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Abstract

Videos flow as the mixture of language, acoustic, and
vision modalities. A thorough video understanding needs
to fuse time-series data of different modalities for pre-
diction. Due to the variable receiving frequency for se-
quences from each modality, there usually exists inherent
asynchrony across the collected multimodal streams. To-
wards an efficient multimodal fusion from asynchronous
multimodal streams, we need to model the correlations
between elements from different modalities. The recent
Multimodal Transformer (MulT) approach extends the self-
attention mechanism of the original Transformer network
to learn the crossmodal dependencies between elements.
However, the direct replication of self-attention will suf-
fer from the distribution mismatch across different modal-
ity features. As a result, the learnt crossmodal dependen-
cies can be unreliable. Motivated by this observation, this
work proposes the Modality-Invariant Crossmodal Atten-
tion (MICA) approach towards learning crossmodal inter-
actions over modality-invariant space in which the distribu-
tion mismatch between different modalities is well bridged.
To this end, both the marginal distribution and the elements
with high-confidence correlations are aligned over the com-
mon space of the query and key vectors which are computed
from different modalities. Experiments on three standard
benchmarks of multimodal video understanding clearly val-
idate the superiority of our approach.

1. Introduction

Videos analysis involves time-series data of language,
acoustic, and vision modalities. Towards a thorough video

∗ Corresponding author: F. Lv (email: fengmaolv@126.com).

understanding, we need to fuse the data sequences from dif-
ferent modalities. In practice, however, the collected mul-
timodal streams are usually asynchronous due to the vari-
able receiving frequency for sequences of different modal-
ities [18]. For example, the sound or the subtitle may not
exactly match what the video displays. The inherent asyn-
chrony across different modalities raises a challenge on per-
forming efficient multimodal fusion which requires to have
precise information of the actual relationships between ele-
ments from different modality sequences.

To this end, the prior works manually preprocess the vi-
sual and acoustic sequences by aligning them to the resolu-
tion of textual words [15, 19, 24]. Then, multimodal fusion
is performed on the word-aligned time steps. However, the
manual alignment process usually requires a huge amount
of time and labor effort. The recent Multimodal Trans-
former (MulT) approach extends the self-attention mecha-
nism of the standard Transformer to learn the correlations
between elements from different modalities [18]. Based
on the latent crossmodal interaction explored via the cross-
modal attention operations, MulT performs multimodal fu-
sion directly from the asynchronous multimodal sequences
without manual alignment.

However, if we take a further insight into the crossmodal
attention mechanism in MulT, we will find that the direct
replication of Transformer is suboptimal for asynchronous
multimodal sequence fusion. In the standard Transformer
model, the self-attention operations explore the correlations
between elements by comparing the query and key vectors
which are computed from the elements’ features [21, 27].
On the other hand, MulT focuses on exploring the cross-
modal correlations between elements. The query and key
vectors involved in the crossmodal attention operation are
computed from different modalities. Due to the hetero-
geneities across different modality features [9, 27], there
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will exist a clear distribution mismatch in the common
space of queries and keys. Hence, their dot-product cannot
reveal reliable crossmodal correlations between elements.

Motivated by the above observation, this work proposes
the Modality-Invariant Crossmodal Attention (MICA) ap-
proach towards multimodal fusion from asynchronous mul-
timodal sequences. The core idea of our approach is to
perform crossmodal attention over modality-invariant space
in which the distribution discrepancy between different
modalities is bridged. To this end, our approach enforces
modality-invariance on the common space of the query and
key vectors which are computed from different modalities.
Overall, our approach bridges the distribution mismatch in
two ways. One is to match the marginal distribution via
Maximum Mean Discrepancy (MMD) which is commonly
used in transfer learning or domain adaptation [13, 10]. The
other is to match the elements with high-confidence corre-
lations via our proposed Propagated Element-level Align-
ment (PEA) strategy. To be specific, our approach propa-
gates the information of the crossmodal correlations along
the network layers, i.e., the elements with high-confidence
correlations in a previous layer will also participate in the
element-level alignment loss (e.g., the L2 loss) of the sub-
sequent layers. The propagation strategy can enforce the
consistency across the network layers and guide the Trans-
former network to progressively obtain better crossmodal
correlations between elements. Compared with the original
MulT model, our approach can overcome the distribution
discrepancy between different modalities and build more
reliable crossmodal relationships for multimodal fusion
from asynchronous multimodal sequences. Experiments on
three multimodal video understanding benchmarks clearly
demonstrate the effectiveness of our approach.

