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Abstract

Current 3D object detection paradigms highly rely on
extensive annotation efforts, which makes them not prac-
tical in many real-world industrial applications. Inspired
by that a human driver can keep accumulating experiences
from self-exploring the roads without any tutor’s guidance,
we first step forwards to explore a simple yet effective self-
supervised learning framework tailored for LiDAR-based
3D object detection. Although the self-supervised pipeline
has achieved great success in 2D domain, the characteris-
tic challenges (e.g., complex geometry structure and various
3D object views) encountered in the 3D domain hinder the
direct adoption of existing techniques that often contrast the
2D augmented data or cluster single-view features. Here we
present a novel self-supervised 3D Object detection frame-
work that seamlessly integrates the geometry-aware con-
trast and clustering harmonization to lift the unsupervised
3D representation learning, named GCC-3D. First, GCC-
3D introduces a Geometric-Aware Contrastive objective to
learn spatial-sensitive local structure representation. This
objective enforces the spatially close voxels to have high
feature similarity. Second, a Pseudo-Instance Clustering
harmonization mechanism is proposed to encourage that
different views of pseudo-instances should have consistent
similarities to clustering prototype centers. This module
endows our model semantic discriminative capacity. Exten-
sive experiments demonstrate our GCC-3D achieves signif-
icant performance improvement on data-efficient 3D object
detection benchmarks (nuScenes and Waymo). Moreover,
our GCC-3D framework can achieve state-of-the art per-
formances on all popular 3D object detection benchmarks.

1. Introduction

LiDAR-based 3D object detection has been a long-
standing task in visual perceptions systems for autonomous
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Figure 1. We finetune CenterPoint-pp detector from scratch, with
GCC-3D pretrain or with Click-supervised pretrain and report per-
formance on Waymo and nuScenes dataset. Our GCC-3D model
show consistent significant improvements over the scratch model
and learn more robust feature than Click-supervised pre-train

driving, attracting increasing industry and research atten-
tion recently due to its great advantage of high 3D local-
ization precision and complementary to the 2D perception
[43, 2, 29, 47, 33]. Different from the 2D detection problem,
3D object detectors transform sparse and unorganized point
clouds into the structured 3D bounding box representations,
including shape, orientation and semantic class. Almost all
recent 3D object detectors are built upon fully supervised
frameworks, while obtaining such large-scale and precise
annotations for numerous instances in diverse self-driving
scenarios is labor-intensive and time-consuming, e.g., it
takes hundreds of hours to annotate just one hour of driving
scene data [31]. This hinders the model improvement and
deployment over ever-changing self-driving environments
for LiDAR-based 3D object detection. Thus, a desirable
self/unsupervised 3d object detection framework that can
effortlessly lift the 3d representation learning purely using
raw data is highly demanded but rarely explored.

Nonetheless, in the area of 2D image recognition [30,
20, 14] and natural language understanding [12], self-
supervised pre-training over unlabeled data has yielded a
significant performance boosting in downstream tasks when
the labeled data is scarce. Thus, it is interesting to ask a
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question: Does there also exist an effective self-supervised
pre-training algorithm that can significantly alleviate the
heavy annotation burden in 3D object detection by fully
exploiting abundant unlabeled point cloud data? Existing
works mostly focus on low-level task [50, 10, 16] (e.g., reg-
istration) and single object [17, 9, 1, 21] (like reconstruc-
tion, classification and part segmentation). Recently, Point-
Contrast [44] demonstrated that unsupervised pretraining
can boost the performance on indoor scene understanding
tasks. However, several limitations of PointContrast hin-
der its direct adoption into LiDAR-based 3D detection: 1)
Static Partial Views: Multiple partial views [53] setup is
claimed to be a crucial component of [44], requiring the
object/scene to be static. This is usually not available in
outdoor scenes of autonomous driving scenarios. 2) Incon-
sistent Contrast: It assigns hard labels to matched and un-
matched pairs, which is contradictory to the fact that the
randomly sampled unmatched pairs can have very similar
structure; 3) Lack of Semantic Information: Semantic rep-
resentation is important for high-level scene understanding
tasks like 3D object detection. This kind of representation
is not modeled during pre-training.

