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Abstract

We address the task of Re-Identification (Re-ID) in multi-
target multi-camera (MTMC) tracking where we track mul-
tiple pedestrians using multiple overlapping uncalibrated
(unknown pose) cameras. Since the videos are tempo-
rally synchronized and spatially overlapping, we can see a
person from multiple views and associate their trajectory
across cameras. In order to find the correct association
between pedestrians visible from multiple views during the
same time window, we extract a visual feature from a track-
let (sequence of pedestrian images) that encodes its simi-
larity and dissimilarity to all other candidate tracklets. We
propose a inter-tracklet (person to person) attention mecha-
nism that learns a representation for a target tracklet while
taking into account other tracklets across multiple views.
Furthermore, to encode the gait and motion of a person,
we introduce second intra-tracklet (person-specific) atten-
tion module with position embeddings. This second module
employs a transformer encoder to learn a feature from a se-
quence of features over one tracklet. Experimental results
on WILDTRACK and our new dataset ‘ConstructSite’ con-
firm the superiority of our model over state-of-the-art ReID
methods (5% and 10% performance gain respectively) in
the context of uncalibrated MTMC tracking. While our
model is designed for overlapping cameras, we also obtain
state-of-the-art results on two other benchmark datasets
(MARS and DukeMTMC) with non-overlapping cameras.

1. Introduction
Multi-Target Multi-Camera (MTMC) tracking [22, 37]

relies deeply on the ability to associate people between mul-
tiple cameras to determine the position of each person over
time. Depending on the situations, the cameras may be syn-
chronized, calibrated (known position) or have overlapping
views. In this work, we focus on the case where cameras
are synchronized with overlapping views, but the calibra-
tion information is not available. Our aim is to develop a
method that can perform association of pedestrian trajecto-
ries across cameras without using any calibration informa-

Camera 1 Camera 2

Camera 3 Camera 4

Figure 1: Multi-target multi-camera tracking with over-
lapping views. When the target person is seen from multi-
ple synchronized cameras (views), identifying the person is
feasible by finding the similarities and dissimilarities across
multiple views. Note that the geometry information such as
the position of each camera may not be known.

tion about the cameras (shown in Figure 1).
In order to develop such a method for data associa-

tion across uncalibrated cameras, we need to extract a dis-
criminative feature for each person over a sequence of im-
age patches (tracklet) and perform feature matching across
tracklets in different cameras. This process we have de-
scribed is a form of the Re-Identification (Re-ID) prob-
lem [71]. In the time-synchronized MTMC scenario, the
Re-ID problem is simplified since we only need to match
pedestrians appearing in multiple cameras during the same
time window. Within this time window, we would like to
extract visual features that are both representative and dis-
criminative (sufficiently different from other pedestrians in
the same view) so that we can match people across camera
views.

To learn both a representative and discriminative visual
feature for robust person association across views, we pro-
pose a novel video-based Re-ID model using Transform-
ers [50]. Since attention models [63] has the ability to learn
and embed the similarity and dissimilarity between differ-
ent synchronized tracklets from overlapping views, it can be
used to learn representative and discriminative visual fea-
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tures. We use attention models in two ways: (1) we intro-
duce an inter-tracklet attention model to learn the correla-
tion between tracklets across cameras and (2) we introduce
an intra-tracklet attention module (before the inter-tracklet
attention model) to learn a person-specific motion and ap-
pearance feature.

In order to evaluate our Re-ID method for MTMC track-
ing, we use a construction site dataset (which we call Con-
structSite) provided by a construction company. Videos in
the dataset are recorded in a construction site with unknown
camera positions. Recorded with four synchronized cam-
eras, this dataset has 88 videos (3-minute long) where each
synchronized camera has 22 videos. As mentioned above,
our Re-ID method is designed intentionally for overlapping,
time synchronized, uncalibrated cameras. We also per-
form experiments on two other public benchmark datasets
(MARS and DukeMTMC) with non-overlapping cameras.
The contributions of this paper are highlighted below:
1. We introduce a transformer-based inter-tracklet attention

module that computes a discriminative feature represen-
tation by taking into account all other time synchronized
tracklets across all camera views.

2. In order to learn a person-specific motion and appear-
ance feature, we introduce an transformer-based intra-
tracklet attention module to learn a compact representa-
tion for each tracklet.

