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Abstract

We introduce the task of weakly supervised learning for
detecting human and object interactions in videos. Our
task poses unique challenges as a system does not know
what types of human-object interactions are present in a
video or the actual spatiotemporal location of the human
and the object. To address these challenges, we introduce
a contrastive weakly supervised training loss that aims to
jointly associate spatiotemporal regions in a video with an
action and object vocabulary and encourage temporal con-
tinuity of the visual appearance of moving objects as a
form of self-supervision. To train our model, we introduce
a dataset comprising over 6.5k videos with human-object
interaction annotations that have been semi-automatically
curated from sentence captions associated with the videos.
We demonstrate improved performance over weakly super-
vised baselines adapted to our task on our video dataset.

1. Introduction
In this paper, we study the problem of weakly super-

vised human-object interaction detection in videos. Given
a video sequence, as illustrated in Figure 1, a system must
correctly identify and localize the person and interacted ob-
ject (“bike”) in the scene, in addition to identifying the ac-
tion (“washing”) taken by the human, for the duration of
the interaction in the video without bounding box supervi-
sion. While there has been an impressive progress in learn-
ing visual-language representations [32, 21, 25] from hun-
dreds of millions of captioned images or videos recently,
the learnt representations focus on classifying or retrieving
entire images or videos given a language query. Our task is
more challenging as it requires the models to correctly de-
tect both the human and object bounding boxes in multiple
frames of the video.
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Figure 1: We seek to detect human-object interactions in videos.
In this example, our system is able to detect “human washing bike”
in the given video. Our approach learns to detect such interactions
in a weakly supervised fashion, i.e., without requiring bounding
box annotations at training time. (Video credit: Dude Chennai [6])

Human-object interaction detection has been primarily
studied in the context of still images [3, 4, 14, 19, 47, 48,
31, 50, 60, 46, 40]. However, they are naturally temporal
events that take place over a period of time. Interactions
such as “drinking” or “pushing” occur between a human
and an object over time, making videos a natural modality
for studying this problem.

Existing video-based methods primarily rely on strong
bounding box supervision and having access to a fully an-
notated video dataset. However, relying on strong super-
vision has significant drawbacks. First, exhaustively an-
notating the spatial location of objects in a video is time
consuming given the large number of frames in a video.
Second, scaling to the large number of possible interactions
and obtaining a sufficient number of ground truth bound-
ing boxes is challenging due to the potentially open vocab-
ulary of objects and actions and the combinatorial nature of
human-object interactions. Third, interactions typically fol-
low a long-tailed distribution, with common human-object
interactions occurring much more frequently than others
[41, 19]. While supervised learning usually prefers com-
mon interactions, a robust human-object interaction detec-
tion system should instead perform equally well on both
common and rare interactions.

In this work, we seek to leverage videos with verb and
noun phrase annotations derived from natural language sen-
tence captions to learn to detect human-object interactions
in videos in a weakly supervised manner. Such an approach
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is advantageous as obtaining video-level annotations is sig-
nificantly less costly than bounding boxes in videos. Lever-
aging such data makes it possible to scale training to a larger
number of videos and vocabulary of objects and actions.

Our task is challenging as we do not know the corre-
spondence between the verb-object queries and spatiotem-
poral regions in the training videos. A system must learn
to establish these correspondences without spatial bounding
box supervision. We thus propose a contrastive loss over
spatiotemporal regions for detecting human-object interac-
tions in videos. Our loss jointly associates candidate spa-
tiotemporal regions with an action and object vocabulary in
a weakly supervised manner and leverages cues about the
temporal continuity of objects in motion as a form of self-
supervision. Such a formulation allows us to deal with an
open vocabulary of language queries which is especially de-
sirable in human-object interaction, due to the high preva-
lence of rare and unseen action and object combinations.

Our paper has three main contributions: (1) We present
an approach that integrates spatiotemporal information for
humans and objects for weakly supervised human-object in-
teraction detection in videos. Our approach does not re-
quire manual bounding box annotations. (2) We present a
contrastive loss over spatiotemporal regions that leverages
weak verb-object supervision from video captions and self-
supervision from temporal continuity in video. It allows de-
tecting rare and unseen human-object interactions in a zero-
shot manner. (3) We introduce a new dataset of over 6.5k
videos to evaluate human-object interaction in videos. We
demonstrate improved performance over weakly supervised
baselines adapted to our task. The dataset is made public to
facilitate further research1.

