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Abstract

State of the art (SOTA) few-shot learning (FSL) methods
suffer significant performance drop in the presence of do-
main differences between source and target datasets. The
strong discrimination ability on the source dataset does not
necessarily translate to high classification accuracy on the
target dataset. In this work, we address this cross-domain
few-shot learning (CDFSL) problem by boosting the gen-
eralization capability of the model. Specifically, we teach
the model to capture broader variations of the feature dis-
tributions with a novel noise-enhanced supervised autoen-
coder (NSAE). NSAE trains the model by jointly recon-
structing inputs and predicting the labels of inputs as well
as their reconstructed pairs. Theoretical analysis based
on intra-class correlation (ICC) shows that the feature em-
beddings learned from NSAE have stronger discrimination
and generalization abilities in the target domain. We also
take advantage of NSAE structure and propose a two-step
fine-tuning procedure that achieves better adaption and im-
proves classification performance in the target domain. Ex-
tensive experiments and ablation studies are conducted to
demonstrate the effectiveness of the proposed method. Ex-
perimental results show that our proposed method consis-
tently outperforms SOTA methods under various conditions.

1. Introduction
After years of development, deep learning methods have

achieved remarkable success on visual classification tasks

[17, 37, 21, 30]. The outstanding performance, however,

heavily relies on large-scale labeled datasets [5]. Mean-

while, although some large-scale public datasets, e.g. Ima-

geNet [9], have made it possible to achieve better than hu-

man performance on common objects recognition, practical

applications of visual classification systems usually target

at categories whose samples are very difficult to collect, e.g.

∗Equal contribution with alphabetical order. †Work done as an intern
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Figure 1: Motivation illustration. Visualization of feature

embeddings by a less-generalized feature extractor fa and a

well-generalized feature extractor fb cross source and target

domains.

medical images. The scarcity of data limits the generaliza-

tion of current vision systems. Therefore, it is essential to

learn to generalize to novel classes with a limited number of

labeled samples available in each class. Cross-domain few-

shot learning (CDFSL) is proposed to recognize instances

of novel categories in the target domain with few labeled

samples. Different from general few-shot learning(FSL)

where large-scale source dataset and few-shot novel dataset

are from the same domain, target dataset and source dataset

under CDFSL setting come from different domains, i.e. the

marginal distributions of features of images in two domains

are quite different [49].

Much work has been done to solve FSL problem and ob-

tained promising results [41, 14, 35, 36, 11, 33, 43]. How-

ever, [6, 16] show that the state-of-the-art (SOTA) meta-

learning based FSL methods fail to generalize well and per-

form poorly under CDFSL setting. It is therefore of great
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importance to improve the generalization capability of the

model and address the domain shift issue from source to tar-

get domains. [39] proposes to add a feature-transformation

layer to simulate various distributions of image features in

training. However, this method requires access to a great

amount of data from multiple domains during training. [47]

combines the FSL learning objective and the domain adap-

tation objective, while their basic assumption that source

and target domain have identical label sets limits its applica-

tion. [16] experimentally shows that the traditional transfer

learning methods can outperform meta-learning FSL meth-

ods by a large margin on the benchmark. In these methods,

a feature extractor is pre-trained on the source dataset and

then fine-tuned on the target dataset with only a few labeled

samples. Following this thread, [26] proposes to regular-

ize the eigenvalues of the image features to avoid negative

knowledge transfer.

In this work, our observation is that generalization capa-

bility plays a vital role for representation learning in cross-

domain settings. As the feature distributions of different

domains are distinct, a competent feature extractor on the

source domain does not necessarily lead to good perfor-

mance on the target domain. It may overfit to the source

domain and fail to generalize in the target domain. Fig. 1(a)

shows an example of a less-generalized feature extractor

fa that fits the source dataset very well and achieves high

performance in downstream classification task. When the

model is transferred to a different target domain, as shown

in Fig. 1(c), the corresponding feature embeddings of differ-

ent classes may become less discriminative or even insepa-

rable. On the other hand, a less perfect feature extractor fb
on the source domain (Fig. 1(b)), may have stronger gen-

eralization capability and obtain more discriminative fea-

ture embeddings in the target domain (Fig. 1(d)). Under

this intuition, we focus on boosting the generalization ca-

pability of the transfer learning based methods, and inves-

tigate a multi-task learning scheme that shows the potential

to improve generalization performance in [22]. Specifically,

we propose a novel noise-enhanced supervised autoencoder

(NSAE) that takes more than classification tasks and learns

the feature space in discriminative and generative manners.