3. We show superior Re-ID performance in the time syn-
chronized uncalibrated setting. Furthermore, we apply
our method to the case of non-overlapping cameras. We
show how our method is able to generalize to harder sce-
narios while also advancing the state of the art.

2. Related Works

Re-Identification (Re-ID). Re-ID can be categorized into
image-based and video-based methods. Image-based per-
son Re-ID [3, 6, 7, 19, 25, 26, 27, 29, 39, 41, 43, 46, 54, 55]
typically focuses on matching images with viewpoint and
pose variations, or those with background clutter or occlu-
sion. Most of video-based methods use optical flow [5, 9,
32, 64], recurrent neural networks (RNNs), temporal pool-
ing [69], or spatial-temporal attention to model the tempo-
ral information. On the other hand, several attention-based
methods [25, 41, 43] are further proposed to focus on learn-
ing the discriminative image features. Compared with tem-
poral pooling [69] which assigns the same weights to all
frames, prior attention-based methods [13, 23, 31, 64, 73]
learn the weight of different frames or parts from a static
perspective, i.e. considering the spatial attention and tem-
poral attention separately. Yet, in comparison to prior work
regarding attention models (mostly with single-head self-
attention), our developed model using transformers is able
to learn more discriminative features (person to person and

person-specific) with a series of multi-head self-attention
modules. This is well adapted to the MTMC tracking with
overlapping camera views.

Multi-target multi-camera (MTMC) tracking. In terms
of MTMC tracking, one has to address two distinct but
closely related research problems: 1) Detection and track-
ing of targets within a single camera, known as single cam-
era tracking(SCT); 2) Re-ID of targets across multiple cam-
eras. That is, MTMC tracking can be regarded as the com-
bination of SCT within cameras and Re-ID with spatial-
temporal information to connect target trajectories across
cameras. While previous Re-ID work achieves promis-
ing performance, adapting Re-ID into the MTMC track-
ing pipeline is a challenging task. With the recent de-
velopment in Re-ID, a number of MTMC tracking meth-
ods [22, 30, 37, 66, 68] adopting Re-ID technology have
been proposed. In [37], Ristani et al. learn the feature for
both MTMC tracking and Re-ID with a convolutional neu-
ral network. In [68], Zhang et al. obtain promising results
with simple hierarchical clustering and Re-ID feature. In
[22], Li et al. utilize occlusion and orientation status in the
Re-ID model which leads to an improved MTMC tracking
performance. However, few of the recent Re-ID works ap-
ply MTMC tracking with overlapping cameras. As a com-
plement, our work demonstrates the use of Re-ID model for
MTMC tracking in both overlapping and non-overlapping
scenarios.

Single-camera multi-object tracking (SCT). With the
advancements of object detection, tracking-by-detection
framework is widely used in single-camera multi-object
tracking, where the detection module is followed by data as-
sociation across frames. To solve the data association prob-
lem, prior work can be categorized into offline and online
methods. Offline methods [1, 10, 38, 40, 47, 48, 49, 51, 56]
attempt to adopt global optimization with the access of data
of the entire sequence. On the other hand, online methods
[2, 8, 14, 15, 42, 45, 53, 57, 58, 59, 60, 62, 67] solve data as-
sociation given only data up to the current frame. As the fo-
cus of this paper is to improve the Re-ID model for MTMC
tracking across cameras, we use a baseline SCT approach
– DeepSort [59] to formulate tracklets in each camera for
simplicity. Although, the single-camera tracking approach
used in our pipeline can be replaced with other approaches.

3. Dataset

3.1. Previous datasets

Current person Re-ID datasets have significantly pushed
forward the research on person Re-ID. As shown in Table 1,
MSMT17 [55], DukeMTMC-reID [35, 72], CUHK03 [24],
and Market1501 [70] involve large numbers of cameras and
identities. The extended datasets from Market1501 and
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Table 1: Publicly available benchmarks for person image-signature-based Re-ID, video-based MTMC tracking, and MTMC
Overlap datasets with overlapping cameras. We only list commonly used datasets.