To sum up, the contributions of this work are three-fold:

• We draw the first attention on the distribution discrep-
ancy problem which restrains the attention mechanism
to obtain reliable crossmodal correlations for asyn-
chronous multimodal sequence fusion.

• We propose to perform crossmodal attention over
modality-invariant space where the distribution gap
across modalities is bridged. Both the marginal distri-
bution mismatch and the element-level mismatch are
aligned to reduce the distribution discrepancy.

• Our approach can obtain the state-of-the-art perfor-
mance on different benchmarks of multimodal video
understanding.

2. Related Works
Multimodal sequence fusion. A thorough video under-
standing needs to fuse data of different modalities, e.g.,
the language, acoustic, and vision modalities [26, 16, 17,

5, 19, 18]. The early works perform multimodal fusion
on static features extracted from video clips and do not
consider the inherent relationships between elements from
different modality sequences [12, 5, 16, 17]. Towards
an efficient multimodal fusion in videos, it is essential to
take the inherent dependencies between elements of differ-
ent modality sequences into consideration. However, the
multimodal streams collected in practice are usually asyn-
chronous due to the variable frame rate for sequences of
different modalities [19, 22, 15]. To tackle this issue, the
recent works manually preprocess the visual and acous-
tic sequences by aligning them to the resolution of textual
words [19, 22, 15]. Based on the manual alignment, multi-
modal fusion is then implemented over the word-aligned el-
ements. Typical works include hierarchical attention mech-
anism [8], nonverbal temporal interaction [22], cyclic trans-
lation [15], etc. However, the manual alignment process
usually requires a huge amount of time and labor effort. Ad-
ditionally, the word-level multimodal fusion does not con-
sider the long term dependencies between elements across
modalities.

Zeng et al. propose to perform multimodal fusion di-
rectly from the unaligned multimodal sequences via the
maximum mutual information rule [25]. The performance
of their approach is heavily limited by the shallow archi-
tecture. Recently, Tsail et al. propose to extend the Trans-
former network to learn the latent correlations between el-
ements of different modalities [18]. The recent work im-
proves MulT by introducing a common message hub to re-
inforcing each modality [11]. However, a lot of additional
parameters are required in [11].

Distribution alignment. Distribution alignment is orig-
inally studied for domain adaptation [13, 10, 6, 20, 3].
The common distribution alignment approaches include
maximum mean discrepancy [13, 10], adversarial train-
ing [6, 20], adaptive batch normalization [3], etc. This work
draws an interesting insight connecting Transformer with
domain adaptation via distribution alignment. We note that
our work has a different motivation for distribution align-
ment. In particular, domain adaptation bridges the distribu-
tion mismatch to improve the model’s generalization ability
across different domains [13]. On the other hand, this work
mainly focuses on modeling more reliable correlations be-
tween elements across modalities.

3. Modality-Invariant Crossmodal Attention
3.1. Problem statement

This work focuses on performing multimodal sequence
fusion from the three major modalities in videos, i.e., the
language (L), vision (V ), and acoustic (A) modalities. With
the sequence length and the feature dimension denoted by
T(.) and d(.), respectively, we use the notations X{L,V,A} ∈
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Figure 1. The distribution discrepancy between the queries and
keys in the attention mechanism caused by the heterogeneities
across different modality features. The elements with inherent cor-
relations are displayed in the same shape.