2. Related work
Closest to our approach is work in modelling video and

natural language, visual relationship detection, and human-
object interaction detection.

Video and natural language. Prior work has looked
at jointly modeling video and natural language for tasks,
such as captioning [23], movie question answering [42],
and short clip retrieval [34, 51]. More relevant are works
that aim to more finely “ground” or align natural lan-
guage in videos. Examples include retrieving moments
from untrimmed videos [12, 17], learning from video with
aligned instructions [26, 25], and alignment of natural lan-
guage with (spatio-) temporal regions in a video [20]. Nat-
ural language poses hard challenges due to large open vo-
cabulary and complex interactions due to composition.

Visual relationship detection. Previous work, e.g.,
[2, 8, 13, 14, 15, 24, 29, 30, 35, 50, 53, 55], has studied
detecting subject-predicate-object visual relations in single

1Code and dataset are available at https://shuangli-
project.github.io/VHICO-Dataset.

still images. This line of work has been extended to video
with strong supervision [37, 44]. Closest to our approach
is work on weakly supervised visual relationship detection
[28, 56, 49, 52] where a model is trained to use triplet anno-
tation available at the image level. Different than us, Peyre
et al. [28] leverage a fixed vocabulary of pre-trained object
detectors and learn relations with a discriminative cluster-
ing model. Peyre et al. [27] model open language but in the
strongly supervised setting and for still images.

Human-object interaction detection. Human-object
interaction detection [4, 47, 48, 31, 60, 46] is a kind
of human-centric relation detection. HOI is an essential
research topic for deeper scene understanding. Several
datasets, such as HICO-DET [3] and V-COCO [14], have
been proposed for this domain. [39, 50, 19] formulate the
novel HOI detection as a zero-shot learning problem. How-
ever, these methods are based on still images and have dif-
ficulties in detecting dynamic human-object interactions.
They either rely on the bounding box annotations or pre-
trained object detectors which has been show perform badly
in videos [11].

3. Learning contrastive spatiotemporal regions
We address the problem of detecting human-object in-

teractions (HOIs) in videos in a weakly supervised manner.
As obtaining ground truth bounding boxes for supervised
learning is expensive and time consuming, we seek to learn
from a collection of videos where only verb-object phrase
annotations are provided for the entire video clip during
training. We thus propose a weakly supervised framework
that incorporates both spatial and temporal information to
detect HOIs in videos. The overall training setup is illus-
trated in Figure 2. Given a video clip and a verb-object
query, for each frame, we first extract a bank of features.
The features include those for the verb-object query, frame,
and human/object regions in the clip. This bank of features
passes through a region attention module that outputs two
features for the frame – an attended human feature and an
attended object feature that focus attention on regions that
are more relevant to the verb-object query. These features,
along with the verb-object feature and object region features
from the other frames are passed into our weakly supervised
contrastive loss.

3.1. Weakly supervised contrastive loss

Learning from language labels in a weakly supervised
manner is challenging as a system must automatically iden-
tify and associate video spatiotemporal regions with the
provided phrase annotations. Moreover, HOIs typically
follow a long-tailed distribution. Applying the often used
classification loss will not suffice as it requires a fixed vo-
cabulary with similar number of samples for each class.
Furthermore, a classification loss maximizes the probabil-
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ity of the correct class while suppressing all other classes,
which does not allow for less common or unseen objects
and verbs. Finally, words with similar meanings are not ex-
plicitly mapped to nearby locations in the feature space with
a classification loss.

To address these issues, we introduce a contrastive spa-
tiotemporal loss for learning a shared visual-language em-
bedding, as shown in Figure 3. Our loss leverages the
phrase annotations associated with each training video and
cues about the temporal continuity of objects in motion.
Our training loss incorporates three insights. First, we learn
to map the visual representation for the likely human and
object regions to the corresponding embedded representa-
tion of the input verb-object queries and contrast against
embedded representations of other non-relevant words in
the vocabulary. Second, we encourage spatiotemporal re-
gions to be temporally consistent in the video. Third, we
apply the contrastive loss in our model, enabling it to detect
new unseen human-object interactions during testing.