Dataset # cameras Overlapping Video Geometry #bboxes #IDs Target

Re-ID

DukeMTMC-reID [35, 72] 8 ✗ ✗ ✗ 36,411 1,812 pedestrian
Market1501 [70] 6 ✗ ✗ ✗ 32,668 1,501 pedestrian
MSMT17 [55] 15 ✗ ✗ ✗ 126,441 4,101 pedestrian
CUHK03 [24] 5 ✗ ✗ ✗ 14,097 1,467 pedestrian

MTMC-nonoverlap MARS [69] 6 ✗ ✓ ✗ 1,191,003 1,261 pedestrian
DukeMTMC [35, 61] 8 ✗ ✓ ✗ 126,441 1,812 pedestrian

MTMC-overlap

Laboratory [12] 4 ✓ ✓ ✓ 476 6 pedestrian
Terrace [12] 4 ✓ ✓ ✓ 1,023 9 pedestrian

Passageway [12] 4 ✓ ✓ ✓ 226 13 pedestrian
Campus [65] 4 ✓ ✓ ✓ 240 25 pedestrian

WILDTRACK [4] 7 ✓ ✓ ✓ 66,626 313 pedestrian
ConstructSite (ours) 4 ✓ ✓ ✗ 4,806,564 440 worker

DukeMTMCreID are also available for video-based Re-ID
and MTMC, which are MARS [69] and DukeMTMC [35,
61], respectively. Though the trajectory information is
available in MARS, the original videos and camera geom-
etry are unknown to the public. In contrast, DukeMTMC
provides camera network topology so that the relative loca-
tion between cameras among cameras can be established.
However, the cameras in DukeMTMC and MARS are non-
overlapping. Again, as “overlap” datasets we refer to the
ones whose camera’s fields of view strictly overlap. The
three sequences shot at the EPFL campus [12]: Laboratory,
Terrace, and Passageway, as well as Campus [65] are over-
lapping multi-camera datasets. These four datasets have a
small number of total identities and are relatively sparsely
crowded. As we can see from Table 1, Laboratory, Ter-
race, Passageway, and Campus are of small size. WILD-
TRACK [4] improves upon other overlapping datasets as it
has a larger number of annotated identities that allow for
developing deep learning-based MTMC approaches.

3.2. ConstructSite

In order to evaluate our model in a different scenario (not
campus with pedestrians walking as in prior datasets), we
develop a new MTMC dataset called ConstructSite. This
dataset contains 88 videos, each of which with 3 minutes
long. ConstructSite is captured by 4 synchronized cameras
(each camera has 22 videos). These videos are recorded in
a construction site, where workers are wearing work-wears
instead of casual-wears and performing a variety of actions
in addition to walking such as squating, kneeling, carrying.
Some examples from the dataset are presented in the Fig-
ure 2. We detail the information on hardware and annota-
tion as below.

Hardware. The dataset is recorded using 4 statically posi-
tioned HD cameras. In particular, we use four GoPro Hero
7 cameras to record the videos and downsample the videos
into resolution 1352× 760 pixels with the frame rate of 30

Figure 2: Examples of workers in the ConstructSite. The
action type of each worker spans walking, standing, squat-
ing, kneeling, and etc.

(FPS). The synchronization accuracy between the four cam-
eras is about 100 ms.

Annotation. As stated earlier, there are 88 videos totally
in the dataset while each camera has 22 videos. That is,
there are 22 synchronized videosets. There are around 15 to
20 unique identities (IDs) of workers for each videoset and
around 50,000 bounding-boxes for each video. We would
like to note that, all of the bounding-boxes in this dataset
are manually labelled. This results in 4,806,564 bounding-
boxes, each of which is with an associated ID.

4. Approach
To achieve MTMC tracking in the overlapping scenario,

we propose our video-based Re-ID model to associate the
tracklets across cameras during the same time window. The
input tracklets can be ground-truth tracklets in each cam-
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Figure 3: Our proposed video-based Re-ID model for MTMC tracking. Our model is composed of three modules: the
feature encoder E, intra-tracklet attention module Hintra, and inter-tracklet attention module Hinter. To extract the visual
features from the k tracklet sets each with T sampled images, we apply the feature encoder E to obtain the k × T features.
With the use of intra-tracklet attention module Hintra, we derive the newly attended k × T features within tracklets. Finally,
with the use of inter-tracklet attention module Hinter, we are able to derive the k representative features across these k
tracklets during the same time window.

era but without cross-camera association or output tracklets
from a real-world single-camera tracking method. Given a
cropped image sequence (tracklet) of a pedestrian, our goal
is to learn a model to extract a representative and discrim-
inative feature representation that enables video-based per-
son Re-ID across cameras. Specifically, we have a tracklet
with the sampled frame set X = {xi}Ti=1 along with the
associated label y, where xi ∈ RH×W×3 and y ∈ N repre-
sent the identity for this tracklet. There are several ways to
sample these T frames from a tracklet in the window size
W in order to handle the long-range temporal structure. To
balance speed and accuracy, we adopt the restricted random
sampling strategy [23, 52].