To advance the research on LiDAR-based 3D ob-
ject detection into an unsupervised/self-supervised era
and resolve the above-mentioned issues in designing a
proper self-supervised scheme, we present a novel self-
supervised 3D detection framework that seamlessly inte-
grates the geometric-sensitive and semantic-consistent rep-
resentations, named GCC-3D. Our framework is the first
one focusing on autonomous driving scenario without static
partial views setup [53]. Firstly, to alleviate the inconsis-
tent contrast problem, GCC-3D exploits an important prop-
erty of 3D data: two spatially close voxels in 3D space are
very likely to have similar local geometric structures or be-
long to the same object. We inject this prior to our learn-
ing objective and use the geometric distance between voxels
to guide feature similarity during contrastive feature learn-
ing. This geometric-aware contrastive objective can help
learn local structural features of point clouds properly. The
voxel-level features with geometric information will be ag-
gregated as the embedding of pseudo instances, which are
obtained from the sequential information in datasets. Sec-
ondly, we endow our model semantic property by defining
a clustering harmonization phase. During training, we as-
sign labels to each instance embedding by using K-means
clustering following [41]. However, the commonly used
hard labeling strategy [41] violates that some prototypes can
be similar or represent the same semantic classes, and ne-
glects the heterogeneous similarities between embeddings
of pseudo-instances and is prone to ”class collision” [3]
problem. To alleviate this problem, we introduce a new har-
monization term that encourages different pseudo-instances
views to have consistent similarities with clustering proto-

type centers. This term is easily injected into the current
self-clustering framework. By integrating the geometry-
aware contrast and pseudo-instance clustering harmoniza-
tion, our GCC-3D can capture both local structure and con-
text semantic information, which can improve our model’s
localization and classification capacity.

To better validate the self-supervised capability of cur-
rent models in Lidar-based 3D object detection, we con-
duct extensive experiments in popular 3D object detection
benchmarks (Waymo [39], nuScenes [5]) with limited su-
pervised data, called data-efficient benchmarks. The meth-
ods are required to first pre-train only on the unlabeled
data and then fine-tune it using limited labeled data to re-
duce the annotation effort. Our unsupervised framework
GCC-3D can achieve consistent significant improvement
over random initialized models on the data-efficient bench-
marks. Notably, our pre-trained CenterPoint-voxel model
achieves 67.29% mAP on Waymo (with 20% labeled data)
and 57.3% mAP on nuScenes, a separate 4.1% and 1.95%
relative improvement over previous state-of-the-art method
[49]. After transferring our pre-trained model on Waymo
to KITTI [18], we witness a 2.1% relative improvement
over KITTI state-of-the-art method [36]. With 5% labeled
data, our self-supervised model demonstrates over 6.3% and
5.6% relative improvement in mAP compared to PointCon-
trast [44] on Waymo and nuScenes. Our contributions can
be summarized as follows:

• We make the first attempt to propose a simple yet ef-
fective self-supervised LiDAR-based 3D object detec-
tion framework for alleviating the demand for exten-
sive human annotations, towards a more flexible and
scalable self-driving system.

• We propose a novel GCC-3D that is the first self-
supervised learning mechanism to integrate both
geometry-aware structure contrast and harmonized se-
mantic pseudo-instance clustering. This method suc-
cessfully self-explores and enhances the 3D instance-
level representation from both the geometry and se-
mantic perspectives.

• Our GCC-3D framework can achieve state-of-the-
art performances on all popular 3D object detection
benchmarks, i.e., 67.29% mAP on Waymo (20% la-
beled data) and 57.3% mAP on nuScenes.

2. Related Work
LiDAR-based 3D Object Detection. This task’s ob-

jective is to detect objects of interest and localize their
amodal 3D bounding boxes from sparse and unorganized
point clouds. Some representative works [8, 26, 46] project
point clouds to bird’s view and use 2D CNNs to learn the
point cloud features. Some other works [51, 38] apply 3D
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Figure 2. Overview of our GCC-3D self-supervised learning framework. The first key component is the Geometric-Aware Contrast module,
where voxels from different views of the same scene are passed through encoder ϕ and we use the geometric distance between them to
guide voxel-wise feature learning via a geometric-aware contrastive objective. In the second Harmonized Instance Clustering module, we
exploit sequential information to generate pseudo instances in the scenes. The pre-trained voxel features located in each instance will
be aggregated as instance embedding and passed through backbone φ for semantic clustering. A harmonization term is introduced to
encourage that different views of pseudo-instances should have consistent similarities to clustering prototype centers. These two modules
endow our model with both geometric structure and contextual semantic representation.

CNNs over point cloud voxels to generate cuboids. How-
ever, these state-of-the-art methods rely on sufficient train-
ing labels and precise 3D annotations, which cost a heavy
workforce. In this work, we suggest pre-training paradigm
is helpful for real-life LiDAR-based 3D object detection and
further reduce the pressure of labeling through the proposed
self-supervised framework.