We take advantage of the NSAE structure in the following

aspects. First of all, it is shown in [22] that a supervised

autoencoder can significantly improve model generalization

capability. We develop the model to jointly predict the la-

bels of inputs and reconstruct the inputs. Secondly, moti-

vated by the observation that “the addition of noise to the

input data of a neural network during training can, in some

circumstances, lead to significant improvements in general-

ization performance” [31, 2, 1], we consider reconstructed

images as noisy inputs and feed them back to the system.

The joint classifications based on reconstructed and origi-

nal images further improve the generalization capability and

avoid the necessity of designing a mechanism to add hand-

crafted noises. Thirdly, we develop a two-step fine-tuning

procedure to better adapt model to the target domain. Be-

fore tuning with the supervised classification method, we

first tune model on the target domain in an unsupervised

manner by learning to reconstruct images in novel classes.

Furthermore, theoretical analysis based on inter-class corre-

lation (ICC) suggests that our intuition in Fig. 1 holds statis-

tically in CDFSL settings. Last but not the least, we claim

that our proposed method can be easily added to existing

transfer learning based methods to boost their performance.

Our major contributions are summarized as follows:

• To the best of our knowledge, our work is the first work

that proposes to use supervised autoencoder frame-

work to boost the model generalization capability un-

der few-shot learning settings.

• We propose to take reconstructed images from autoen-

coder as noisy inputs and let the model further predict

their labels, which proves to further enhance the model

generalization capability. The two-step fine-tuning

procedure that does reconstruction in novel classes bet-

ter adapts model to the target domain.

• Extensive experiments across multiple benchmark

datasets, various backbone architectures, and differ-

ent loss function combinations demonstrate the effi-

cacy and robustness of our proposed framework under

cross-domain few-shot learning setting.

2. Related work
Few-Shot learning FSL aims at recognizing examples from

novel categories with a limited number of labeled sam-

ples in each class. Meta-learning scheme for FSL receives

much attention for its efficiency and simplicity. Existing

meta-learning based methods can be classified into two gen-

eral classes: the metric-based approaches [41, 14, 35, 36]

that classify query images based on the similarity of fea-

ture embedding between query images and a few labeled

images (support images), and the optimization-based ap-

proaches [11, 33, 43] that integrate the task-specific fine-

tuning and pre-training into a single optimization frame-

work. However, it is shown in [6, 16] that these SOTA

methods for FSL underperform simple fine-tuning when the

novel classes are from a different domain. Past works[8, 15]

explore involving self-supervised learning scheme to obtain

more diverse and transferable visual representations in few-

shot learning. They fail to consider the domain-shift issue

within the CDFSL settings.

Domain adaption The technique of domain adaption [44]

is usually applied to solve the domain shift issue. It aims at

learning a mapping from the source domain to the target do-

main so that the model trained on the source domain can be
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applied to the target domain. However, there are some lim-

itations of domain adaption that hinder its use in CDFSL.

First, most domain adaption framework [12, 13, 18, 38]

aims at learning the mapping under the same class. For ex-

ample, learn the mapping from cartoon dogs to picture of

an actual dogs. This does not fit into the FSL setting where

the source and target domain have different classes. There

are some existing works such as [10, 25] that consider the

domain adaption technique under FSL settings. However,

these approaches require a large set of unlabeled images in

the target domain, which may be very difficult or even un-

realistic in practice, e.g.X-ray and fMRI images.

Domain generalization Domain generalization methods

differ from domain adaption in that they aim to generalize

from a set of source domains to the target domains with-

out accessing instances from the target domain during the

training stage [39]. Past work to improve model general-

ization capability includes extracting domain-invariant fea-

tures from various seen domains [27, 3, 24], decomposing

the classifiers into domain-specific and domain-invariant

components [19, 23], and augmenting the input data with

adversarial learning [34, 42]. However, these methods re-

quire access to multiple source domains during training.

Meta-learning methods achieve domain generalization by

simulating testing scenarios in source domains during train-

ing, but they perform poorly when there is a domain-shift

from source domain to target domain [6, 16].

Transfer learning Transfer learning is a more general term

for methods in which different tasks or domains are in-

volved. One traditional transfer learning approach is the

simple fine-tuning. In the simple fine-tuning, a model is

trained on the source dataset and the pre-trained model is

then used as initialization to train the model on the target

dataset. It is shown in [6, 16] that the simple fine-tuning can

outperform all SOTA FSL methods under CDFSL setting.