As shown in Figure 3, our model is composed of three
modules: (1) the feature encoder E; (2) the intra-tracklet
attention module Hintra, and (3) the inter-tracklet attention
module Hinter. First, to extract the visual features from the
tracklet set X , we apply the feature encoder E and obtain
a feature set F = {fi}Ti=1 for one tracklet, where fi ∈ Rd

(d denotes the dimension of the visual feature). Second,
the intra-tracklet attention module Hintra takes F with T
sequential features and T learnable position embeddings as
input and produces a visual feature u representing the track-
let, where u ∈ Rd (d denotes the dimension of the fea-
ture). Third, the inter-tracklet attention module Hinter takes
U = {ui}kj=1 from all k tracklets and produces the updated
features V = {vi}kj=1 for these tracklets. The backbones
of both Hintra and Hinter employ transformer encoders.
With the joint use of intra-tracklet and inter-tracklet atten-
tion modules, our model produces a representative feature
for each tracklet during the window size W . We will detail

each attention module in the following sections.
To perform video-based Re-ID across cameras in the

testing phase, our framework encodes each tracklet into a
representation, which is later applied for matching the near-
est ones via nearest neighbor search for Re-ID. We addi-
tionally use Hungarian algorithm [20] for MTMC tracking
during inference scenario.

4.1. Preliminary

The transformer encoder (shown in Figure 4) used in
both of our attention modules is inspired by the Trans-
former [50], which features a series of encoders and de-
coders of an identical structure. Every encoder has a multi-
head self-attention layer (MHSA) and a feedforward net-
work layer.

Standard self-attention. For the sake of completeness, we
briefly review the self-attention module [63]. A typical self-
attention layer transforms the input features into three in-
puts: query Q, key K, and value V by matrix multiplication
with transforming matrix. The softmax layer will take the
result of the multiplication of Q and K, and produce the at-
tention weights. The target attention result is then produced
from the result of the final matrix multiplication of softmax
and the V .

Multi-head self-attention. To observe both temporal and
concept information from the input features Z = {zm}Mm=1

, we advance the idea of multi-head self-attention. As de-
picted in Fig 4, we have the entire attention module H com-
prising of N self-attention modules (i.e., the head number
equals N ), and each of them is developed to derive the at-
tention features in N subspaces. We first transform the in-
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Figure 4: Illustration of multi-head attention in the trans-
former encoder. With N different single-head attention
blocks (each with a projection matrix layer), self-attention
can be performed in different subspaces (dimension d for
each) for capturing diverse visual concepts. We concatenate
the outputs O1:N from all attention blocks and obtain the
joint attention result at the output of the final linear trans-
form layer.

put W into N subspaces using the N projection layers Mn

(Rdn ← Rd) where n denotes the projection layer number
(n = 1 ∼ N ) and dn denotes the subspace dimension. To
produce the finalized results from all of the N subspaces,
the introduced a linear projection layer MR to derive the fi-
nal attended features R = {rm}Mm=1, where rk ∈ Rd (same
dimension as the original input features Z = {zm}Mm=1).
The above procedure can be formulated as:

R = MR · concat(O1:N ),

where concat means we concatenate the outputs O1:N from
all of the N self-attention blocks.

4.2. Intra-tracklet attention

To capture feature of the entire motion sequence of a
person and appearance temporally, we introduce the intra-
tracklet attention module Hintra using transformer encoders
to learn a representative feature of each tracklet. Following
[11, 34], we employ the standard learnable 1D position em-
beddings denoted: P = {pi}Ti=1 for each of the input T
visual features. The intra-tracklet attention module Hintra

takes F = {fi}Ti=1 with T sequential features and T learn-
able position embeddings as input, which can be denoted
as:

F ′ = F + P. (1)

It then produces a visual feature u representing the track-
let, where u ∈ Rd (d denotes the dimension of the visual
feature):

u = Hintra(F
′). (2)

Since we have k tracklets during the given time window size
W , we will have k feature set as: U = {uj}kj=1 from the
feature set: {Fj}kj=1.