RT{L,V,A}×d{L,V,A} to represent the input sequences from
each modality. Due to the variable receiving frequency for
sequences from each modality, there usually exists inherent
asynchrony across different multimodal sequences. In this
work, our goal is to perform multimodal fusion from the
asynchronous multimodal sequences and obtain representa-
tions which are effective for downstream prediction tasks
such as human emotion recognition.

3.2. Preliminaries

Crossmodal attention. The crossmodal attention opera-
tion is the core component of the MulT model [18]. It re-
ceives inputs from a source modality and a target modal-
ity and focuses on modeling the correlations between ele-
ments across modalities. With s, t ∈ {L, V,A}, we use
the notations Xs ∈ RTs×ds and Xt ∈ RTt×dt to repre-
sent the data sequences from the source and target modal-
ities, respectively. Similar to the self-attention mechanism
in Transformer, the crossmodal attention operation also in-
volves the queries, keys, and values, which are represented
as Qt = XtWQt

, Ks = XsWKs
and Vs = XsWVs

, re-
spectively. The weights WQt

∈ Rdt×dk , WKs
∈ Rds×dk

and WVs
∈ Rds×dv are learnable parameters. One single

head of the crossmodal attention operation can be formu-
lated as follows:

Yt = CMs→t(Xs, Xt)

= softmax(
QtK

T
s√

dk
)Vs

= softmax(
XtWQtW

T
Ks

XT
s√

dk
)XsWVs

,

(1)

where Yt ∈ RTt×dv . We denote the whole h-head cross-
modal attention operation as Yt = CMmul

s→t(Xs, Xt), where
Yt ∈ RTt×hdv . As shown in Eq. 1, the multimodal fusion
occurs by attending to the correlated elements of the source

modality. Yt will be used to reinforce the target modality
features. We refer the readers to [18] for more details.

3.3. Motivation

In the crossmodal attention operation, WKs
and WQt

first project the elements of the source and target modalities
into the common space as Ks ∈ RTs×dk and Qt ∈ RTt×dk ,
respectively (see Fig. 1). The crossmodal correlations be-
tween elements are then explored by comparing Ks and
Qt in the common space. However, unlike self-attention
in the standard Transformer, the queries and keys herein
are computed from different modalities. Due to the hetero-
geneities across different modality features, there will ex-
ist a clear distribution mismatch between Ks and Qt, i.e.,
P(Ks) ̸= P(Qt). Similar to the troubles in domain adap-
tation, the distribution mismatch will make the crossmodal
correlations observed from the common space unreliable.
For example, two elements which should be related may
have a large distance over the common space or vice versa
due to the distribution mismatch between the queries and
keys (see Fig. 1). Motivated by this observation, we won-
der whether better crossmodal correlations can be modeled
by aligning the distribution discrepancy across modalities
and propose the MICA approach towards multimodal fu-
sion from asynchronous multimodal sequences.

3.4. Modality-invariant crossmodal attention

Network backbone. As in [18], the original sequences are
first preprocessed by a 1D temporal convolutional layer and
a positional embedding augment opertaion. The features
of different modalities are enforced to have the same di-
mension by controlling the kernel size of the 1D convolu-
tional operation used for each modality. We use the nota-
tions Z{L,V,A} ∈ RT{L,V,A}×d to represent the preprocessed
sequences. Z{L,V,A} ∈ RT{L,V,A}×d will be used as the in-
puts of the Transformer network. Fig. 2 displays the overall
architecture of the proposed approach. The backbone is al-
most similar to the MulT model. In the network, multiple
stacks of pairwise and bidirectional crossmodal attention
blocks are used to update the sequences. Each crossmodal
attention block reinforces a target modality by attending to
the correlated elements of a source modality based on the
attention mechanism (see Fig. 3(b) of [18]). We then pass
the reinforced sequences of each modality through a self-
attention transformer and concatenate them as the repre-
sentation for downstream prediction tasks. Several fully-
connected layers are used to make the final prediction. The
model is trained in an end-to-end manner.