Self-supervised Learning. Visual representation learn-
ing with self-supervision has drawn massive attention in
2D vision tasks for its fantastic data efficiency and gener-
alization ability. Image-based self-supervised methods de-
sign many pretext tasks that exploit their spatial structure
[13], color information [11], illumination [15], and rota-
tion [19]. Compared to 2D vision, the limits of big data
are far from being explored in 3D. Recent works attempt to
adapt the 2D pretext tasks to 3D, but mostly focus on low-
level tasks [50, 10, 16] or single object classification tasks
[17, 9, 1, 21, 22, 28, 34, 35]. A recent contrastive-learning
based method PointContrast [44] demonstrates promising
results on a set of indoor scene-level understanding tasks.
However, the good performance of [44] depends on par-
tial views setup, which is usually not available in the out-
door autonomous driving scenario. The simple point-level
pre-training objective in [44] is not properly designed and
can assign points with similar local structure as negative
pair, thus raising an obstacle for good contrastive represen-
tation learning. And it also neglects semantic information
which is important for high-level 3D scene understanding
tasks. So in this work, we propose a properly-designed
self-supervised learning framework that captures both spa-
tial discriminative information and semantic representation.
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Figure 3. The flowchart of GCC-3D pre-training. We first pre-train
3D encoder ϕ with Geometric-Aware Contrastive objective (eq.3).
Then we load the weights to further pre-train 2D encoder φ in
Harmonized Instance Cluster module (eq.7).

3. Method

In this section, we elucidate our proposal of the novel
self-supervised 3D detection framework GCC-3D that
seamlessly integrates the geometry-aware contrast and clus-
tering harmonization, illustrated in Fig. 2. We will first
introduce the Geometric-Aware Contrast module that en-
hances spatial-sensitive local structure representation, then
elaborate on the Pseudo-Instance Clustering harmonization
mechanism, which encourages different views of pseudo-
instances to be consistent.

As with the typical pipeline of LiDAR-based 3D object
detection tasks, a 3D encoder ϕ takes the point cloud of a
scene as input and estimates 3D bounding box representa-
tions for objects, including information on shapes, orienta-
tions and semantic classes. The quantized representations
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are then reshaped and fed to a 2D backbone φ to produce
a feature map F . A task-specific head ψ takes F and can
either be a 2D anchor-based detector or an anchor-free one.

3.1. Geometric-Aware Contrastive Objective

It is crucial to learn meaningful local structural features
of point clouds. Yet methods adopted by previous work
[44] focus on hard labeling strategy in contrastive learn-
ing, which can be ineffective. This is because, in the hard
labeling strategy, both positive and negative pairs can be
formed by two voxels extracted from the same type of ob-
ject, which can be confusing and hinder the network from
learning good representations. However, based on the ob-
servation that spatially close voxels in the 3D world are
more likely to have similar local geometric structures (or
belong to the same object), we can use the geometric dis-
tance among voxels as a proxy for their feature similarity.

We illustrate our learning process in Fig. 2. Given an
original point cloud scene S, we sample a random geomet-
ric transformation T to transform it into an augmented view
S̃. We mainly consider similarity transformation including
rotation, translation and scaling. We then voxelize these two
scenes into regular voxels and feed them into a shared 3D
encoder ϕ to get voxel-wise features. K voxels are then
sampled from the original scenes and we obtain their corre-
sponding voxels in its counterpart S̃ via greedy-searching
its nearest voxel center distance. This gives us the cor-
responding mapping M between two views (vi,ṽi)∈ M ,
where voxel vi and voxel ṽi are a pair of matched vox-
els across two views. The voxel-wise features are then
projected to a latent space for geometric-aware contrastive
learning by a ResMLP [24] h and the final feature for voxel
vi is denoted as ui= h(ϕ(vi)) ∈ RD1 .

Then we calculate the Euclidean distance between the
center of voxels in the two views, denoted as di,j =
∥ T (vi) − ṽj ∥. For each voxel vi, we softmax the dis-
tances between the chosen voxel vi and all sampled voxels
ṽj in augmented view to get weights wi,j(vi, ṽj):

wi,j(vi, ṽj) =
e−di,j∑

(·,ṽk)∈M e−di,k
. (1)

Then the weights wi,j are used to calculate the similarity
among voxels by minimizing the soft InfoNCE loss [32]:

L(vi) = −
∑

(·,ṽj)∈M

wi,j(vi, ṽj)log
eu

⊤
i ũj/τ∑

(·,ṽj)∈M
eu

⊤
i ũj/τ

. (2)

Since the global transformation brings different offsets
between original voxels and their augmented counterparts,
instead of taking all matched pairs as equally positive, we
use the distances among all the positive pairs to calculate

the match confidence ρi= e−di,i∑
(vj,ṽj)∈M e−dj,j

for positive pair

(vi, ṽi). The final loss is thus:

Lvoxel =
∑

(vi,·)∈M

ρiL(vi). (3)

By minimizing Lvoxel, our 3D encoder ϕ can learn the
voxel-wise geometric-aware representation of local struc-
ture with equivariance to different transformations.