4.3. Inter-tracklet attention

Furthermore, to learn and embed the similarity and dis-
similarity between all these synchronized tracklets from
overlapping views, we further apply the inter-tracklet atten-
tion module Hinter and derive the finalized representation
for each tracklet. Specifically, the inter-tracklet attention
module Hinter takes U = {ui}kj=1 from all k tracklets and
produces updated features V = {vi}kj=1. That is,

V = Hinter(U). (3)

Note that, the introduced inter-tracklet attention module
Hinter aims to attend at other tracklets from multiple views
during the same time window. That is, the updated visual
features will depend on other tracklets locally, which, as a
result, helps the data association in the tasks of Re-ID and
MTMC tracking. The produced feature v for each tracklet
will finally be used for matching across multiple views.

4.4. Full objective

To better utilize the label information to update our entire
network, we first employ classification loss on the output
feature vector w, by computing the negative log-likelihood
between the predicted label ỹ ∈ RK and the ground truth
one-hot vector ŷ ∈ NK . The identity loss Lid can be repre-
sented as

Lid = −E(x,y)∼(X,Y )

K∑
k=1

ŷk log(ỹk), (4)

where K is the number of identities (classes). To further en-
hance the discriminative property, we impose a triplet loss
Ltri, which aims to maximize the inter-class discrepancy
while minimizing intra-class distinctness. Specifically, for
each input image x, we sample a positive image xpos with
the same identity label and a negative image xneg with dif-
ferent identity labels to form a triplet. The distances be-
tween x and xpos/xneg can be computed as:

dpos = ∥vx − vxpos∥2, (5)

dneg = ∥vx − vxneg
∥2, (6)

where vx, vxpos , and vxneg represent the feature vectors of
images x, xpos, and xneg, respectively. We then have the
triplet loss Ltri defined as

Ltri = E(x,y)∼(X,Y ) max(0,m+ dpos − dneg), (7)

where m > 0 is the margin used to define the difference
between the distance of positive image pair dpos and the
distance of negative image pair dneg. Hence, the total loss
L for training our proposed network is summarized as:

Ltotal = Lid + Ltri. (8)
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Table 2: Comparison of video-based Re-ID on the ConstructSite, WILDTRACK, and DukeMTMC dataset. The
number in bold represents the best result. * indicates the code is not released or available.

Method Source
ConstructSite WILDTRACK Mars DukeMTMC

Synchronized & overlapping Non-synchronized & non-overlapping

Rank1 Rank5 mAP Rank1 Rank5 mAP Rank1 Rank5 mAP Rank1 Rank5 mAP

ResNet-50 [18] CVPR16 69.7 94.4 73.1 70.4 88.9 57.5 84.3 93.8 79.1 94.5 98.3 92.7
ETAP-Net [61] CVPR18 72.3 93.4 71.3 71.2 88.7 58.4 80.8 92.1 67.4 83.6 94.6 78.3
STA [13]* AAAI19 - - - - - - 86.3 95.7 80.8 96.2 99.3 94.9
GLTR [21] ICCV19 78.2 94.6 75.1 75.8 89.2 59.7 87.0 95.8 78.5 96.2 99.3 93.7
TKP [17] ICCV19 77.2 94.0 73.8 77.6 91.3 59.6 84.0 93.7 73.3 94.0 - 91.7
COSAM [44] ICCV19 76.3 94.4 73.1 77.5 91.2 59.3 84.9 95.5 79.9 95.4 99.3 94.1
NVAN [28] BMVC19 85.0 95.4 78.0 80.4 92.6 66.3 90.0 - 82.8 96.3 - 94.9
VKD [33] ECCV20 85.6 96.0 80.1 79.9 92.5 66.1 89.4 96.8 83.1 95.2 98.6 93.5
AP3D [16] ECCV20 85.4 95.8 80.5 80.3 92.1 67.0 90.1 - 85.5 96.3 - 95.6

Ours (L = 1) 94.2 99.1 90.8 85.1 96.5 71.6 90.2 96.5 83.2 95.7 99.1 94.9
Ours (L = 3) default 94.7 99.3 91.0 85.5 96.8 72.0 91.4 97.0 83.8 96.4 99.4 95.2
Ours (L = 5) 94.5 99.2 91.1 85.4 96.9 71.7 90.5 97.2 84.2 96.5 99.4 95.3

The entire framework which includes feature encoder E,
intra-tracklet attention Hintra, and inter-tracklet attention
Hinter is trained and updated end-to-end using this loss.