We note that our network backbone has a small differ-
ence with the MulT model. Denote by Z

[i]
s1→t ∈ RTt×d and

Z
[i]
s2→t ∈ RTt×d the modalities of t reinforced by the modal-

ities of s1 and s2, respectively, where s1, s2, t ∈ {L, V,A}.
The superscript [i] represents the i-th layer. After being
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Figure 2. (a) The overall architecture of the proposed MICA approach. The dotted line represents propagating the crossmodal correlations
across the network layers via the weight matrix V[i]. The notation CA

[i]
s→t, where s, t ∈ {L, V,A}, denotes the crossmodal attention

blocks. (b) The distribution alignment operation in the crossmodal attention block CA
[i]
s→t. The distribution mismatch is aligned over the

common space of queries and keys computed from different modalities.

reinforced by the crossmodal attention block, Z [i]
s1→t and

Z
[i]
s2→t are merged via the following gate:

G
[i]
t = sigmoid(Z

[i]
s1→t ·W

[i]
s1→t + Z

[i]
s2→t ·W

[i]
s2→t + b

[i]
t ),

Z
[i+1]
t = G

[i]
t ⊙ Z

[i]
s1→t + (1−G

[i]
t )⊙ Z

[i]
s2→t,

where W
[i]
s1→t ∈ Rd×d, W [i]

s2→t ∈ Rd×d, and b
[i]
t ∈ RTt×d

are learnable parameters. Z
[i]
s1→t and Z

[i]
s2→t are merged

with different proportions determined via the learnable pa-
rameters. Z [i+1]

t will be input into the crossmodal attention
blocks of the next layer. Unlike the MulT model in which
Z

[i]
s1→t and Z

[i]
s2→t flow separately and are concatenated to-

gether at the final stage, the merge of Z [i]
s1→t and Z

[i]
s2→t at

intermediate layers can promote the effective cooperation
between the crossmodal attention blocks which focus on the
same target modality (e.g., CA[i]

V→L and CA
[i]
A→L in Fig. 2)

and make the multimodal fusion more efficient.
Model overview. As discussed in Section 3.3, the cross-
modal attention will suffer from the distribution discrep-
ancy across different modality features. Hence, our ap-
proach mainly focuses on aligning the distribution discrep-
ancy across modalities. To this end, we enforce modality-
invariance on the common space of the queries and keys
which are computed from different modalities. Crossmodal
attention is then performed over the modality-invariant
space in which the distribution mismatch between different
modalities is already bridged.

In general, the distribution discrepancy across modalities
lies in two aspects. One is the mismatch of the marginal dis-
tribution. The other is the element-level mismatch, e.g., two
elements with actual correlations may be projected far away
from each other. Hence, our approach bridges the distribu-
tion discrepancy in two ways. For the former, we reduce
the MMD metrics between the queries and keys in each
crossmodal attention unit. The element-level mismatch is
aligned via our proposed PEA approach. Denote by Lp the
cross-entropy loss of the downstream prediction task, Lm

the alignment loss for the marginal distribution, and Le the
element-level alignment loss. The overall objective can be
represented as follows:

L = Lp + αLm + βLe,

where α and β are the trade-off parameters that weigh the
importance of the corresponding terms. Lm and Le are for-
mulated as follows.
Marginal distribution alignment. With s, t ∈ {L,A, V },
we represent the element representations of the source and
target modalities involved in the crossmodal attention oper-
ation CM

[i]
s→t as z[i]

s ∈ Rd×1 and z
[i]
t ∈ Rd×1, respectively.

CM
[i]
s→t will project z[i]

s and z
[i]
t into a common space as

keys and queries, respectively:

k[i]
s = W

[i]
Ks

T
z[i]
s , q

[i]
t = W

[i]
Qt

T
z
[i]
t ,

where W [i]
Ks

,W
[i]
Qt

∈ Rd×dk . The marginal distribution mis-
match is bridged by performing the MMD alignment over
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the common space of k[i]
s and q

[i]
t . To this end, we map k

[i]
s

and q
[i]
t into a Reproducing Kernel Hilbert Space (RKHS)

endowed with a characteristic kernel and measure the dis-
tribution difference via two-sample test:

ℓ
[i]
s,t =

∥∥∥Ez
[i]
s
[ϕ(k[i]

s )]− E
z
[i]
t
[ϕ(q

[i]
t )]

∥∥∥2
H
,

where ϕ(.) denotes the mapping to RKHS H. Denote by ns

and nt the total number of the elements in the source and
target modalities, respectively. The empirical estimation of
ℓ
[i]
s,t is computed by

ℓ̂
[i]
s,t =

1

n2
s

ns∑
m=1

ns∑
n=1

K(k[i]
s,m, q[i]

s,n) +
1

n2
t

nt∑
m=1

nt∑
n=1

K(k
[i]
t,m, q

[i]
t,n)

− 2

nsnt

ns∑
m=1

nt∑
n=1

K(k[i]
s,m, q

[i]
t,n),

where K(. , .) represents the kernel function. In our ap-
proach, the MMD alignment is performed in the crossmodal
attention blocks of each layer. Denote by D the number of
Transformer layers. Lm can be formulated as follows:

Lm =

D∑
i=0

∑
s,t∈{L,V,A},s̸=t

ℓ̂
[i]
s,t .

Propagated element-level alignment. The element-level
alignment mainly focuses on bridging the distribution mis-
match of the elements with actual correlations. How-
ever, the actual crossmodal correlations between elements
are unknown for the asynchronous multimodal sequences.
To address this problem, we leverage the information
revealed from the crossmodal attention operations, i.e.,
softmax(

QtK
T
s√

dk
) in Eq. 1. Specifically, this matrix esti-

mates the probability that two elements from the sequences
of different modalities have an actual correlation. If two
elements have a large probability of being correlated, we
can assume that there exists an actual corresponding rela-
tion between them. Immediately, we reduce the L2 distance
between the corresponding query and key vectors:

d
[i]
j,s,t =

Tt∑
n=1

Ts∑
m=1

W[i]
n,m ·

∥∥∥q[i]
j,t,n − k

[i]
j,s,m

∥∥∥2 ,
with the weight W[i]

n,m computed by

W[i] := softmax(
Q

[i]
t K

[i]
s

T

√
dk

) > γ,

where γ is the threshold dynamically set to the probability
ranked at τ ∗ Ts ∗ Tt in the matrix softmax(

QtK
T
s√

dk
). The

selection rate τ ∈ [0, 1] is a pre-defined hyper-parameter.

We note that k[i]
j,s,m and q

[i]
j,t,n are from the sequences of the

same training sample (denoted by the subscript j).
This shares a similar idea of the common self-learning

approach [28, 29]. Beyond self-learning, however, our ap-
proach further draws attentions on the inconsistency cross
the network layers. In practice, the crossmodal attention op-
erations of different layers can model different correlations
between elements. For example, the crossmodal correla-
tions modeled in a previous layer may not be observed in the
subsequent layers. As a result, the element-level alignment
can be inconsistent across the network layers. To address
this issue, our approach propagates the information of the
crossmodal correlations across the network layers via the
weight matrix V[i]: V[l] =

⋃l
i=0 W

[i]. The element-level
alignment loss is then weighed by V

[l]
n,m instead of W[i]

n,m:

d
[i]
j,s,t =

Tt∑
n=1

Ts∑
m=1

V[i]
n,m ·

∥∥∥q[i]
j,t,n − k

[i]
j,s,m

∥∥∥2 . (2)

Note that V[0] is initialized as W[0]. Weighed by V
[l]
n,m,

the elements with high-confidence correlations in a previ-
ous layer will also participate in the element-level alignment
loss of the subsequent layers. This strategy can enforce
consistency across the network layers and guide the Trans-
former model to progressively model more reliable cross-
modal correlations between elements. With d

[i]
j,s,t defined in

Eq. 2, the Le loss can be formulated as follows:

Le =

N∑
j=1

D∑
i=0

∑
s,t∈{L,V,A},s̸=t

d
[i]
j,s,t,

where N represents the number of training samples.