We build on the contrastive loss [5, 16, 18], which aims
to encourage positive pairs of unit-length features to be
close (measured by dot product) and negative pairs to be
far in the feature space,

LC

(
f, f ′, {fn}Nn=1

)
= −fT f ′ + log

N∑
n=1

exp(fT fn), (1)

where f is an anchor feature, f ′ is a positive feature and
{fn}Nn=1 are N negative features. We propose a weakly
supervised language-embedding alignment loss to align the
spatiotemporal regions to the input verb-object query and a
self-supervised temporal contrastive loss to encourage tem-
poral continuity of the object regions based on Equation (1).

Weakly supervised language-embedding alignment
loss. Given a video frame It, we extract its human and
object region proposal features, fh

t and fo
t . Let e be

a language-embedding feature for the ground truth verb-
object label of the input video. We seek to align relevant
human/object regions to the ground truth verb-object label.
Since only the frame-level (or video-level) verb-object la-
bel is available, we also seek to learn a global human/object
feature in each frame that contrasts against a negative set
of language-embedding features E covering the vocabulary
not including the ground truth verb-object label.

To perform the alignment, we propose a region atten-
tion module that computes an attention score σh

t,i and σo
t,i

for each human and object region proposal, respectively, to
measure their relevance to the verb-object query. We obtain
an attended human feature Φh

t by aggregating the human
region features fh

t in frame It as a weighted average over
their attention scores σh

t ,

Φh
t =

Nh∑
i=1

σh
t,if

h
t,i, (2)

where Nh is the number of candidate human regions. The
attended object feature Φo

t has a similar form. The feature

Figure 2: Training overview. Given a video clip and a verb-
object query, for each frame, we first extract its human and object
region features. The human/object features are aggregated in a re-
gion attention module to attend to regions that are more relevant
to the query. The attended human feature, attended object fea-
ture, the feature of verb-object query, and object region features
from other frames are used to compute our weakly supervised con-
trastive loss. (Video credit: The Best Gallery Craft [7])

attention “softly” selects a small number of candidate hu-
man/object regions as targets, with higher-scoring regions
contributing more to the attended feature.

We define the language-embedding alignment loss LL

as the alignment of the attended features in a frame to the
target label while contrasting against the verb or object neg-
ative feature set. Following the general expression of the
contrastive loss in Equation (1), we define the language-
embedding alignment loss in frame It as a summation of
contrastive losses given attended human/object, language,
and negative features,

LL = LC(Φ
h
t , e

v, Ev) + LC(Φ
o
t , e

o, Eo), (3)

where ev and eo are the target verb and object features,
respectively, and Ev and Eo are the negative verb and
negative object feature sets, respectively. More specif-
ically, we rewrite the object term as in Equation (1):
LC(Φ

o
t , e

o, Eo) = −(Φo
t )

T eo+ log
∑Nl

n=1 exp
(
(Φo

t )
TEo

n

)
,

where Φo
t is the attended object feature that has a similar

form as the attended human feature shown in Equation (2),
eo is the target object feature, and Nl is the number of nega-
tive samples in the negative feature set Eo. The human term
has a similar form. We show this loss (object term only) in
Figure 3 (a). The “Region attention” module outputs a sin-
gle “Attended human/object feature” for the video frame.
This “Attended human/object feature” forms the positive
pair with the verb/object phrase in the corresponding lan-
guage annotation for the frame.

Self-supervised temporal contrastive loss. We seek to
encourage temporal continuity of the moving objects. We
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Figure 3: Weakly supervised contrastive loss. Our loss jointly aligns features for spatiotemporal regions in a video to (a) a language-
embedding feature for an input verb-object query and (b) other spatiotemporal regions likely to contain the target object. This figure only
shows object regions. The same mechanism is applied to human regions. (Video credit: KidKraft [22])

also seek to contrast our learned object features against a
negative set of visual features corresponding to likely re-
gions for which the target object does not appear. Let fo

t′ be
a set of features for another frame from the same video with
attention scores σ̂o

t′ . We define the temporal contrastive loss
LT as the alignment of the attended object feature Φo

t in
a frame It to the target attended object feature Φo

t′ in an-
other frame while contrasting against the negative feature
set Fo

t from frame It. Following the contrastive loss in
Equation (1), we define the temporal contrastive loss as:

LT = LC(Φ
o
t ,Φ

o
t′ ,Fo

t ). (4)

Note that the attention scores σ̂ here are different from the
soft attention scores σ used for the language-embedding
alignment loss. In the temporal contrastive loss, we let σ̂
be hard attention scores, where only one object region has a
score of one while the rest of the regions in the same frame
has a score of zero. In practice, we let the object region
that has the highest soft attention score have a hard attention
score σ̂ = 1, which is the most likely target object described
in the verb-object query. For the negative feature set Fo

t , we
randomly select from the remaining object regions in frame
It that are not selected by the hard attention. The intuition
is that the selected target objects with the highest score from
different frames should move consistently through time but
should be different from other objects in the same frame.
We illustrate this loss in Figure 3 (b).