However, when the model overfits to the source domain,

the fine-tuning performs worse than directly train the same

model from random initialization. This is called negative

transfer [7]. To avoid negative transfer and further improve

the performance of simple fine-tuning under CDFSL, [26]

proposes a batch spectral regularization (BSR) mechanism

by penalizing the eigenvalues of the feature matrix.

3. Methodology

3.1. Preliminaries

Problem formulation In the cross-domain few-shot learn-

ing (CDFSL), we have a source domain Ts and a target do-

main Tt that have disjoint label sets. There exists a domain-

shift between Ts and Tt [49]. The source domain has a

large-scale labeled dataset Ds while the target domain only

has limited labeled images. Our method first pre-trains the

model on the source dataset and then fine-tunes on the target

dataset. Each “N-way K-shot” classification task in target

domain contains a support dataset Ds
t and a query dataset

Dq
t . The support set contains N classes with K labeled im-

ages in each class and the query set contains images from

the same N classes with Q unlabeled images in each class.

The goal of CDFSL is to achieve a high classification accu-

racy on the query set Dq
t when K is small.

Supervised autoencoder The autoencoder is a model that

is usually used to obtain low-dimensional representations

in an unsupervised manner. An autoencoder is composed

of an encoder fφ that encodes the input x to its lower-

dimensional representation x̃ = fφ(x). Then, a decoder

gψ decodes the representation x̃ to x̂ = gψ(x̃) which is a

reconstruction of input x. The goal of the autoencoder is to

minimize the difference between the input x and its recon-

struction x̂ and the reconstruction loss is formulated as

LREC(φ, ψ;x) = ‖x− x̂‖2. (1)

When the labels of the inputs are available, the super-

vised autoencoder (SAE) [22] that jointly predicts the class

label and reconstructs the input is proved to generalize well

for downstream tasks. In the SAE, the representation x̃ is

fed into a classification module for label prediction and the

loss function is

Lλ,clsSAE (φ, ψ;x, y) = Lcls(x̃, y) + λLREC(φ, ψ;x) (2)

where Lcls is a loss function for classification and λ is a

hyper-parameter that controls the reconstruction weight.

3.2. Overview

Under CDFSL setting, [16] shows that the traditional

transfer learning based methods outperform all FSL meth-

ods. In the traditional transfer learning based method, a fea-

ture extractor is first pre-trained on the Ds with sufficient

labeled images by minimizing the classification loss Lcls-P.

Then the pre-trained feature extractor is fine-tuned on the

target domain support set Ds
t by minimizing the classifica-

tion loss Lcls-F. Note that the loss functions Lcls-P during the

pre-training and Lcls-F during the fine-tuning may be dif-

ferent. Considering the superior performance of traditional

transfer learning method on CDFSL, we use the transfer

learning pipeline in our work. Motivated by the generaliza-

tion capability of SAE and the generalization enhancement

by feeding noisy inputs, we propose to boost the generaliza-

tion capability of model via a noise-enhanced SAE (NSAE).

To achieve this, we train a SAE that learns the feature space

in generative and discriminative manners. NSAE not only

predicts the class labels of the inputs but also predicts the

labels of the “noisy” reconstructions. We also leverage the

NSAE to perform domain adaption during the fine-tuning.

Specifically, it is tuned to reconstruct target domain images

before tuned to do classification task. An overview of our
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Figure 2: An overview of the proposed pipeline. A noise-enhanced supervised autoencoder (NSAE) is pre-trained with

source dataset on the source domain to improve the generalization capability. The fine-tuning on the target domain is a two-

step procedure that first performs reconstruction task on novel dataset, and then the encoder is fine-tuned for classification.

proposed pipeline is depicted in Fig. 2. A detailed explana-

tion is given in the following sections.

3.3. Pre-train on the source domain

To borrow information from the source domain, the first

step is to train a feature encoder on the large-scale source

domain. Instead of training a single feature encoder, we

propose to train a NSAE on the source domain. Let Ds =
{(xsm, ysm),m = 1, 2, · · · ,M} be the source dataset where

M denotes the number of classes, and let fφ and gψ be

the encoder and decoder respectively. The input images

are fed into fφ to extract the feature representations which

are fed into gψ to reconstruct the original inputs. Mean-

while, the feature representations are also fed into a classi-

fication module to predict the class labels of inputs. In our

formulation, the reconstructed images are seen as “noisy”

inputs which are further fed back into the encoder for clas-

sification. The NASE is trained to reconstruct the input im-

ages and predict the class labels of both original and re-

constructed images. The loss function of NSAE during the

pre-training is

LNSAE(φ, ψ;Ds) =
1

M

M∑
m=1

Lλ1,cls-P
SAE (φ, ψ;xsm, y

s
m)

+
λ2
M

M∑
m=1

Lcls-P(θ; fφ(x̂
s
m), ysm)

(3)

where Lcls-P is some classification loss and LSAE is given

in (2). The second term is the classification loss of recon-

structed images. The classification loss functions for the

original inputs and the reconstructed images are the same.