4. Experiments
4.1. Experimental setup

We conduct experiments on three standard bench-
marks of multimodal video understanding, including CMU-
MOSI [24], CMU-MOSEI [23] and IEMOCAP [2]. These
benchmarks mainly focus on human multimodal emotion
recognition which requires to perform an efficient multi-
modal sequence fusion. The common protocol of the previ-
ous works [18, 19, 22] is adopted in our experiments.
CMU-MOSI is a dataset consisting of 2,199 samples of
short monologue video clips [24]. Its predetermined data
partition has 1,284 samples in the training set, 229 in the
validation set, and 686 in the testing set. Each sample is
labeled with a sentiment score ranging from -3 (very nega-
tive) to 3 (very positive). The acoustic and visual sequences
are extracted at the receiving frequency of 12.5 and 15 Hz,
respectively. As in the previous works [18, 19], the per-
formance is evaluated by the 7-class accuracy (i.e., Acc7),
binary accuracy (i.e., Acc2) and F1 score.
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Table 1. The hyperparameter settings adopted in each benchmark.

Setting CMU-
MOSEI

CMU-
MOSI IEMOCAP

Optimizer Adam Adam Adam
Batch size 64 64 32

Epoch number 120 120 80
Learning rate 5e-4 1e-3 1e-3
Feature size d 40 40 40

Attention head h 10 8 10
Selection rate τ 0.3 0.25 0.25

tradeoff parameter α 0.8 0.8 0.7
tradeoff parameter β 0.5 0.5 0.5
Kernel size (L/V/A) 3/3/3 3/3/3 3/3/5
Transformer layer D 6 4 4

Table 2. Comparison on the CMU-MOSI benchmark. The super-
script † indicates that a manual alignment process is needed.

Method Acc7(%) Acc2(%) F1(%)
EF-LSTM 31.0 73.6 74.5
LF-LSTM 33.7 77.6 77.8
MFM† [19] 36.2 78.1 78.1
RAVEN [22] 31.7 72.7 73.1
MCTN [15] 32.7 75.9 76.4
MulT [18] 39.1 81.1 81.0

MICA (ours) 40.8 82.6 82.7

CMU-MOSEI is a dataset made up of 22,856 samples of
movie review video clips [23]. Its predetermined data par-
tition has 16,326 samples in the training set, 1,871 in the
validation set, and 4,659 in the testing set. As in the above
setting, the CMU-MOSEI samples are also labeled with the
sentiment scores ranging from -3 to 3. The acoustic and vi-
sual sequences are extracted at the receiving frequency of
20 and 15 Hz, respectively. The performance metrics are
the same to the ones used in the above setting.

IEMOCAP is a dataset consisting of 4,453 samples of
video clips [2]. Its predetermined data partition has 2,717
samples in the training set, 798 in the validation set, and
938 in the testing set. The acoustic and visual sequences are
extracted at the receiving frequency of 12.5 and 15 Hz, re-
spectively. Different from CMU-MOSI and CMU-MOSEI,
this benchmark mainly focuses on multi-label learning [22].
The models are required to recognize 4 emotion classes
(i.e., happy, sad, angry and neutral) from video clips. As
in the previous works [19, 22], the performance is evalu-
ated by the binary classification accuracy and the F1 score
for each emotion class.

4.2. Implementation details

To extract features of the visual modality, the Facet
model is used to preprocess the video frames [1]. For each
video frame, 35 facial action units are generated to repre-

Table 3. Comparison on the CMU-MOSEI benchmark. The super-
script † indicates that a manual alignment process is needed.

Method Acc7(%) Acc2(%) F1(%)
EF-LSTM 46.3 76.1 75.9
LF-LSTM 48.8 77.5 78.2

GMFN† [24] 45.0 76.9 77.0
RAVEN [22] 45.5 75.4 75.7
MCTN [15] 48.2 79.3 79.7
MulT [18] 50.7 81.6 81.6

MICA (ours) 52.4 83.7 83.3

sent the facial muscle movement. For the textual modality,
the pre-trained Glove model is used to convert the video
transcripts [14]. Each textual word is represented by a 300-
dimensional word embedding. The COVAREP model is
used to extract the acoustic features [4]. The dimension of
the acoustic features is 74.