3.2. Harmonized Pseudo-Instance Clustering

For complex 3D scene understanding task like 3D object
detection, simply learning voxel-level geometric feature u
might not promise good performance. It is also important
to learn contextual semantic information for the model to
detect with better robustness. Nevertheless, learning such
information requires bounding boxes with exact patches of
objects and ground truth semantic label of different objects,
both of which unavailable in unsupervised learning settings.

To tackle this problem, we introduce a Motion Pseudo-
Instance Generation component into our pipeline. It uti-
lizes sequential information in the dataset to propose pseudo
instances. The categorical labels for these instances are
obtained by using K-means clustering over instance-level
features and we use these labels to further pre-train our
model following [41]. However, the hard labeling strategy
in [41] takes all the unassigned cluster centers (prototypes)
as equally negative. As is discussed previously, it violates
the fact that some prototypes can be similar or represent
the same semantic classes, especially considering that our
number of prototypes C is much larger than the actual se-
mantic class in the scene. Hence, it neglects the heteroge-
neous similarities between embeddings of pseudo-instances
and can lead to the “class collision” [3] problem. There-
fore, we propose a Clustering Harmonization mechanism to
encourage that different views of pseudo-instances should
have consistent feature similarities to clustering prototype
centers. As is shown in Fig. 2, we keep using a multi-view
setup to learn pseudo-instance representation that is equiv-
ariant to transformation and robust to noise.

Motion Pseudo-Instance Generation. In the self-
driving environment, the ego-vehicle’s sensor status is
available at every frame (50 fps). The intuition behind our
design is to use sequential information to localize patches
with moving objects. Note that moving objects can be
recognized from stationary objects by observing the non-
overlapping area among consecutive frames. Therefore, we
can analyze the occupancy voxel point information in BEV
view to identify possible moving voxels and then find out
connected domains between neighboring moving voxels to
obtain pseudo moving patches.

Specifically, given two consecutive LiDAR frame p and
q, the rigid transformation between their coordinates can be
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initial. Model
0.05 0.1 0.2 0.5 1

AP/L2 APH/L2 AP/L2 APH/L2 AP/L2 APH/L2 AP/L2 APH/L2 AP/L2 APH/L2
random init. 49.30 44.35 55.66 51.14 59.14 55.25 61.00 56.94 62.79 58.91

PointContrast [44] cppp [49] 50.10 44.97 56.82 52.35 60.04 56.31 61.83 57.16 63.10 58.97
GCC-3D 52.92+3.72 47.85+3.50 58.68+3.02 53.89+2.75 61.58+2.44 57.39+2.14 63.66+2.66 59.73+2.79 64.17+1.38 60.46+1.55

random init.
cpvoxel [49]

43.13 40.27 50.51 47.73 58.90 56.28 63.60 61.09 66.29 63.80
GCC-3D 44.70+1.57 41.75+1.48 54.09+3.50 51.34+3.61 60.86+1.94 58.19+1.91 65.45+3.61 62.85+1.76 67.00+3.61 64.54+0.76

Table 1. Main results of 3D detection on Waymo val set. “cppp” and “cpvoxel” indicate Centerpoint with Pointpillars and VoxelNet. We
train 36 epochs for cppp and 12 epochs for cpvoxel.

written as: T = T(lidarp←egop)T(egop←egoq)T(egoq←lidarq),
where we align the frame q into the coordinate system of p
by p′ = T (q). We quantify LiDAR points p and p′ into reg-
ular voxels and compute the average coordination of points
in each voxel. Voxels with an average coordination distance
between p and p′ larger than a predefined threshold will be
considered as moving voxels. Finally, we group these vox-
els as pseudo instances by eight-neighbor-hooding [4].