λ1 and λ2 are two hyper-parameters that control the weights

of losses.

We show in the ablation study that the use of the classifi-

cation loss based on the reconstructed images is indispens-

able which further improves the generalization capability of

the feature encoder.

3.4. Fine-tune on the target domain

The second stage is to fine-tune the pre-trained model

on the target domain where only a very limited number of

labeled examples are available. Based on the nature of our

autoencoder architecture, we propose a two-step procedure

for domain adaptation to the target domain.

Let Ds
t = {(xij , yij); i = 1, 2, . . . , N, j = 1, . . . ,K}

be the support set on the target domain. In the first step, we

leverage the autoencoder architecture and propose to per-

form domain adaption by reconstructing the support images

for certain epochs. The model aims at minimizing recon-

struction loss
∑
i,j LREC(φ, ψ;xij). In the second step of

the fine-tuning, only the encoder is used to fine-tune on

Ds
t with the classification loss Lcls-F. We show in the ab-

lation study that such a two-step procedure works better

than purely fine-tuning the encoder with Lcls-F on the tar-

get support set. We refer to them as one-step or two-step

fine-tuning respectively in the following.

In traditional fine-tuning, all the parameters of the en-

coder or the first several layers of the encoder are fixed

when the parameters of the classification module are up-

dated. However, [16] shows that, under the CDFSL setting,

the fine-tuned model can achieve better performance when

the model is completely flexible. Therefore, we update all

parameters of the model during the fine-tuning stage.

3.5. Choices of loss functions

The loss functions Lcls-P and Lcls-F are not specified in

the description above. In fact, they can be any sensible loss

functions for classification. In this paper, we study two loss

functions for Lcls-P in pre-training stage, the first one is the

cross entropy (CE) loss

LCE(W;x, y) = − log

{
exp((Wx)y)∑
c exp((Wx)c)

}
(4)
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where W is the parameters of the linear classifier and (·)c
means the cth element of the corresponding vector. The

second one is the CE loss with batch spectral regularization

(BSR) [26] that regularizes the singular values of the feature

matrix in a batch. This classification loss is referred to as

BSR loss and is given by

LBSR(W) = LCE(W) + λ

b∑
i=1

σ2
i (5)

where σ1, σ2, . . . , σb are singular values of the batch feature

matrix.

In the second step of the fine-tuning stage, we con-

sider the traditional fine-tuning and the distance-based fine-

tuning. In traditional fine-tuning method, a linear classi-

fier on top of the feature extractor is fine-tuned to mini-

mize the CE loss. In the distance-based fine-tuning method,

we follow the simple but effective distance-based classifi-

cation method [35] in FSL, where the images are classified

based on their similarities to the support images. To use

distance-based loss function during the fine-tuning, at each

iteration of the optimization, within each class of Ds
t , we

randomly split half of the images into a pseudo-support set

Dps
t = {(xsij , ysij), i = 1, 2, . . . , N, j = 1, 2, . . . ,K/2}

and the rest to a pseudo-query set Dpq
t = {(xqij , y

q
ij), i =

1, 2, . . . , N, j = 1, 2, . . . ,K/2}. The feature embeddings

of the pseudo-support set and the pseudo-query set based

on the the feature extractor fφ is first obtained. Then the

mean feature embeddings of the pseudo-support images in

the same class

ci =
K

2

K/2∑
j=1

fφ(xij), i = 1, 2, . . . , N (6)

is used to represent the class and is called the class proto-

type. Given a distance function d(·, ·) and a pseudo-query

image x, the classification module produces a distribution

over classes. The probability that x belongs to class k is

given as:

P(y = k|x) = exp(−d(fφ(x), ck))∑
k′ exp(−d(fφ(x), ck′))

(7)

Since the true class labels of the pseudo-query images are

known, the parameter φ can therefore be fine-tuned by max-

imizing the log-likelihood of the images in the query set,

that is

LD(φ) =
∑
i,j

logP(y = yqij |x
q
ij). (8)

It is shown in [35] that the distance-based classifier is effec-

tive. After the feature encoder is fine-tuned with the clas-

sification loss, we use the full support set to build the class

prototypes and then classifies the query image into the class

that has the highest probability in (7). This is equivalent to

classify the query image with the nearest neighbor classi-

fier, the query image is classified to class k if it is closest to

kth class prototype. We use cosine distance for d(·, ·) in our

experiment.

