simi-
larity loss SSIM[53]:

Lphoto = ωLSSIM + (1− ω)‖It[N t
p ]− Is[N t→s

p ]‖1
LSSIM = SSIM(It[N t

p ], Is[N t→s
p ])

(16)
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Figure 5. Visualization of the NYUv2 results, better viewed by zooming on screen. The depth results are on the left columns, and the
surface normal results are on the right columns. The results of Monodepth2[20], P2Net[48], and the ground-truth depth / normal are
presented for comparison. Compared with P2Net[48] and Monodepth2[20], our method obtains better surface normal and depth estimation
as indicated by the red rectangles. Please refer to the Tab. 1 and Tab. 2 for the quantitative results.

Method Sup. RMS↓ AbsRel↓Log10↓ δ1 ↑ δ2 ↑ δ3 ↑
Hu et al.(2019)[21]

√
0.530 0.115 0.050 86.6 97.5 99.3

Yin et al.(2019)[47]
√

0.416 0.108 0.048 87.5 97.6 99.4
AdaBins(2021)[2]

√
0.364 0.103 0.044 90.3 98.4 99.7

Niklaus et al.(2019)[33]
√

0.300 0.080 0.030 94.0 99.0 100.0
PlaneNet(2018)[30]

√
0.514 0.142 0.060 81.2 95.7 98.9

PlaneReg(2019)[49]
√

0.503 0.134 0.057 82.7 96.3 99.0
MovingIndoor(2019)[51] × 0.712 0.208 0.086 67.4 90.0 96.8
Monodepth2(2019)[20] × 0.600 0.161 0.068 77.1 94.8 98.7
P2Net(2020)[48] × 0.561 0.150 0.064 79.6 94.8 98.6
Ours × 0.540 0.142 0.060 81.3 95.4 98.8
Ours + pp × 0.534 0.140 0.060 81.7 95.5 98.8

The first two blocks list the results of
supervised methods. The second block
contains the supervised methods with
plane detection. The third and fourth
blocks list the results of self-supervised
methods. ↓ indicates the lower the
better, ↑ indicates the higher the better.
Our approach performs best among the
self-supervised ones.

√
- supervised learning

× - self-supervised learning
pp - with post processing as in [19]

Table 1. Depth estimation results on NYUv2 dataset.

whereNp denotes the local window surrounding p. ω is the
relative weight of two parts and set as 0.85 the same as pre-
vious work[20]. We also adopt the edge-aware smoothness
loss

Lsmooth = |∂xρt| e−|∂xIt| + |∂yρt| e−|∂yIt|, (17)

where ρt ← ρt/ρt is the mean-normalized inverse depth,
and ∂x, ∂y are the gradients along the x and y directions.
The overall loss is defined as

L = Lphoto + λ1Lsmooth + λ2Lnorm + λ3Lplane, (18)

where λ1, λ2 and λ3 are set to 0.001, 0.05, 0.1, respectively.

4. Experimental results
We train our model on the NYUv2 dataset [39] us-

ing the data split the same as the previous work [51][48],

and evaluate our methods on NYUv2[39], ScanNet[7], and
InteriorNet[28] datasets. We detect the vanishing points on
the training images and skip 18 image sequences that fail to
detect valid vanishing points. This results in 21465 monoc-
ular training sequences and 654 images for validation. Each
monocular training sequence consists of five frames. Our
network model adopts the same architecture as [48].

We compare our method with the state-of-the-art meth-
ods of monocular depth estimation. Apart from depth esti-
mation, we also evaluate the performance of surface normal
estimation, and present ablation studies about the effective-
ness of the proposed supervisory signals, and using differ-
ent network architectures. More results can be found in the
supplementary material.
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Method Train Mean↓ 11.2◦ ↑ 22.5◦ ↑ 30◦ ↑
Surface normal estimation networks

3DP(2013)[13]
√

33.0 18.8 40.7 52.4
Fouhey et al.(2014)[14]

√
35.2 40.5 54.1 58.9

Wang et al.(2015)[41]
√

28.8 35.2 57.1 65.5
Eigen et al.(2015)[9]

√
23.7 39.2 62.0 71.1

Surface normal computed from the depth
GeoNet(2018)[34]