Full weakly supervised contrastive loss. We define
the final loss at each frame as the sum of the language-
embedding alignment and temporal contrastive losses,

LST = LL + αLT , (5)

where α is a hyperparameter. Our loss is minimized when
a feature corresponding to a softly selected human/object
region Φt aligns with the language-embedding feature e and
a similar spatiotemporal region Φt′ in another frame.

3.2. Feature learning
In this section, we briefly introduce the object feature,

contextual frame feature, and attended human/object fea-

tures used in Figure 2. See the supplementary materials for
more details of different types of features.

Human-guided object feature learning. To get the fea-
tures for candidate object regions, we first extract object lo-
cation proposals in each video frame using Faster R-CNN
[33]. We apply ROI pooling over all the layers of the Faster
R-CNN feature pyramid network (FPN) to extract the fea-
ture descriptors for the object region proposals. Each object
region proposal has a feature descriptor f̂o

t,i and a bounding
box bot,i as shown in Figure 4.

Human-object interaction is highly correlated with both
the human and object features. We assume that the spatial
co-occurrence of the human and object regions helps to dis-
ambiguate the interacted object. To more effectively encode
the human-object interaction, we incorporate knowledge
from the human segmentation masks produced by Dense-
Pose [1] into the object proposal features. We use ROI pool-
ing to extract a feature f̂h

t,i from the human segmentation
mask given the object proposal bounding box bot,i. We apply
a max-pool operation over the object region features from
the FPN feature maps and the human feature maps to obtain
the final object proposal feature fo

t,i = max(f̂o
t,i, f̂

h
t,i).

Contextual frame feature learning. Human-object in-
teractions are temporal events and occur over a period of
time. To utilize the temporal information from the whole
video, we use a soft attention module [45] to learn a con-
textual feature representation xt for each frame. Given a
frame feature x̂t obtained by passing this frame through a
small network, we send x̂t to an embedding layer to gen-
erate a “query” feature vector xque

t . For the features of all
frames {x1, · · · , xT } in the same video, we use two differ-
ent embedding layers to get “key” xkey

t′ and “value” xval
t′

vectors. We compute the inner product of the “query” and
“key” to get a similarity score st,t′ = (xque

t )Txkey
t′ of the

current frame and each frame in the same video. A softmax
layer is then applied to the similarity scores to normalize the
similarity of each frame to the current frame. The contex-
tual frame feature is obtained by the weighted average over
frame “value” features xt =

∑T
t′=1 st,t′x

val
t′ .
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Region attended human/object feature learning. The
region attention module computes attention scores for the
human/object region proposals to measure their relative rel-
evance to the given verb-object query (Figure 3 in the sup-
plement). For each human region in frame It, we first con-
catenate its feature representation fh

t,i with the contextual
frame feature xt and the verb-object query feature and then
pass them through a small network to obtain a score. We
apply the softmax function over the scores of all human re-
gions in this frame and get the final human attention scores
σh
t . Similarly, each object region has an object attention

score σo
t after applying the softmax function over all ob-

ject regions. The attention scores are used to aggregate hu-
man/object features using Equation (2).

3.3. Training objective
In addition to the weakly supervised contrastive loss LST,

we propose a sparsity loss Lspa, and a classification loss Lcls
for weakly supervised learning. Our final training loss for a
pair of frames is the sum of all the losses,

Lθ(t, t
′) = LST + Lspa + Lcls. (6)

We describe the sparsity and classification losses next.
Sparsity loss. As there are often few humans and objects

undergoing the action and object given in the input query,
we seek to encourage the attention scores for the human
and object proposals each to be high for a single proposal
instance and low for all other proposals in each frame. To
enable this effect, we introduce a sparsity loss which is de-
fined as the sum of negative log L2 norms of the human and
object attention scores:

Lspa = − log
(
|σh

t |2
)
− log (|σo

t |2) (7)