The combination of the two loss functions for Lcls-P and

the two loss functions for Lcls-F leads to 4 different loss

functions respectively named as CE+CE, BSR+CE, CE+D,

and BSR+D. The first acronym is referring to the loss func-

tion for Lcls-P and the second acronym is referring to the loss

function for Lcls-F.

4. Experiments
In this section, we demonstrate the efficacy of our pro-

posed method for CDFSL on benchmark datasets via exten-

sive experiments and ablation studies.

4.1. Experiment setting

Dataset Following the benchmark [16], we use miniIma-
geNet as the source dataset, which is a subset of ILSVRC-

2012 [32]. It contains 100 classes with 600 images in each

class. Following the convention, the first 64 classes are

used as the source domain images to pre-train the model

in our experiment. To evaluate the generalization capabil-

ity of our method, we use 8 different datasets as the tar-

get domains. The first four datasets are the benchmark

datasets proposed in [16]. We refer to these four dataset

as CropDisease, EuroSAT, ISIC, ChestX in the following,

and the similarity of these datasets to mini-ImageNet de-

creases from left to right. We also include another four nat-

ural image datasets, Car [20], CUB [4, 45], Plantae [40],

and Places [48] that are commonly used in CDFSL [39].

Evaluation protocol To make a fair comparison with ex-

isting methods for CDFSL, we evaluate the performance of

the classifiers by simulating 600 independent 5-way few-

shot classification tasks on each target domain dataset. For

each task, we randomly sample 5 classes and within each

class, we randomly select K images as the support set and

15 images as the query set. Following the benchmark [16],

we let K = 5, 20, 50. In 50-shot classification, the Car
dataset has only a few classes that have more than 50 im-

ages, so we do not consider this dataset; the CUB dataset

has 144 out of 200 classes that have more than 60 images

per class, so we sample from these 144 classes and use 10
images per class as query set for 5-way 50-shot evaluation.

Then for each task, we fine-tune the pre-trained model on

the support set and evaluate its performance on the query

set. Transductive inference [16, 28] is used that the statis-

tics of the query images are used in batch normalization. In

total, the pre-trained model is fine-tuned and evaluated for

600 times under each experiment setting, and the average

classification accuracy as well as 95% confidence interval

on the query set is reported.
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Network architecture To illustrate the effectiveness of the

supervised autoencoder, we consider two commonly used

encoder architectures in the experiment, namely Conv4 [41]

and ResNet10 [16]. Besides the difference in network ar-

chitecture, these two networks have different input sizes.

We resize the source and target domain images to 84 × 84
for Conv4 and 224 × 224 for ResNet10. We design differ-

ent decoder architectures for these two encoders. The de-

coders we designed consist of deconvolutional blocks, with

each block containing 2D transposed convolution operator

and ReLU activation, which expand the dimension of the

feature map. To mirror the dimension of the output in the

encoder, we set the hyperparameters in the 2D transposed

convolution layer to be kernelsize = 2 and stride = 2.

The architecture and layer specifications of the autoencoder

can be found in Section 2 of the supplementary material.

Hyper-parameter settings All of our experiments are con-

ducted in pytorch [29]. We use the same set of optimiz-

ers and hyper-parameters for all experiments regardless of

model architecture and the target domain. Specially, in the

pre-training stage, the model is trained from scratch, with

a batch size of 64 for 400 epochs. We use combinations

of random crop, random flip, and color jitter to augment the

source dataset. We let λ1 = λ2 = 1 in (3) and let λ = 0.001
in (5). We optimize our model with stochastic gradient de-

scent(SGD), with a learning rate of 10−3, the momentum

of 0.9, and weight decay of 5 × 10−4. In the fine-tuning

stage, we also use SGD optimization. In the first step, we

use a learning rate of 10−3 and do reconstruction task for

30 epochs. In the second step, we use a learning rate of

10−2, the momentum of 0.9, and weight decay of 10−3 and

fine-tune for 200 epochs. In the distance-based fine-tuning,

as pointed in Section 3.5, half of the support set is used

as pseudo-support set and the other half is used as pseudo-

query set. In the traditional fine-tuning, the batch size of 4

is used for 5 and 20 shot, and 16 for 50 shot.