Clustering Harmonization. After passing the point
cloud scene S through 3D encoder ϕ and 2D backbone
φ, we obtain its feature map F . Given the set of pseudo-
instance positions P in scene S obtained in the instance
generation module, we obtain instance-level embedding x
by cropping features corresponding to each pseudo instance
on feature map F . These embeddings are RoIAligned and
projected to a latent embedding space by an MLP g to obtain
instance-level feature x = g(RoIAlign(F , Pm)) ∈ RD2

for pseudo instance m. These instance-level features are
clustered into C distinct groups based on a geometric cri-
terion at the end of each epoch. A D2 × C prototype ma-
trix Z and the cluster assignments y for each instance are
then obtained. These assignments y will be used as pseudo-
labels for training the pseudo-instance clustering network.
With the multi-view setup, we obtain augmented views
of instance-level feature x̃ by passing augmented scene S̃
through our network using transformed instance position P̃ ,
then crop the features on the corresponding feature map F̃ .

To capture similarities among embeddings of pseudo-
instances, we propose a harmonization term that encour-
ages different views of pseudo-instances to be consistent
with their clustering prototype centers. Specifically, given a
pseudo instance m and the prototype matrix Z ∈ RD2×C ,
we calculate the similarity between instance feature x and
the prototypes zi(i ∈ {1, ..., C}) as:

J(i) =
ex

⊤zi∑C
k=1 e

x⊤zk

, (4)

where J(i) is the probability that embedding x is assigned
to cluster center i. Similarly, the probability of assigning
the augmented view of instance feature x̃ to this cluster is:

H(i) =
ex̃

⊤zi∑C
k=1 e

x̃⊤zk

. (5)

initial. Model
0.05 0.1 0.5 1

mAP NDS mAP NDS mAP NDS mAP NDS

random init.

cppp [49]

25.79 34.35 37.12 49.14 46.29 57.25 49.61 60.20
PointContrast [44] 30.79 41.57 38.25 50.10 47.94 58.24 50.09 60.33

GCC-3D 32.75 44.20 39.14 50.48 48.48 58.87 50.84 60.76

random init.

cpvoxel [49]

38.01 44.34 46.85 55.51 54.78 62.92 56.19 64.48
PointContrast [44] 39.75 45.05 47.74 55.98 54.97 63.53 56.25 64.40

GCC-3D 41.10 46.81 48.43 56.71 55.87 64.50 57.26 65.01

Table 2. Data-efficient 3D detection on nuScenes val set. We show
the NDS, mAP for all classes. “cppp” and “cpvoxel” indicate Cen-
terpoint with Pointpillars and VoxelNet.

We further introduce a harmonization term that encour-
ages consistency between the assignment probability J and
H via symmetric Kullback–Leibler divergence:

Lharmo(x) =
1

2
DKL(J ∥ H) +

1

2
DKL(H ∥ J). (6)

This term not only encourages networks to learn fea-
tures with equivariance to a set of transformations, but also
considers the similarity between different prototype centers,
thus alleviating “class collision” [3] problem. It fits well
into the current self-clustering framework and our final loss
is a weighted average of clustering loss term and the consis-
tency regularization term:

Linst =
∑
m∈P

l(x, y) + l(x̃, y) + αLharmo(x), (7)

where l is the cross entropy loss and y is the cluster assign-
ment of instance feature x.

Combination with the Geometric-Aware Contrastive
Objective. Fig. 3 presents the flow of the pre-train pro-
cess. Before pseudo-instance clustering pretraining, we first
load weights of 3D encoder ϕ that gets pre-trained on the
geometric-aware contrast module and provides discrimina-
tive voxel-level structure feature. We then use the harmo-
nized pseudo-instance clustering objective to further pre-
train both the 3D encoder ϕ and the 2D backbone φ. The
weights will be used as initialization for the finetune stage.

4. Experiments
Pre-training Details. In the Geometric-Aware Contrast-

ing module, K = 1024 and D1 = 64. We pre-train the
model for 20 epochs and use Adam optimizer with the ini-
tial learning rate 0.001. The batch size is 6 and τ is 1. In
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Model mAP
Car Pedestrian Cyclist

AP/APH AP/APH AP/APH

SECOND [45] 55.08 59.57/59.04 53.00/43.56 52.67/51.37
PARTˆ2 [37] 60.39 64.33/63.82 54.24/47.11 62.61/61.35

PV-RCNN [36] 59.84 64.99/64.38 53.80/45.14 60.72/59.18
centerpoint-voxel [49] 63.46 61.81/61.30 63.62/57.79 64.96/63.77

centerpoint-voxel 2stage [49] 64.63 64.70/64.11 63.26/58.46 65.93/64.85

GCC-3D (PV-RCNN) 61.30+1.46 65.65/65.10 55.54/48.02 62.72/61.43
GCC-3D (centerpoint-voxel) 65.29+1.83 63.97/63.47 64.23/58.47 67.68/66.44