Classification loss. The weakly supervised contrastive
loss and sparsity loss enable our model to localize ob-
jects and humans given the verb-object query. To make
our model retrieve and localize the language input across
videos, we add a classification loss to predict whether the
current video contains the interaction described in the verb-
object query. In the training phase, each video has a ground
truth verb-object label and we assign them a label of y = 1.
We randomly select a negative verb-object label from the
language features for the entire vocabulary E and assign a
label of y = 0 to the video and the selected negative verb-
object label. The classification loss at frame It is:

Lcls = −(ytlog(pqt ) + (1− yt)log(1− pqt )), (8)

where pqt = p(yt|q, xt) is the likelihood of the input video
frame It containing the verb-object query q. Here xt is the
contextual frame feature of frame It.

3.4. Inference
During inference, given a video frame It, we randomly

select one verb-object query q and compute their binary
classification score pqt as shown in Equation (8). Since

Figure 4: Illustration of extracting human/object features. We
learn convolutional filters to encode the Densepose segmentation
mask to intermediate features. We obtain the feature of each object
region fo

t,i by combining its ROI pooling features from the FPN
feature maps f̂o

t,i and the human conv feature maps f̂h
t,i. (Video

credit: TheOnDeckCircle [43])

we encourage the matching pairs of video frame and verb-
object query to have higher probability during training,
score pqt is able to evaluate the probability of the verb-
object query appearing in the given frame during infer-
ence. We also have an attention score σh

t,i or σo
t,j for

each human or object region proposal, representing their
relevance to the given verb-object query. Thus for each
human-object pair, we compute their confidence score as
cqt,i,j = pqt × (σh

t,i + σo
t,j)/2. For HOI detection, we predict

human and object bounding boxes and their HOI label. For
each video frame, we feed in all possible verb-object labels
appearing in the dataset and select the verb-object label hav-
ing the highest confidence score as the HOI label prediction
result for each pair of human and object regions.

4. Human-object interaction video dataset
Existing human-object interaction datasets either focus

on classification [4] or detection in static images [3, 14].
However, human-object interaction is a temporal process
and it is more naturally done in video data. Current video
datasets, such as Charades [54], EpicKitchens [9], Vid-
VRD [38], VidOR [36], and YouCook [59, 58] are not suit-
able for human-object interaction detection. First, most
of them do not have human bounding box annotations.
Second, all objects in a scene are annotated, with anno-
tated objects not necessarily interacting with humans. Fur-
thermore, EpicKitchens and YouCook do not have triplet
human-action-object labels. VidVRD and VidOR are for
visual relation detection and the relations are not necessar-
ily human-centric. Thus, they cannot be directly used for
evaluating video based human-object interaction detection.

Instead, to study the human-object interaction problem
in videos, we collect a large, diverse Video dataset of Hu-
mans Interacting with Common Objects (V-HICO). Our
dataset has a large variety of actions and interacted objects.
Our dataset has more videos (6,594) than Epic-Kitchens
(432) and YouCook (2,000), with each video containing
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Table 1: Evaluation of each component of the proposed model. Phrase (Phr) detection refers to correct localization (0.3 IoU) of the union
of human and object bounding boxes while relation (Rel) refers to correct localization (0.3 IoU) of both human and object bounding boxes.

Model mAP (%) Recall@1 (%) Video One Recall@1 (%) Video All Recall@1 (%)

Phr (ko) Phr (def) Rel (ko) Rel (def) Phr Rel Phr Rel Phr Rel

Baseline(add) 40.59 0.45 6.95 0.11 75.98 19.00 90.30 33.22 60.36 7.07
Baseline(cat) 41.86 0.35 11.34 0.11 75.93 19.91 88.49 35.53 61.68 5.92
(cat)+Spa 50.79 1.02 16.23 0.47 79.52 24.24 87.01 38.49 69.74 9.67
(cat)+Spa+Hum 55.60 0.89 15.91 0.29 81.35 22.99 91.61 38.82 70.56 9.55
(cat)+Spa+Hum+Tem 54.42 1.24 16.94 0.30 81.00 25.61 91.12 39.14 69.74 12.68
(cat)+Spa+Hum+Tem+Con 55.90 0.90 18.56 0.26 84.08 30.12 91.94 44.90 75.33 15.95

Table 2: Evaluation of performance on V-HICO compared to methods in [28], [57], [49] and different random baselines. Phrase (Phr)
detection refers to correct localization (0.3 IoU) of the union of human and object bounding boxes while relation (Rel) refers to correct
localization (0.3 IoU) of both human and object bounding boxes. (ko) and (def) are the known object setting and default setting.