Data augmentation & label propagation A simple but ef-

fective way in FSL is to supplement the small support set

with hand-crafted data augmentation [26]. The operations

such as random crop, random flip, and color jitter can be

used to augment the dataset. We use the same combination

of operations as shown in Table 1 in [26] when the data aug-

mentation technique is used during the fine-tuning. For the

distance-based fine-tuning, the order of data split and data

augmentation leads to a difference in the training set. In

our experiment, we first augment the support set and then

randomly split the augmented images within the same class

into a pseudo-support set and a pseudo-query set. For the

traditional fine-tuning, we augment the support set and at

each iteration of the fine-tuning, a random batch is selected

to compute the gradient. To further improve the classifica-

tion accuracy, a post-processing method called label prop-

agation [26] is also used in our method. The label propa-

gation refines the predicted labels based on the similarities

within the unlabeled query set.

4.2. Ablation study

To study the effectiveness of our proposed method, we

conduct an ablation study under 5-way 5-shot setting on all

8 datasets with different architectures to show that

(1) with the same classification loss combination, our pro-

posed method boosts generalization capability and ob-

tains consistently better performance on the target do-

main than the traditional transfer learning based meth-

ods for CDFSL;

(2) the noise-enhancement that predicts class labels of re-

constructed images is necessary and can greatly im-

prove the generalization capability during pre-training;

(3) the proposed two-step fine-tuning procedure achieves

better domain adaption and leads to higher classifica-

tion accuracy than the traditional one-step fine-tuning.

The ablation study is conducted using four kinds of

combinations of the classification loss functions for pre-

training and fine-tuning, i.e. CE+CE, BSR+CE, CE+D,

and BSR+D. The average classification accuracy across 8

datasets is visualized in Fig. 3. The results based on two

different encoder architectures, i.e. Conv4 and ResNet10,

are respectively give in Fig. 3 (a) and Fig. 3 (b). The details

of results of 8 datasets under different settings can be found

in Section 3 in supplementary file.

To show (1), we compute the 5-way 5-shot classifica-

tion accuracy when we only train a single encoder on the

source domain and when we train a NSAE on the source

(a) Conv4 (b) ResNet10

Figure 3: Ablation study visualization. The average 5-

way 5-shot classification accuracy over 8 datasets when en-

coder is (a) Conv4 and (b) ResNet10. Within each plot, the

bars are grouped by the classification loss functions dur-

ing pre-training and fine-tuning on x-axis. Our proposed

method NSAE is represented by the green bar.
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domain. These two cases are labeled as ResNet10 (Conv4)

and NSAE in Fig. 3. As is shown in the plot, our proposed

method always has higher classification accuracy regardless

of the encoder architecture and the classification functions.

To show (2), we compare our proposed method with two

extreme cases. The first case is the SAE where we do not

further feed in the reconstructed images for classification

during the pre-training. The second case is the SAE(∗)

where we double the weight on the classification loss of

original images as if the auto-encoder works perfectly that

the reconstructed images are identical to original images.

As shown in the figure, the NSAE surpasses the other two

variants under different settings. It suggests that the classifi-

cation loss based on the reconstructed images is necessary.

Without this loss, the two extreme cases that we compare

with could even be worse than the traditional transfer learn-

ing based methods. We also compare our proposed method

with that when hand-crafted noisy images are used, the re-

sults can be found in the supplementary material Section 4.

To show (3), we train two NSAEs with the same pre-

training method and fine-tune the pre-trained autoencoder

either with a one-step procedure or a two-step procedure as

described in Section 3.4. These two cases are respectively

named as NSAE(-) and NSAE. It is shown in the figure that

the two-step fine-tune procedure also outperforms the one-

step fine-tune procedure.

From the ablation study, we can also see that when the

loss functions during the pre-training and fine-tuning are the

same, the more complex encoder ResNet10 gives a higher

classification accuracy compared with Conv4. When the

pre-training classification loss is CE, using the distance-

based loss function during the fine-tuning gives higher clas-

sification accuracy than using CE loss. However, when us-

ing classification loss BSR during pre-training, we get an

opposite conclusion. Overall, using BSR as classification

loss during pre-training and CE as classification loss during

fine-tuning achieves the highest accuracy.