The hyperparameters adopted in each benchmark are dis-
played in Table 1. The kernel size is set for the 1D tem-
poral convolutional operation used to preprocess the input
sequence of each modality. The hyper-parameters are de-
termined via the validation set.

4.3. Experimental Results

Baselines. We compare our approach with the re-
cent state-of-the-art works for multimodal sequence fu-
sion, including Early Fusion LSTM (EF-LSTM), Late
Fusion LSTM (LF-LSTM), Multimodal Factorization
Model (MFM) [19], Graph Multimodal Fusion Network
(GMFN) [24], Recurrent Attended Variation Embedding
Network (RAVEN) [22], Multimodal Cyclic Transla-
tion Network (MCTN) [15] and Multimodal Transformer
(MulT) [18]. Of these, MFM and G-MFN require a manual
process to align the asynchrony across modalities. RAVEN
and MCTN can be applicable for multimodal fusion from
asynchronous multimodal sequences by including an addi-
tional Connectionist Temporal Classification (CTC) loss [7]
into the their learning objectives. MulT and LF-LSTM are
directly applicable for asynchronous multimodal sequences.
Performance comparison. We report the experimental re-
sults of each baseline in Table 2 - 4. In general, three obser-
vations can be drawn as follows. First, we can obtain the
state-of-the-art results on the adopted benchmarks which
involve multimodal fusion from asynchronous multimodal
sequences. Second, our approach outperforms MFM and
GMFN without manually aligning the asynchronous multi-
modal sequences. Finally, our approach has a clear perfor-
mance improvement compared with the MulT model. Com-
pared with MulT, the improvement of our approach is sig-
nificant for all the metrics in each benchmark (p < 0.05).

For a more fair comparison between our approach and
MulT, we also conduct experiments by controlling the num-
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Table 4. Comparison on the IEMOCAP benchmark in terms of the binary classification accuracy and the F1 score for each emotion class.

Method
Happy Sad Angry Neutral

Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%)
EF-LSTM 76.2 75.7 70.2 70.5 72.7 67.1 58.1 57.4
LF-LSTM 72.5 71.8 72.9 70.4 68.6 67.9 59.6 56.2

RAVEN [22] 77.0 76.8 67.6 65.6 65.0 64.1 62.0 59.5
MCTN [15] 80.5 77.5 72.0 71.7 64.9 65.6 49.4 49.3
MulT [18] 84.8 81.9 77.7 74.1 73.9 70.2 62.5 59.7

MICA (ours) 86.8 83.9 79.3 75.2 75.7 72.4 63.7 61.6
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Figure 3. Sensitivity analysis on the CMU-MOSEI benchmark. The results are obtained by varying the value of the corresponding hyper-
parameter, while fixing the other hyper-parameters to the values adopted in the experiments.

Table 5. Ablation study results on the CMU-MOSEI benchmark.
The notations “MMD align” and “PE align” denote the marginal
distribution alignment and propagated element-level alignment,
respectively. The results are averaged over 5 runs.

Model design Acc7(%) Acc2(%) F1(%)

Backbone w/o align 51.1±0.14 81.9±0.26 81.9±0.21

MMD align 52.0±0.11 83.2±0.17 82.9±0.21

MMD align + PE
align (full model) 52.4±0.03 83.7±0.12 83.3±0.13

MMD align + PE
align w/o propagation 52.2±0.04 83.4±0.13 83.0±0.16

Table 6. Analysis of cross-modal alignment on CMU-MOSEI.
The A-distance is estimated between the queries and keys from
the last transformer layer. The notation “Corr. Acc” denotes the
accuracy of the modeled cross-modal element-level correlations.
The results are obtained from the testing data.