√
36.8 15.0 34.5 46.7

DORN(2018)[15]
√

36.6 15.7 36.5 49.4
MovingIndoor(2019)[51] × 43.5 10.2 26.8 37.9
Monodepth2(2019)[20] × 45.1 10.4 27.3 37.6
P2Net(2020)[48] × 36.6 15.0 36.7 49.0
Ours × 34.5 21.9 44.4 55.2
Ours + pp × 34.2 22.6 44.7 55.4

Table 2. Surface normal estimation results on NYUv2. We report
the results of surface normal estimation networks in the first block.
The normal results computed from the depth networks are in the
second and the third block, where ’

√
’ denotes supervised meth-

ods, and ’×’ denotes self-supervised ones. The normal computa-
tion is the same for all methods. Our method outperforms existing
monocular depth estimation methods in surface normal estimation.

Figure 6. ScanNet results with the trained model on NYUv2. The
holes in the ground truth are excluded from evaluation.

Method RMS↓ AbsRel↓ Log10↓ δ1 ↑ δ2 ↑ δ3 ↑
Monov2[20] 0.451 0.191 0.080 69.3 92.6 98.3
P2Net [48] 0.420 0.175 0.074 74.0 93.2 98.2
P2Net-finetune 0.412 0.172 0.073 74.3 93.5 98.4
Our 0.400 0.165 0.070 75.4 93.9 98.5

Table 3. ScanNet results with the trained model on NYUv2.

Figure 7. InteriorNet results with the trained model on NYU V2.

Method RMS↓ AbsRel↓ Log10↓ δ1 ↑ δ2 ↑ δ3 ↑
Monov2[20] 0.817 0.368 0.124 58.6 81.5 89.8
P2Net [48] 0.737 0.346 0.115 64.2 83.3 90.2
P2Net-finetune 0.736 0.340 0.114 64.4 83.3 90.3
Our 0.715 0.330 0.111 66.0 84.0 90.5

Table 4. InteriorNet results with the trained model on NYUv2.

4.1. Implementation details

The network is trained for a total of 50 epochs with a
batch size of 32 based on the pre-trained model [48]. We
use Adam optimizer and a multi-step learning rate reduc-
tion strategy. We set the initial learning rate as 10−4, then
decay it by 0.1 at the 26th epoch and 36th epoch. We per-
form random flipping and color augmentation during train-
ing. All images are firstly undistorted and cropped by 16
pixels from the border, and then scaled to 288 × 384 for
training. The camera intrinsic parameters come from the
official specification [39], and are adjusted to be consistent
with the image cropping and scaling. We follow the same
criteria used in [20, 48] for evaluation. Namely, we cap the
depth to 10m and use the median scaling strategy to avoid
the scale ambiguity of monocular depth estimation. The
evaluation metrics include root mean squared error (RMS),
absolute relative error (AbsRel), mean log10 error (Log10),
and the accuracy under threshold (δi < 1.25i, i = 1, 2, 3).

4.2. Results on NYUv2 Dataset

Depth estimation. The quantitative results of depth es-
timation are listed in Tab. 1. The results show that our
method outperforms MovingIndoor[51] and P2Net[48], the
state-of-the-art self-supervised methods on indoor monoc-
ular depth estimation, by a large margin. The results
also show that our method surpasses some supervised ap-
proaches. The depth estimation results are visualized in Fig.
5. We can see that our method obtains more accurate indoor
structures and smoother planes than existing methods.

Surface normal estimation. We also evaluate the sur-
face normal estimation as shown in Tab. 2. Our method
outperforms existing methods, and also some supervised
methods[13, 34, 15]. Results are also shown in Fig. 5.

4.3. Results on ScanNet and InteriorNet

We use the model trained only on NYUv2 to evaluate our
methods generalized to other indoor datasets. ScanNet[7]
is captured with a depth camera attached to a iPad, contain-
ing around 2.5M RGBD video captured in 1513 scenes. We
use the test split proposed by [48] which includes 533 im-
ages. The evaluation results are shown in Tab. 3 and Fig.
6. InteriorNet[28] is a synthetic dataset of indoor video
sequences containing millions of well-designed interior de-
sign layouts, furniture and object models. Because there is
no current official train/test split on InteriorNet for depth
estimation, here we selected 540 images randomly from the
HD7 data of the full dataset as test images. The evaluation
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results are shown in Tab. 4 and Fig. 7.
Although ScanNet and InteriorNet have not been used

for training, the results show that our method still general-
izes well and outperforms existing methods.