GCC-3D (centerpoint-voxel 2stage) 67.29+2.66 66.45/65.93 66.82/61.47 68.61/67.46

Model
All

mAP NDS

WYSIWYG [25] 35.0 41.9
3DSSD [48] 42.6 56.4

HotSpotNet [7] 50.6 59.8
CBGS [52] 50.6 62.3

centerpoint-pp [49] 49.6 60.2
centerpoint-voxel [49] 56.2 64.5

GCC-3D (centerpoint-pp) 50.8+1.2 60.8+0.6

GCC-3D (centerpoint-voxel) 57.3+1.1 65.0+0.5

Table 3. Comparison with 3D detection on 20% Waymo (Left) and 100% nuScenes (Right). All methods train 30 epochs following PCDet
and 20 epochs for nuScenes. ”pp” indicates Pointpillar and ”voxel” means VoxelNet using as encoder ϕ.

Harmonized Pseudo-Instance Clustering module, we pre-
train for 20 epochs with Adam optimizer. The initial learn-
ing rate is 0.0048 with a cosine decay. The prototype num-
ber C is 100, D2 is 128 and α is 0.1. All experiments run
on 8 NVIDIA V100 GPUs. We use VoxelNet and PointPil-
lars in CenterPoint network [49] as backbones, denoted as
CenterPoint-pp and CenterPoint-voxel separately. We con-
duct experiments on two most popular self-driving datasets:
Waymo Open Dataset [39] and nuScenes Dataset [5].

4.1. Data-Efficient 3D Object Detection Benchmark

To formally explore data-efficient scene understanding
in autonomous driving, we propose a 3D object detection
benchmark with limited bounding box annotations. Specif-
ically, for each dataset, only a limited fraction of scenes
will be labeled and we consider the configurations including
{0.05, 0.1, 0.2, 0.5} (1 represents the entire train set). We
pre-train our model as initialization for fine-tune and com-
pare against the baseline of train from scratch. The train-
ing schedules and setup during the fine-tuning stage follow
[49]. During test time, evaluation is performed on all scenes
in the validation set. Table 1 and 2 summarize our results.

On the Waymo validation set, our model brings consis-
tent improvement over the baseline model with both Point-
Pillars and VoxelNet encoders. Specifically, with 50% of
labels, the PointPillars model pre-trained with our method
achieves 63.66% mAP, outperforming baseline with 100%
labels. The performance gap does not diminish when more
box annotations are available. Similar behaviors can be
observed on the nuScenes dataset, and the difference be-
tween with and without our pre-train is more pronounced.
As shown in Table 2, the trained-from-scratch detector can
barely produce any meaningful results when the data is
scarce (e.g., 5% or 10%). However, fine-tuning with our
pre-trained weights, PointPillars can perform significantly
better (e.g., improve mAP by 6.96 % with 5% labeled data).

4.2. Comparison with SOTA

We compare our method with other state-of-the-art mod-
els on LiDAR-based 3D Object Detection in Table 3. For

pretrain / ft. KITTI (mode mAP) nuScenes (NDS) Waymo (mAPH/L2)

random init. 69.77 45.55 63.80

nuScens→ 70.75+0.98 45.69+0.14 64.32+0.52

Waymo→ 71.26+1.49 45.65+0.10 64.54+0.64

Table 4. Transfer pre-trained weights from dataset A (column)
to the whole set B (row). We use CenterPoint-voxel for nuScenes
and Waymo, and PV-RCNN for KITTI. We show results are eval-
uated on moderate difficulty mAP for KIITI, NDS for nuScenes
and mAPH under L2 difficulty case for Waymo.

Waymo, we follow the training schedule in PCDet1. Exper-
iments on nuScenes are implemented in CenterPoint2.

After GCC-3D pre-trained on Waymo, several state-of-
the-art 3D object detectors demonstrate better performance
over their training from scratch baselines (+1.83% mAP
on one-stage CenterPoint, +2.66% mAP on two-stage Cen-
terPoint, +1.46%mAP on PV-RCNN [36]), showing strong
generalization ability of our pre-train method. The perfor-
mance of our training from scratch baseline based on Cen-
terPoint is already higher than SECOND [45], PARTˆ2 [37]
and PV-RCNN. After initialization with GCC-3D pre-train,
one-stage CenterPoint reaches 65.29% mAP and 62.79%
mAPH (with +1.83% mAP and +1.84% mAPH improve-
ment over the baseline) and is even better than two-stage
CenterPoint baseline model. The two-stage CenterPoint
module pre-trained with our method reaches 67.29% mAP
and 64.95% mAPH. A similar phenomenon is shown on
nuScenes. The CenterPoint [49], first place on nuScenes
3D object detection benchmark, initialized with our GCC-
3D pre-train achieves a higher performance of 57.3% mAP.