4.3. Generalization capability analysis

T-SNE visualization To qualitatively show the general-

ization capability of the feature encoder in our proposed

method, we use t-SNE to visualize the feature embeddings

of images from the source and target domain respectively

in first row and second row in Fig. 4. In each plot, we ran-

domly select 5 classes on each domain and visualize the

features of all images in these classes based on different

pre-trained encoders without fine-tuning. We use ResNet10

as encoder structure with CE (1st column) or BSR (3rd

column) classification loss during the pre-training. Our

proposed methods correspond to the figures in the even

columns. As shown in the first row in Fig. 4, since there are

enough training examples on the source domain, all models

exhibit discriminative structures. The feature embeddings

ResNet10+CE ResNet10+CE† ResNet10+BSR ResNet10+BSR†

Figure 4: Feature embedding visualization. The t-SNE

visualizations of the feature embeddings based on the pre-

trained model on the source domain (1st row) and on the

target CropDisease domain (2nd row). The method with †
is our proposed feature extractor.

based on BSR loss are more centered than the CE loss, as

the eigenvalues of the feature maps are regularized during

the training. Moreover, the feature embeddings based on the

NSAE losses have larger within-class variations and smaller

class margins, as the model takes classification and recon-

struction tasks at the same time. On the target domain, as

shown in the second row in Fig. 4, we observe the opposite.

In 1st and 3rd columns, features of different classes become

confused with traditional pre-training. When the NSAE loss

is used, the classes on the target domain becomes more sep-

arable. The within-class variations are smaller and the inter-

class distance becomes larger. This suggests the better gen-

eralization capability of our proposed method.

Statistical analysis of discriminability Moreover, we also

quantitatively measures the discriminability of the feature

embeddings by the intra-class correlation (ICC). The ICC

is defined as the ratio of inter-class variation and the intra-

class variation. Therefore, the larger the ICC, the features

in different classes are more separated or the features within

the same classes are more concentrated. The details of the

definition of ICC are in Section 1 in supplementary file. We

compare the ICC of the features extracted from the tradi-

tionally pre-trained encoder and that based on our proposed

NSAE without fine-tuning. We use two kinds of encoder,

i.e. Conv4 and ResNet10, and two kinds of classification

loss, i.e. CE and BSR, during pre-training. This leads to

four combinations denoted as CE (Conv4), BSR (Conv4),

CE (ResNet10), and BSR (ResNet10). We take the ratio of

the ICCs of the traditionally trained method and that based

on our proposed method. The results are given in Fig. 5(a).

As shown in the figure, the ICC ratios are greater than 1

on the source domain (blue crosses) and smaller than 1 on

the target domain (yellow stars) for all 4 scenarios. This

suggests on the source domain, the feature extractor from

our proposed method is not as discriminative as that trained
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Table 1: Comparison with SOTA methods. The 5-way K-shot classification accuracy on 8 datasets with ResNet10 as the

backbone. Our proposed method with CE+CE and BSR+CE losses are respectively denoted as “NASE†” and “NASE‡”. The

(+) denotes that the data augmentation and label propagation techniques are used.

Methods
ISIC EuroSAT CropDisease ChestX

5-shot 20-shot 50-shot 5-shot 20-shot 50-shot 5-shot 20-shot 50-shot 5-shot 20-shot 50-shot

Fine-tune[16] 48.11±0.64 59.31±0.48 66.48±0.56 79.08±0.61 87.64±0.47 90.89±0.36 89.25±0.51 95.51±0.31 97.68±0.21 25.97±0.41 31.32±0.45 35.49±0.45

NSAE† 54.05±0.63 66.17±0.59 71.32±0.61 83.96±0.57 92.38±0.33 95.42±0.34 93.14±0.47 98.30±0.19 99.25±0.14 27.10±0.44 35.20±0.48 38.95±0.70

BSR[26] 54.42±0.66 66.61±0.61 71.10±0.60 80.89±0.61 90.44±0.40 93.88±0.31 92.17±0.45 97.90±0.22 99.05±0.14 26.84±0.44 35.63±0.54 40.18±0.56

NSAE‡ 55.27±0.62 67.28±0.61 72.90±0.55 84.33±0.55 92.34±0.35 95.00±0.26 93.31±0.42 98.33±0.18 99.29±0.14 27.30±0.42 35.70±0.47 38.52±0.71

LMMPQS[46] 51.88±0.60 64.88±0.58 69.46±0.58 86.30±0.53 92.59±0.31 94.16±0.28 93.52±0.39 97.60±0.23 98.24±0.17 26.10±0.44 32.58±0.47 38.22±0.52

NSAE†(+) 54.86±0.67 66.53±0.60 72.00±0.60 87.04±0.51 93.89±0.30 96.55±0.29 95.65±0.35 99.10±0.16 99.67±0.12 27.58±0.47 37.12±0.52 40.74±0.73

BSR(+) 56.82±0.68 67.31±0.57 72.33±0.58 85.97±0.52 93.73±0.29 96.07±0.30 95.97±0.33 99.10±0.12 99.66±0.07 28.50±0.48 36.95±0.52 42.32±0.53
NSAE‡(+) 56.85±0.67 67.45±0.60 73.00±0.56 87.53±0.50 94.21±0.29 96.50±0.29 96.09±0.35 99.20±0.14 99.70±0.09 28.73±0.45 36.14±0.50 41.80±0.72