5. Experiments
5.1. Datasets

To evaluate our Re-ID method, we conduct experi-
ments on two datasets with overlapping cameras: our
ConstructSite and WILDTRACK [4], and two benchmark
datasets with non-overlapping cameras: MARS [69] and
DukeMTMC-VideoReID [35, 61].

ConstructSite. Details of ConstructSite can be found in
Section 3.2. In addition, we split the 22 videosets (88
videos) into two halves for training/testing, and each split
has 11 videosets (44 videos). For training and testing pur-
poses, we prepare the ground-truth associated tracklets for
each camera.

WILDTRACK [4]. The Wildtrack dataset includes 400
synchronized frames from 7 cameras. These 7 cameras cap-
ture images of pedestrians, and the bounding boxes are an-
notated 2 frames per second (fps). The dataset has 313 iden-
tities of pedestrians entirely, and we split the first 250 for
training and the remaining 63 for testing after we crop the
person images accordingly.

MARS [69]. MARS is a large-scale video-based person re-
identification benchmark dataset with 17,503 sequences of
1,261 identities and 3,248 distractor sequences. The train-
ing set contains 625 identities, and the testing set contains
636 identities

DukeMTMC-VideoReID [61]. The DukeMTMC-
VideoReID dataset is another large-scale benchmark
dataset with 4,832 tracklets of 1,812 identities for video-
based person Re-ID. It is derived from the DukeMTMC

dataset [35]. The dataset is divided into 408, 702 and 702
identities for distraction, training, and testing, respectively.

5.2. Implementation details

We resize each cropped person image to 256 × 128 in
MARS, DukeMTMC, and WILDTRACK, while to 224 ×
224 (square) for ConstructSite. This is due to the fact that
images of person in ConstructSite have several other ac-
tions such as squating down or cross-legged sitting. The
sampling number T is set as 8 for each tracklet following
[23, 52]. The window size for MTMC tracking is set as
W=30. We use ResNet-50 pre-trained on ImageNet as our
backbone of feature encoder E. The other two attention
modules are composed of L-layer of transformer encoders
while L is selected as 3. We set the number of heads N as
12 for our multi-head attention of the transformer encoders
in Hinter and Hintra. The dimension dn of each head is
set as 256. The output dimension of E, Hinter, and Hintra

are 2048. These two attention modules are random initial-
ized. The learning rate is set as 1e−4 with Adam optimizer
in all of our experiments. The batch size is the same as k
which is set as 32 for traning DukeMTMC and MARS, yet
is variant to window size for ConstructSite (k ≤ 20) and
WILDTRACK (k ≤ 30), respectively.

5.3. Evaluation settings

We evaluate our model on two experimental settings:
video-based Re-ID and MTMC tracking. As we focus only
on the tracking algorithm, we use the ground-truth detection
bounding boxes for both Re-ID and MTMC tracking. More
details are presented as follows.

Video-based Re-ID. During evaluation, we test the model
using ground-truth tracklets without IDs across cameras as
inputs. That being said, there is no need to define window
size (W ) in this setting as we test the entire tracklet for each
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Table 3: Comparison of MTMC tracking on the Con-
structSite. The default window size for DeepSort [59] is
set as 30.

Method ConstructSite

IDF1 IDP IDR

GT tracklets+ ResNet-50 [18] 66.50 65.42 66.71
GT tracklets+ NVAN [28] 84.72 87.15 82.63
GT tracklets+ VKD [33] 85.20 84.74 86.91
GT tracklets+ AP3D [16] 84.48 83.64 85.34
GT tracklets+ Ours 92.38 91.31 93.47

DeepSort [59] + ResNet-50 [18] 30.05 21.84 40.16
DeepSort [59] + NVAN [28] 49.16 40.01 56.58
DeepSort [59] + VKD [33] 47.35 36.48 51.31
DeepSort [59] + AP3D [16] 47.56 38.04 53.50
DeepSort [59] + Ours 62.69 61.97 63.44

Table 4: Ablation studies on the attention modules for
video-based Re-ID. The experiments are conducted on
WILDTRACK.