Model mAP (%) Recall@1 (%) Video One Recall@1 (%) Video All Recall@1 (%)

Phr (ko) Phr (def) Rel (ko) Rel (def) Phr Rel Phr Rel Phr Rel

Random 11.24 0.08 0.57 0.00 22.42 4.05 40.79 8.88 6.25 0.49
Random Pretrain 9.58 0.02 0.48 0.00 12.26 3.59 25.33 8.06 1.97 0.33
[28] 32.42 0.14 2.06 0.01 45.75 5.02 71.38 14.14 20.72 0.16
[57] 21.88 0.60 4.83 0.04 55.56 8.04 71.05 16.45 38.49 1.97
[49] 25.34 0.12 4.06 0.05 43.07 5.31 63.16 12.50 24.84 0.49

Ours 55.90 0.90 18.56 0.26 84.08 30.12 91.94 44.90 75.33 15.95

human-object interactions. Furthermore, the new dataset is
more challenging with more diverse outdoor scenes com-
pared with Charades, EpicKitchens, and YouCook that ei-
ther focus on household or kitchen scenes.

Our V-HICO dataset contains 5,297 training videos, 635
validation videos, 608 test videos, and 54 unseen test videos
of human-object interactions. To test the performance of
models on common human-object interaction classes and
generalization to new human-object interaction classes, we
provide two test splits, the first one has the same human-
object interaction classes in the training split while the sec-
ond one consists of unseen novel classes. Our training set
consists of 193 object classes and 94 action classes. There
are 653 action-object pair classes in the training set. The un-
seen test set contains 51 object classes and 32 action classes
with 52 action-object pair classes. All videos are labeled
with text annotations of the human action and the associ-
ated object. The test set and the unseen test set contain the
annotations of both human and object bounding boxes.

Our ‘unseen’ test set (51 unseen object classes) con-
tains 2 classes present in the MSCOCO object vocabulary,
8 present in OpenImages, and 34 present in VisualGenome.
We use the object detector pre-trained on MSCOCO, in-
dicating only 2 object classes have been seen during pre-
training. Furthermore, our entire dataset has 244 object
classes in total. 156 of them are not present in MSCOCO
or OpenImages, e.g., ’javelin’, and hence cannot be de-
tected using detectors pre-trained on those datasets. The
object distribution is long-tailed and many objects do not
have annotated training data in the publicly available object
datasets. Our model provides a way to scale-up to a large

set of objects without relying on bounding box annotations.

5. Experiments
We evaluate the ability of our method and baselines to

detect human-object interactions on the V-HICO dataset.

5.1. Evaluation criteria
We evaluate the proposed method and other approaches

under two settings – phrase accuracy and relation accuracy.
We denote phrase accuracy when the union of the detected
human and object bounding boxes matches the union of
the ground truth human and object boxes. We denote re-
lation accuracy when both the predicted human and object
bounding boxes match the ground truth human and object
bounding boxes, respectively. Relation accuracy is lower
than phrase accuracy since it is more strict on the predicted
human and object bounding boxes.

We report the mean average precision (mAP) and Re-
call in these two setups. For mAP, we follow the settings
proposed by HICO-DET [3]. They proposed two different
evaluation settings: (1) Known Object setting (ko): Given
a human-object interaction category, they evaluate the hu-
man and object detection only on images containing the tar-
get object category. Here we use video frames that contain
the target HOI category. (2) Default setting (def): Given a
HOI category, they evaluate the detection on the full test
set. This setting is more challenging because it requires
models to distinguish whether an image/frame contains the
target HOI category and to localize the target HOI simulta-
neously. Note that the evaluation metric we used is designed
for HOI detection [3], which is a harder problem than lan-
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Table 3: Evaluation of our proposed approach, [28], and different random baselines on the unseen test set on V-HICO. The unseen test set
consists of 51 classes of objects unseen during training. Evaluation at IoU threshold 0.3.