4.3. Transfer Datasets and Models

We evaluate our representation on different datasets to
assess whether the features learned on the source domain
are generic and thus applicable across the target domain.
We use CenterPoint-voxel [49] during pre-train and load
weights of 3D encoder ϕ and 2D backbone φ as initializa-
tion for finetune. When finetuned on KITTI [18], we use

1https://github.com/open-mmlab/OpenPCDet
2https://github.com/tianweiy/CenterPoint
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Figure 4. (a) Ablation studies on hyper-parameter α for our GCC-
3D method. (*) indicates default value. (b) The recall and center
distance curve between generated instance and groundturth.

task-specific head of PV-RCNN [36] and follow training
setups in PCDet [40]. When finetuned on nuScenes, each
scene only uses one sweep of point cloud scene. More ex-
periment setups can be found in the appendix.

Table 4 shows our GCC-3D reaches consistent improve-
ment cross different datasets than random initialization. We
observe that 1) Leveraging pre-trained weights on large
scale dataset then finetune on small datasets can bring more
significant performance improvements: when pretrained on
nuScenes and Waymo then finetuned on KITTI, we see
+0.98% mAP and +1.49% mAP improvement respectively;
2) Model pre-trained on nuScenes and fine-tuned on itself
show bigger improvement over baseline than model pre-
trained on Waymo (+0.14% vs. +0.10%). We conjecture
this dilution of pretraining effectiveness arises from domain
gaps between different point clouds (point clouds of Waymo
are much denser than that of nuScenes).

4.4. Ablation Study

In this section, we conduct ablation study experiments to
analyze the effectiveness of different modules and hyperpa-
rameters of GCC-3D.

Effect of Geometry-Aware Contrast and Harmonized
Pseudo-instance Clustering. We pre-train separately with
Geometry-aware Contrast module and Harmonized pseudo-
instance Clustering module following the same pre-train
setup as in GCC-3D. Then we fine-tune the models on
Waymo and nuScenes datasets with limited annotations
(5%) and evaluate on the full validation set. Results are
in Table 5. While the Harmonized Pseudo-instance Clus-
tering module achieves reasonable pre-train performance,
the Geometry-Aware Contrast module boosts the fine-tune
result more significantly, with +6.77% mAP and +2.59%
mAP than baseline on nuScenes and Waymo separately.
Meanwhile, combining these two modules improves the
performance to 32.75% mAP on nuScenes and 52.92%
mAP on Waymo. It demonstrates that our method of inte-
grating geometry structure and semantic context represen-
tation helps the high-level 3D Object detection task.

Method
Waymo nuScenes

mAP mAPH mAP NDS

random init. 49.30 44.35 25.79 34.35
PointContrast [44] 50.10 44.97 30.79 41.57
DeepCluster [41] 49.26 44.31 27.84 38.19

SwAV [6] - - 27.41 35.60

Geometry-Aware 50.32+1.02 45.21+0.86 32.56+6.77 43.81+9.46

Harmonization Term 51.89+2.59 46.82+2.47 30.32+5.77 42.07+7.72

GCC-3D 52.92+3.62 47.85+3.50 32.75+6.96 44.2+9.85

Table 5. Ablation study of different modules and comparison
with other self-supervised learning method on 5% nuScenes and
Waymo annotations. All results are based on Centerpoint-pp.

Effectiveness of Hyper-parameters. We study the ef-
fect of hyper-parameter introduced in GCC-3D: the coeffi-
cient of harmonization term α. In Fig. 4, we show the effect
of α on nuScenes with 100% annotation. It is finetuned with
the CenterPoint-pp model for 20 epochs. The best coeffi-
cient is 0.1. We see that by using the harmonization term,
the objective accuracy can be boosted from 50.48% mAP
to 50.84% mAP. Increasing α to 0.5 and beyond can hurt
the performance. We conjecture that this is because when
α ≥ 0.5, the model is over-regularized by the harmonization
term and loses some discrimination among categories.

4.5. Exploration on Click-supervised Pretraining

To alleviate the annotation burden in 3D object detec-
tion, some efforts click the object center to provide loca-
tion supervision for this task [42, 27, 31]. Inspired by these
works, we propose a simple supervised pretraining baseline
pre-trained with centers of 3D objects of full dataset and
fine-tuned on a limited scale of fully-annotated data.