Method WILDTRACK

Rank1 Rank5 mAP

Ours 85.5 96.8 72.0
Ours w/o pos. embeddings 84.2 96.3 71.4
Ours shuffling T sampled images 83.9 96.5 71.5
Ours w/o Hintra 82.7 94.1 69.4
Ours w/o Hinter 78.5 90.2 67.3

identity in each camera. k denotes the entire tracklets in the
testing set or each video, i.e., 625 for MRS and 1110 for
DukeMTMC-VideoReID. We employ the standard metrics
as in most video-based person Re-ID literature, which are
the cumulative matching curve (CMC) used for generating
ranking accuracy, and the mean Average Precision (mAP).
We report rank-1, rank-5 accuracy and mean average preci-
sion (mAP) for evaluation.

MTMC tracking. For MTMC tracking, we first use the
single-camera tracking methods with the default window
size on the bounding boxes to derive the candidate track-
lets for each camera. The number of all tracklets k in the
given time window depends on W . Then, we apply the Re-
ID model to associate them and across cameras. On the
other hand, there is no W for using the ground-truth can-
didate tracklets. We use ID measures of performance [36]
which indicate how well a tracker identifies where the target
is. IDP (IDR) is the fraction of computed (true) detections
that are correctly identified. IDF1 is the ratio of correctly
identified detections over the average number of true and
computed detections. ID measures first compute a 1-1 map-
ping between true and computed identities that maximizes
true positives and then compute the ID scores.

Table 5: Ablation studies on the attention modules for
MTMC tracking (GT tracklets). The experiments are
conducted on ConstructSite.

Method ConstructSite

IDF1 IDP IDR

Ours 92.38 91.31 93.47
Ours w/o pos. embeddings 90.21 91.25 92.41
Ours shuffling T sampled images 90.37 91.12 91.53
Ours w/o Hintra 88.77 88.12 89.35
Ours w/o Hinter 80.49 80.26 80.25

5.4. Results and comparisons

Re-ID. We compare our Re-ID model with one base-
line method (ResNet-50 [18]) and nine state-of-the-
art video-based Re-ID approaches, including ETAP-
Net [61], STA [13], GLTR [21], TKP [17], COSAM [44],
NVAN [28], VKD [33], AP3D [16]. We evaluate our model
and these methods on the four datasets and the results is
presented in the Table 2. Yet, for the evaluation on the Con-
structSite and WILDTRACK, we only run the experiments
for those methods whose codes are available. From the ta-
ble, several phenomenons can be observed which we sum-
marized as two folds. Firstly, our model achieves the best
Re-ID performance on ConstructSite and WILDTRACK,
which demonstrates that our introduced inter-tracklet and
intra-tracklet attention modules are helpful to Re-ID with
overlapping cameras. Second, our model exhibits compa-
rable performance with state-of-the-arts on the other two
non-overlapping datasets.
MTMC tracking. To apply our Re-ID model for MTMC
tracking, we integrate our Re-ID model with the common
single-camera tracking approach, i.e, DeepSort [2]. To bet-
ter analyze the performance exclusively for Re-ID mod-
els, we conduct the experiments using ground-truth (GT)
tracklets for each camera. This allows us to exclude the
errors coming from the single-camera tracking. We also
compare our methods with single baseline (ResNet-50) and
three of the state-of-the-art Re-ID approaches, which in-
clude NVAN [28], VKD [33], AP3D [16]. The results
of MTMC tracking is presented in Table 3. Several phe-
nomenons can also be observed. First, our model achieves
the best result on both settings: with GT tracklets and with
DeepSort [2], which also confirms the effectiveness of our
Re-ID model for MTMC tracking. Second, models with
DeepSort [2] exhibit inferior tracking performance. This
is due to the reason that the single-camera tracking usually
generates fragments or leads to several ID switches within
single camera.

5.5. Ablation studies

Attention modules. To further analyze the importance of
each introduced attention modules which include Hinter

9840



Table 6: Ablation studies of on the number of heads in
each module for video-based Re-ID.