Model mAP (%) Recall@1 (%) Video One Recall@1 (%) Video All Recall@1 (%)

Phr (ko) Phr (def) Rel (ko) Rel (def) Phr Rel Phr Rel Phr Rel

Random 10.44 0.16 0.74 0.03 14.79 2.11 26.92 5.77 7.69 0.00
Random Pretrain 4.78 0.10 0.42 0.02 14.79 2.82 28.85 5.77 1.92 0.00
Peyre2017 [28] 38.19 0.70 4.79 0.07 43.24 5.41 64.81 12.96 16.67 0.00

Ours 67.21 2.76 25.10 0.66 91.89 31.08 94.44 42.59 85.19 18.52

guage grounding. In language grounding, the query input
appears in the video and the models return its correspond-
ing bounding box during test. However, in the def setting,
the query input does not necessarily appear in the video.

For each frame, we extract the top 10 predicted pairs of
human-object bounding boxes based on their score cqt,i,j as
described in Section 3.4. The predicted human and object
bounding boxes are treated as correct if their Intersection-
over-Union (IoU) with ground truth human and object
bounding boxes is larger than 0.3 for both the phrase and
relation accuracy, similar to [28]. We follow HICO-DET
[3] and compute the mAP over all verb-object classes.

We also report the frame recall of the top-1 prediction.
Given a frame and its true verb-object label, we test if the
top-1 predicted human-object bounding-box pair matches
the ground truth bounding boxes. Recall@1 is the num-
ber of frames where the predictions are correct divided by
the number of all frames. We also propose two video recall
settings. In Video One Recall, if all of the ground truth
human-object pairs in one frame are detected, the video is
considered correct. Video One Recall is the number of cor-
rect videos divided by the number of all videos. In Video
All Recall, the video is correct only when all of the ground
truth human-object pairs in all frames are detected.

5.2. Ablation studies on V-HICO
To investigate the effect of each component of our ap-

proach, we perform a series of ablation studies on our V-
HICO dataset. We report the results in Table 1. We first
evaluate our approach when no temporal continuity is en-
forced in the model during training. To achieve this goal,
we omit the temporal contrastive loss LT and the sparsity
loss Lspa during training and do not include the human ROI-
pooled feature as part of the object proposal feature. We in-
vestigate different ways to merge the human/object region
features, verb-object language features, and the frame fea-
ture x̂t (before the temporal soft attention described in Sec-
tion 3.2) when computing human/object attention scores.
We find that feature addition (Baseline(add)) and feature
concatenation (Baseline(cat)) have similar results.

Next, we evaluate the efficacy of the sparsity loss Lspa.
Without the sparsity loss, empirically we find that the out-
put attention scores are often uniformly distributed across
all region proposals. (cat)+Spa is the result after using the

sparsity loss based on the feature concatenation baseline; it
boosts the performance significantly.

As existing human detectors are quite robust in videos
and the spatial location of the human can help localize the
interacted object, we evaluate the effect of including the
ROI-pooled feature from the human segmentation feature
maps to the object region feature ((cat)+Spa+Hum). We
observe that including the human information when learn-
ing object features improves the performance. Next, we
evaluate the efficacy of including our self-supervised tem-
poral contrastive loss LT . (cat)+Spa+Hum+Tem improves
the performance by encouraging the temporal continuity of
moving objects. We investigate the effect of the contex-
tual frame feature generated using the soft attention over
the entire video. (cat)+Spa+Hum+Tem+Con is the result
of adding the contextual frame feature and is used as the
final result of the proposed model.

To further verify the contribution of human information
to object detection results, we add a baseline that localizes
the object based on the human spatial prior alone. We first
use our model to generate candidate human/object propos-
als and their confidence scores. We select the human pro-
posal with the highest score as the target human. For each
object proposal, we compute its confidence as the inverse
distance of its centroid to the human proposal. The mAP
on Phr (ko) is 46.67 while ours is 55.90. Note that this
baseline’s mAP is not too bad as it uses human/object pro-
posals and human confidence scores from our trained model
((cat)+Spa+Hum+Tem+Con), yet it performs significantly
worse than our full model.
5.3. Comparison with baselines

Since most existing HOI approaches use supervised
learning on static images, we compare with the three most
related methods [28, 57, 49] and add two random baselines
to compare with our approach in Table 2. “Random” is
our model using randomly initialized parameters. “Random
Pretrain” is our model with the Faster R-CNN part initial-
ized from the COCO pretrained model and other parts ran-
domly initialized as above.