Model design A-distance Corr. Acc(%)

MulT w/o align 1.63 80.4

Backbone w/o align 1.69 81.8

MICA 1.37 86.7

ber of epochs and transformer layers. The results further
demonstrate the effectiveness of our approach (see Table A1
of the supplementary).

4.4. Analysis

Ablation study. We conduct the the ablation study on the
CMU-MOSEI benchmark and report the results in Table 5.
The first row displays the performance of the backbone

model. We can see that our backbone network can obtain
better performance than the original MulT model. This ob-
servation supports the effectiveness of the merging gate in-
corporated in each layer of the backbone network. In the
next two rows, the marginal distribution alignment loss and
the propagated element-level alignment loss are gradually
included into the model. It is clear that both of them im-
prove the performance effectively. This observation clearly
demonstrates the necessity of the distribution alignment
proposal. With the distribution mismatch between differ-
ent modalities well bridged, the attention mechanism can be
more suitable for modeling the crossmodal correlations be-
tween elements. Furthermore, we remove the propagation
mechanism from the element-level alignment loss and im-
plement Eq. 2 by replacing V

[i]
n,m with W

[i]
n,m. As reported

in the last row, the performance improvement of the stan-
dard element-level alignment is limited. Without the propa-
gation mechanism, the element-level distribution alignment
will be inconsistent across different network layers. The
propagation strategy can enforce consistency across the net-
work layers and guide the Transformer network to progres-
sively learn more reliable crossmodal correlations.

We also provide the ablation study results on the standard
MulT backbone in the supplementary. The alignment losses
are also effective on the original MulT (see Table A2).

Distribution discrepancy. We further conduct the analysis
on the problem of distribution discrepancy pointed in this
paper. From Table 6, we can see that the proposed align-
ment losses can help to reduce the A-distance (i.e., a com-
mon measure of domain discrepancy) between queries and
keys computed from different modalities, as well as model
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Figure 4. Visualization analysis of the modeled crossmodal dependencies between elements in the CMU-MOSI benchmark. The visualiza-
tion cases of the full MICA approach and the non-alignment backbone are shown in the upper part and the bottom part, respectively. The
textual words displayed above each video frame are the corresponding spoken words. The results are from the crossmodal attention unit of
the fourth Transformer layer.

significantly better cross-modal correlations between ele-
ments (the manual element-level alignment is used as the
ground truth). Without the alignment losses, the modeled
cross-modal correlations are much worse. This observation
supports that the alignment losses improve the performance
by modeling better cross-modal correlations.

Sensitivity analysis. Moreover, the sensitivity analysis for
hyper-parameters is conducted on CMU-MOSEI, in order
to verify the robustness of our approach. The tested hyper-
parameters include the trade-off parameters α for the Lm

loss, the trade-off parameters β for the Le loss, and the se-
lection rate τ in element-level distribution alignment. In
particular, the sensitivity analysis is conducted by varying
the value of the corresponding hyper-parameter, while fix-
ing the other hyper-parameters to the values adopted in the
experiments. We display the sensitivity analysis results in
Fig.3. It is clear that the performance of the proposed ap-
proach is not sensitive to the values of the hyper-parameters.

Qualitative analysis. Finally, we display the visualization
examples of the modeled crossmodal dependencies between
elements in the CMU-MOSI benchmark. From Fig. 4, we
can see that our approach models a reasonable correlation
between the video frames and the spoken words. The emo-
tion related words successfully attend to the video frames
which contains the corresponding facial expression. On the
other hand, the crossmodal correlations modeled in the non-

alignment backbone are meaningless.

5. Conclusion

This work proposes the modality-invariant crossmodal
attention approach towards learning the crossmodal inter-
actions between elements from asynchronous multimodal
sequences in videos. Our approach draws attentions on the
distribution shift problem in Transformer caused by the het-
erogeneities across different modalities. To model better
crossmodal correlations, we propose to perform crossmodal
attention over modality-invariant space where the distribu-
tion shift across modalities is bridged. Both the marginal
distribution mismatch and the element-level mismatch are
considered. Experiments on different benchmarks clearly
support the superiority of our approach.
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