Methods RMS↓ AbsRel↓ Log10↓ δ1 ↑ δ2 ↑ δ3 ↑
P2Net[48] 0.561 0.150 0.064 79.6 94.8 98.6

P2Net-finetune 0.555 0.147 0.062 80.4 95.2 98.7
Coplanar-only 0.548 0.144 0.061 80.8 95.3 98.8
Normal-only 0.543 0.143 0.061 81.0 95.5 98.9
Our(full) 0.540 0.142 0.060 81.3 95.4 98.8

Table 5. Ablation study about using different supervisory sig-
nals. We evaluate the performances using only the Manhattan
normal constraint (Normal-only), using only the co-planar con-
straint (Coplanar-only), and the proposed method (Our(full)). We
also present the result of fine-tuned P2Net model (P2Net-finetune).
Note all the models were trained with the same number of epochs
for fair comparison.

4.4. Ablation study
To better understand the effectiveness of each part of our

method, we perform an ablation study by changing various
components of our model on NYU V2 dataset. We initialize
the network with the pre-trained model [48] and train it with
the proposed supervisory signals. The results are shown in
Tab. 5. Either the Manhattan normal loss or the co-planar
loss leads to depth estimations better than that of the orig-
inal and the original-finetune methods. Incorporating them
together leads to the maximum gain in performance.

We also test our method using different network architec-
tures. As shown in Tab. 6, using the proposed supervisory
signals, both models are improved, indicating our method is
universal to different network architectures. But the results
based on Monodepth2 are worse than those based on P2Net.
This is largely due to the patch-based photometric loss that
is better for texture-less regions as suggested in [48].

4.5. Planar-region detection in training
We show the intermediate planar region detection results

during training in Fig. 8. The results show that the planar
region segmentation gradually improves with the updated
depth and normal estimates. By contrast, the color-only
method produces false planar regions as indicated by the
red rectangles.

Train RMS↓ AbsRel↓ Log10↓ δ1 ↑ δ2 ↑ δ3 ↑
Using the Monodepth2 [20] architecture

Original 0.600 0.161 0.068 77.1 94.8 98.7
Original-finetune 0.598 0.159 0.067 77.5 94.9 98.7
Ours 0.564 0.151 0.065 79.1 95.0 98.8

Using the P2Net [48] architecture
Original 0.561 0.150 0.064 79.6 94.8 98.6
Original-finetune 0.555 0.147 0.062 80.4 95.2 98.7
Ours 0.540 0.142 0.060 81.3 95.4 98.8

Table 6. Ablation study about using different network architec-
tures. Our extra training losses improves both models, indicating
our method is universal to different architectures.

Figure 8. First row: The planar regions detected by the color-only
method [48]. Bottom rows: The estimated depth, surface normal
and segmentation results at different epochs on NYUv2. Our seg-
mentation results gradually improve as the training progresses.

5. Limitation
We discuss the limitations of our method. The first limi-

tation is that extracting dominant directions highly relies on
the Manhattan world assumption. It may not work well in
indoor scenes with irregular layouts containing slant planes.
Possible solutions include using a relaxed version of Man-
hattan world assumption as in [37][54], or directly using
the estimated direction from each detected vanishing point
to derive the normal constraint. In other words, those dom-
inant directions are not restricted to be mutually perpendic-
ular. The second limitation is that the low quality of initial
depth should be avoided. As our planar region detection re-
lies on depth information, the low depth quality will deterio-
rate the segmentation results and generate false supervisory
signals, which in turn prevent the network from converg-
ing to a good model. Our solution is to use a pre-trained
depth model or train the model only with photometric and
smoothness losses in early epochs. It leaves open to de-
sign a better planar region detector given low-quality initial
depth estimates.

6. Conclusion
In this paper, we propose to leverage the structural reg-

ularities of indoor environments for monocular depth esti-
mation. Two extra losses, Manhattan normal loss and co-
planar loss, are used to supervise the depth learning. Those
supervisory signals are generated on the fly during training
by Manhattan normal detection and planar region detection.
Our method achieves the state-of-the-art result on indoor
benchmark datasets.
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