Since there is no existing weakly supervised human-
object interaction detection method for videos, we mod-
ify three related weakly supervised baselines using their
publicly available code. Peyre et al. [28] is a weakly su-
pervised approach for visual relation detection in single
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Figure 5: Qualitative predictions of our model with top predicted human bounding boxes (yellow) and object bounding boxes (blue).
(Video credit: Dude Chennai [6] and Serious Eats [10])
still images. For fair comparison, our implementation of
Peyre et al. [28] uses the same human and object bound-
ing boxes and features generated by DensePose and Faster
R-CNN, respectively, as our approach. For each human-
object bounding box pair, the classifier predicts its probabil-
ity score of being each human-object interaction class. The
human-object bounding box pairs are ranked based on their
confidence scores for evaluation. We also compare with
Zhou et al. [57], a method for video-based object grounding
from text. We use the same Faster R-CNN to generate ob-
ject bounding box proposals. A human detection branch is
added using the human proposals generated by DensePose.
We further modified a video relation grounding method [49]
which also uses the Densepose and Faster R-CNN to gener-
ate human and object bounding boxes for a fair comparison.

Table 2 shows the comparisons of our approach and
these baseline methods on our V-HICO dataset. Over-
all, our model outperforms all the baselines as [28] is an
image-based method without taking advantage of the video
information, [57] optimizes object and human bounding
boxes and features separately without explicitly considering
human-object interactions, and [49] uses a spatiotemporal
region graph that may accumulate errors over time.

5.4. Comparison with baselines on unseen classes
To test the generalization ability of our model on unseen

objects, we evaluate our method on 52 unseen verb-object
classes from the unseen dataset. Note that there are diffi-
culties when evaluating the Zhou et al. [57] and Xiao et al.
[49] baselines on the unseen dataset as most object labels
do not appear in the training set. Zhou et al. [57] optimize
the word embedding for object and action classes during
training; for unseen objects and actions, they do not have
an optimized word embedding. While Xiao et al. [49] re-
port results on zero-shot relation grounding, they consider
the case when the subject-predicate-object triplet is never
seen but the separate subject, predicate or object are known
during training. However, on our unseen test set, most ob-
ject labels do not appear in the training set. Thus Xiao et al.
[49] have the same problem as Zhou et al. [57] – they do not
have an optimized embedding for unseen words. Thus we
only compare our method with Peyre et al. [28], “Random”,
and “Random Pretrain” on the unseen test set.

Table 3 shows that our method generalises well to new
object classes and significantly outperforms the baselines
in terms of both the phrase and relation accuracy. Our ap-

proach on the unseen test set is better than the seen test set as
the unseen set is smaller and easier (54 videos, most scenes
have a single human) than the seen set (608 videos, more
challenging scenes with multiple humans or blurry objects).
The size of the test set influences some criteria, e.g., mAP is
computed over bounding boxes from all videos, thus mAP
tends to be lower if there are more videos in the test set.

5.5. Qualitative results
Human-object interaction detection results. We

present the human and object bounding box predictions of
our model in Figure 5. We only show the top 1 human-
object bounding box pair. The yellow bounding boxes rep-
resent the predicated human bounding boxes while the blue
bounding boxes are the predicated object bounding boxes.
We find that the proposed weakly supervised method tends
to generate large object bounding boxes as learning from
weak supervision is challenging. The system must automat-
ically identify and associate video spatiotemporal regions
with the provided phrase annotations during training.

Failure case analysis. We notice three main failures in
our model predictions: (1) when the human prediction is
wrong due to incorrect Densepose output (e.g., missed de-
tections when only a small human body part is visible or
when multiple people cause heavy occlusions), (2) when
the object prediction is incorrect because the object is small,
moving, blurry, or partially occluded, and (3) when both de-
tections are incorrect in challenging scenes, e.g., nighttime.

6. Conclusion
Weakly supervised HOI detection in videos is a challeng-

ing problem, which has not yet received much attention.
However, this problem is of great importance as human-
object interactions are common in real life with important
applications, such as video search and editing, surveillance,
and human-robot interaction. In this paper, we introduce a
contrastive loss for learning to detect humans and interacted
objects in videos given weak supervision. We demonstrate
our approach on a new dataset of videos with verb and ob-
ject phrase annotations. Our approach is a step toward un-
derstanding everyday human-object interactions in videos.
We hope the proposed dataset and method can facilitate fu-
ture research in this direction.
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