We compare the performance of our GCC-3D with the
Click-supervision pre-train on 3D detection task based on
CenterPoint-pp. The results are in Fig. 1. Although the
Click-supervision method achieves good performance with
a highly limited fraction of data, our GCC-3D method show
better performance when we increase the finetuned data
fraction. We believe it is because our method can learn
more robust features than click-annotation pre-train. The
latter enforces the network to focus on localization regres-
sion task, but our method can learn more robust embedding
suitable for 3D object detection task, which requires both
localization, classification and rotation representation.

4.6. Comparison with Other SSL Methods

GCC-3D is the first self-supervised pre-training frame-
work tailored for LiDAR-based 3D Object Detection. Nev-
ertheless, we re-implement and adopt previously pub-
lished self-supervised learning models, including con-
trastive method (PointContrast [44]) and clustering-based
methods (Deepclusterv2 [41] and SwAV [6]) on 3D object
detection tasks. These methods are actually closely related
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to our framework. The PointContrast method can be imple-
mented by revising the voxel-level contrastive learning in
our Geometry-aware Contrast module with hard labeling.
During pre-train, it is optimized following the same setup
as in GCC-3D. For Deepcluster v2 and SwAV, instead of
applying these cluster-based learning strategies on images,
we use them on our proposed pseudo-instances. In Harmo-
nized pseudo-instance Clustering module, getting rid of the
harmonization term and choosing α to be 0 reduce to Deep-
clusterv2. SwAV is an adaptation of Deepclusterv2 with on-
line clustering. During pre-train, their hyperparameters and
optimization setup follow the same setting as in GCC-3D.

We compare with these self-supervised pretraining meth-
ods on Waymo and nuScenes dataset with finetuning on lim-
ited annotation (5%) based on CenterPoint-pp in Table 5.
Our pre-training method outperforms all these pre-training
strategies, achieving 32.75% mAP on nuScenes and 52.92%
mAP on Waymo with only 5% annotations. Notably, the
consistent improvement of Geometry-Aware Contrast over
PointContrast (32.56% mAP vs. 30.79% mAP on nuScenes
and 51.89% mAP vs. 50.10% mAP on Waymo) demon-
strates the effectiveness of our geometry-aware design – us-
ing distance to guide feature similarity can alleviate incon-
sistent hard labeling problem in PointContrast. Harmoniza-
tion Clustering produces better performance than Deepclus-
terv2 and SwAV, which proves the importance of our pro-
posed harmonization term.

4.7. How Pre-training Affects 3D Object Detection

Speed Up Convergence with Better Performance. To
investigate whether the advantage of pre-training recedes
when we prolong the fine-tuning stage, we compare the
train from scratch baseline with fine-tuned model initialized
with Click-supervised pre-training in Fig. 6. The exper-
iments are conducted on nuScenes dataset with 2.5% and
5% labeled data during fine-tune and 20 times bigger scale
dataset during pre-train. We train until both models con-
verge and find that the model with pre-training consistently
outperforms the baseline. This observation is not consistent
with [23], which claims that train-from-scratch baselines
are no worse than their pre-trained counterparts. More-
over, it is observed that pretraining speeds up convergence
by four times compared with baseline (20 epochs vs. 80
epochs). These observations motivate using pre-training to
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Figure 6. Fine-tuned on 2.5% and 5% nuScenes dataset.

reduce resource consumption for real-world application.
Consistent Improvement with Large Finetune Scale

by Unsupervised Pre-train. It is observed in some pre-
train methods that as the fine-tuned data scale grows, the
benefits of pre-training will decrease. We see a similar phe-
nomenon on Click-supervised pre-train. However, in our
3D detection baseline, we can observe a consistent improve-
ment of the pre-trained model over the baseline. We hy-
pothesize that our unsupervised pre-train objective can learn
more robust features and is less likely to overfit to specific
tasks.

Alleviate False Positive. To compare the perfor-
mance of different initializations, including train-from-
scratch (tfs), supervised pretraining, and GCC-3D pretrain-
ing, we consider the Precision-Recall (PR) curve on Waymo
dataset, which plots precision against the recall at different
thresholds. Fig. 5 shows that pre-trained models outper-
form tfs at the same recall level, especially on far range de-
tection. Tfs fails on recall > 0.7 while GCC-3D can help
the model make a more precise prediction.

5. Conclusion

In this work, we focus on data-efficient LiDAR-based
3D object detection through a novel self-supervised frame-
work that integrates Geometry-Aware Contrast and Harmo-
nized Pseudo-Instance Clustering. It can capture spatial-
sensitive representation and high-level context information.
We show the effectiveness of pre-train and hope these find-
ings can drive more research on unsupervised 3D represen-
tation learning and 3D scene understanding in the future.
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