Method WILDTRACK

Rank1 Rank5 mAP

Hintra: 24, Hintra: 24 85.4 96.9 72.2
Hintra: 12, Hintra: 12 (default) 85.5 96.8 72.0
Hintra: 6, Hintra: 12 84.9 96.3 69.7
Hintra: 12, Hintra: 6 85.2 96.4 71.0
Hintra: 6, Hintra: 6 79.3 95.4 64.5
Hintra: 1, Hintra: 1 75.7 91.9 62.7

Table 7: Ablation studies on the sampling factor T for
video-based Re-ID. The experiments are conducted on
WILDTRACK. Note that increasing T will lead to more
computational cost.

Method WILDTRACK

Rank1 Rank5 mAP

Ours: T = 1 77.4 88.5 63.0
Ours: T = 4 84.7 94.2 70.5
Ours: T = 8 (default) 85.5 96.8 72.0
Ours: T = 12 85.1 97.2 71.5
Ours: T = 16 85.2 97.0 71.4

and Hintra, we conduct an ablation study shown in Ta-
ble 4 and Table 5 for Re-ID and MTMC tracking, respec-
tively. Firstly, the intra-tracklet multi-head attention module
Hintra is shown to be vital to our model since we observe
3% drops at Rank 1 on WILDTRACK and 4% drops at
IDF1 on our ConstructSite when the module was excluded.
This is caused by no module to learn the temporal relation-
ship within the tracklet. Thus, we can not embed tempo-
ral positional patterns into the most representative feature
for each tracklet. Secondly, without the inter-tracklet multi-
head attention module Hinter, our model would not be able
to learn discriminative features to perform cross-camera as-
sociation. This results in a large performance drop (about
7% at Rank1 on WILDTRACK and 10% at IDF1 on Con-
structSite).

Number of heads in multi-head attention. We present the
performance of our multi-head attention with varying num-
bers of heads in Table 6. From this table, we see that while
such hyperparameters need to be determined in advance, the
results were not sensitive to their choices. In other words,
with a sufficient number of heads, the model will be able
to have satisfactory performance. On the other hand, the
model consisting of only one self-attention (as previous at-
tention methods do for Re-ID) in each of the multi-attention
modules is unable to learn with multiple various features.

Position embeddings and time synchronization. As
shown in Table 4 and Table 5 again, we also conduct another

Table 8: Ablation studies of on the window size for
MTMC tracking. Note that W = 30 is the default hy-
perparameter.

Method ConstructSite

IDF1 IDP IDR

DeepSort [59]+ours: W = 15 62.35 61.31 63.41
DeepSort [59]+ours: W = 30 62.69 61.97 63.44
DeepSort [59]+ours: W = 60 52.49 54.63 56.50
DeepSort [59]+ours: W = 120 26.20 25.83 28.12
DeepSort [59]+ours: W = 360 18.65 23.44 17.73

ablation studies on the position embeddings and the timing
of the sampled T images for each tracklet. We can observe
a slight performance drop when the position embeddings
are removed. This infers that the feature of relevant timing
position in each tracklet is important to the model. In ad-
dition, shuffling the sampled images in each tracklet would
also lead to a similar performance drop due to the erasing
of the timing information.

Hyperparameters. We now further discuss the design of
our model. First, we present the ablation studies on the
sampling factor T in Table 7. We can observe that a differ-
ent number of sampling frames T will have impacts on the
model performance. Yet, to balance and computational cost
and the performance (following [23, 52]), we select T = 8
as our default hyperparameter. Second, we present the abla-
tion studies on the window size W for single-camera tracker
(DeepSort [59]).) in MTMC tracking in Table 8. Since the
tracker will exhibit errors such as fragmentations and ID-
switch when tracking multiple objects in a single camera, a
larger window size will lead to more such errors. Thus, the
performance of MTMC tracking using Re-ID model will be
affected accordingly.

6. Conclusion

In this paper, we proposed a video-based Re-ID model
via transformer for MTMC tracking with overlapping cam-
eras. We introduced inter-tracklet (person to person) at-
tention module to learn the correlation between tracklets
across multiple views. Also, we introduced another intra-
tracklet (person specific) attention module for learning the
representative feature for motion and appearance sequence
in each tracklet. The experiments on our ConstructSite and
WILDTRACK confirmed the effectiveness of our model for
Re-ID and uncalibrated MTMC tracking with overlapping
cameras. In addition, our model also successfully handled
generic Re-ID with non-overlapping cameras, which was
confirmed by the experiments on two benchmark datasets.
Acknowledgement: We thank SHIMIZU CORPORA-
TION for the sponsorship and data collection.
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