Methods
Car CUB Plantae Places

5-shot 20-shot 50-shot 5-shot 20-shot 50-shot 5-shot 20-shot 50-shot 5-shot 20-shot 50-shot

Fine-tune 52.08±0.74 79.27±0.63 – 64.14±0.77 84.43±0.65 89.61±0.55 59.27±0.70 75.35±0.68 81.76±0.56 70.06±0.74 80.96±0.65 84.79±0.58

NSAE† 54.91±0.74 79.68±0.54 – 68.51±0.76 85.22±0.56 89.42±0.62 59.55±0.74 75.70±0.64 82.42±0.55 71.02±0.72 82.70±0.58 85.90±0.59

BSR 57.49±0.72 81.56±0.78 – 69.38±0.76 85.84±0.79 90.91±0.56 61.07±0.76 77.20±0.90 82.16±0.59 71.09±0.68 81.76±0.81 85.67±0.57

NSAE‡ 58.30±0.75 82.32±0.50 – 71.92±0.77 88.09±0.48 91.00±0.79 62.15±0.77 77.40±0.65 83.63±0.60 73.17±0.72 82.50±0.59 85.92±0.56

GNN-FT[39] 44.90±0.64 – – 66.98±0.68 – – 53.85±0.62 – – 73.94±0.67 – –

NSAE†(+) 55.51±0.73 83.17±0.56 – 69.96±0.80 89.01±0.54 93.11±0.64 61.71±0.79 78.58±0.64 84.64±0.76 71.86±0.72 83.24±0.58 86.22±0.70

BSR(+) 59.82±0.76 82.39±0.51 – 73.83±0.74 90.88±0.42 92.91±0.60 64.20±0.77 79.66±0.65 83.44±0.79 71.61±0.71 82.12±0.80 85.82±0.75

NSAE‡(+) 61.11±0.79 85.04±0.52 – 76.00±0.71 91.08±0.42 95.41±0.50 65.66±0.78 81.54±0.60 85.99±0.72 73.40±0.71 83.00±0.59 86.53±0.77

(a) ICC ratio (b) Inter-class variation ratio

Figure 5: ICC visualization. The comparison of the ICC

and the inter-class variance on the source domain and target

datasets for different feature extractors.

with traditional methods. However, these feature extractors

generalize better on the target domain. We similarly show

the inter-class variations in Fig. 5(b). Our proposed method

shows a larger inter-class variation on the target domain,

suggesting that the classes are more separable.

4.4. Main results

Based on the ablation study, we use the combinations

of CE+CE and BSR+CE as classification losses. We use
† to denote method with CE+CE losses and ‡ to denote

method with BSR+CE losses, and ResNet10 is used as fea-

ture encoder to compare with the SOTAs. Using traditional

transfer learning, the CE+CE reduces to the “Fine-tune”

method in [16] and BSR+CE reduces to the ”BSR” method

in [26]. Note that for these methods, since they only imple-

ment on ISIC, EuroSAT, CropDisease, and ChestX, we self-

implement their models on Car, CUB, Plantae, and Places

datasets with their public codebase and report the results.

To further improve the performance of our model, we also

used data augmentation and label propagation techniques,

denoted with (+) in Table 1. In Table 1, by comparing

“Fine-tune” with “NASE†”, “BSR” with “NASE‡”, we can

observe that our proposed method can improve on baselines

by a large margin across different unseen domains for all

shots. We attribute it to the great generalization ability of

the pre-training mechanism and two-step domain adaption

in the fine-tuning stage. Adding augmentation techniques

can further improve the results and our proposed method

performs favorably against other SOTAs across different

unseen domains and evaluation settings.

5. Conclusion

In this work, we propose a novel method for improving

the generalization capability of the transfer learning based

methods for cross-domain few-shot learning(CDFSL). We

propose to train a noise-enhanced supervised autoencoder

instead of a simple feature extractor on the source domain.

Theoretical analysis shows that NSAE can largely improve

the generalization capability of the feature extractor. We

also leverage the nature of the autoencoder and propose

a two-step fine-tuning procedure that outperforms the past

one-step fine-tune procedure. Extensive experiments and

analysis demonstrate the efficacy and generalization of our

method. Moreover, the formulation of NSAE makes it

very easy to apply our proposed method to existing transfer

learning based methods for CDFSL to further boost their

performance.
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